Math 609 March 5, 2009 Jerry L. Kazdan 10:30- 11:50

Complex Analysis Exam I

DIRECTIONS This exam has two parts, Part A has 7 short answer problems (35 points) while Part B has 5 traditional problems (65 points).

Closed book but you may use one 3×5 card with notes (on both sides).

All contour integrals are assumed to be in the positive sense (counterclockwise).

Short Answer Problems 7 problems [5 points each] (35 points total)

For A1–A5 let f(z) be holomorphic for $0 < |z| < \infty$. What can you say about f(z) if you are told the following? Briefly justify your assertions.

A1.
$$|z^2 f(z)| < 5$$
.

A2.
$$|f(z)| \to \infty$$
 as $|z| \to 0$.

A3.
$$f''(z) + f(z) = 0$$
 for all real rational $z \neq 0$.

A4.
$$|f(z)| \le |z| + 1$$
 and $f(\frac{1}{n}) = 0$, $n = 1, 2, \dots$

A5.
$$|f(z)| \le |f(3)|$$
 for $|z-3| < 2$.

- A6. If $\sum_{n=0}^{\infty} a_n z^n$ represents the function $\frac{\sin z}{z^2 + 2}$, which of the following are true? (Why?)
 - (A). Converges for z=1.
 - (B). Converges absolutely for z=1.
 - (C). Converges absolutely for z=2.

A7. Describe the singularities of
$$\varphi(z) := \frac{1 - \cos(z^5)}{\sin^3 z}$$
 at $z = 0$, $z = \pi$, and $z = \infty$.

Traditional Problems [13 points each] (65 points total)

B1. Prove the Fundamental Theorem of Algebra: that any polynomial

$$p(z) = z^n + a_{n-1}z^{n-1} + \dots + a_0, \quad n > 0,$$

with complex coefficients a_k has exactly n complex roots, counted with multiplicity.

- B2. Let f(z) be an entire function that is a one-to-one map from $\mathbb C$ to $\mathbb C$. Show that f(z)=az+b for some complex constants $a\neq 0$ and b.
- B3. Evaluate $A = \int_0^\infty \frac{\cos xt}{x^2 + a^2} dx$ where a > 0 and t > 0.
- B4. Let h(z), z = x + iy, be holomorphic in the strip |y| < 10 with |h(z)| < 1 there. Prove that $\cos z + h(z)$ has an infinite number of zeroes in this strip. [Note: You may use without proof that $|\cos z|^2 = \cosh^2 y \sin^2 x$].
- B5. Let a function f(z) have all of the properties
 - (a). holomorphic in $\{|z| \le 1\}$,
 - (b). |f(z)| = 1 for |z| = 1,
 - (c). f(a) = 0 for some |a| < 1,
 - (d). $f(z) \neq 0$ for all $|z| \leq 1$, with $z \neq a$.

Prove that $f(z) = \alpha \left(\frac{z-a}{1-\bar{a}z}\right)^k$, where $|\alpha| = 1$ and k is a positive integer.