Complex Analysis Exam I

Directions This exam has two parts, Part A has 7 short answer problems (35 points) while Part B has 5 traditional problems (65 points).
Closed book but you may use one 3×5 card with notes (on both sides).
All contour integrals are assumed to be in the positive sense (counterclockwise).
Short Answer Problems 7 problems [5 points each] (35 points total)
For A1-A5 let $f(z)$ be holomorphic for $0<|z|<\infty$. What can you say about $f(z)$ if you are told the following? Briefly justify your assertions.

A1. $\left|z^{2} f(z)\right|<5$.

A2. $|f(z)| \rightarrow \infty$ as $|z| \rightarrow 0$.

A3. $f^{\prime \prime}(z)+f(z)=0$ for all real rational $z \neq 0$.

A4. $|f(z)| \leq|z|+1$ and $f\left(\frac{1}{n}\right)=0, \quad n=1,2, \ldots$

A5. $|f(z)| \leq|f(3)|$ for $|z-3|<2$.

A6. If $\sum_{n=0}^{\infty} a_{n} z^{n}$ represents the function $\frac{\sin z}{z^{2}+2}$, whch of the following are true? (Why?)
(A). Converges for $z=1$.
(B). Converges absolutely for $z=1$.
(C). Converges absolutely for $z=2$.

A7. Describe the singularities of $\varphi(z):=\frac{1-\cos \left(z^{5}\right)}{\sin ^{3} z}$ at $z=0, z=\pi$, and $z=\infty$.

Traditional Problems [13 points each] (65 points total)
B1. Prove the Fundamental Theorem of Algebra: that any polynomial

$$
p(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{0}, \quad n>0
$$

with complex coefficients a_{k} has exactly n complex roots, counted with multiplicity.

B2. Let $f(z)$ be an entire function that is a one-to-one map from \mathbb{C} to \mathbb{C}. Show that $f(z)=a z+b$ for some complex constants $a \neq 0$ and b.

B3. Evaluate $A=\int_{0}^{\infty} \frac{\cos x t}{x^{2}+a^{2}} d x$ where $a>0$ and $t>0$.

B4. Let $h(z), z=x+i y$, be holomorphic in the strip $|y|<10$ with $|h(z)|<1$ there. Prove that $\cos z+h(z)$ has an infinite number of zeroes in this strip. [Note: You may use without proof that $\left.|\cos z|^{2}=\cosh ^{2} y-\sin ^{2} x\right]$.

B5. Let a function $f(z)$ have all of the properties
(a). holomorphic in $\{|z| \leq 1\}$,
(b). $|f(z)|=1$ for $|z|=1$,
(c). $f(a)=0$ for some $|a|<1$,
(d). $f(z) \neq 0$ for all $|z| \leq 1$, with $z \neq a$.

Prove that $f(z)=\alpha\left(\frac{z-a}{1-\bar{a} z}\right)^{k}$, where $|\alpha|=1$ and k is a positive integer.

