Complex Analysis Exam II

DIRECTIONS This exam has two parts, Part A has 4 short answer problems (5 points each so 20 points) while Part B has 7 traditional problems, 10 points each so 70 points).

Closed book but you may use one 3×5 card with notes (on both sides).

All contour integrals are assumed to be in the positive sense (counterclockwise).

Short Answer Problems [5 points each (20 points total)]

- A1. If f(z) is an entire function with $|f(z)| \ge 1$ everywhere, what can you conclude about f? Justify your assertions.
- A2. If f(z) is an entire function and $f(x + 2\pi) = f(x)$ for all real x, does $f(z + 2\pi) = f(z)$ for all complex z? Proof or counterexample.
- A3. The function $\frac{z^3-1}{z^2+3z-4}$ has a power series expansion in a neighborhood of the origin. What is its radius of convergence? Justify your assertion.
- A4. Assume the entire function f(z) has no zeroes on any of the circles |z| = n, n = 1, 2, 3, ...and also that

$$\oint_{|z|=n} \frac{1}{f(z)} dz \neq \oint_{|z|=n+1} \frac{1}{f(z)} dz, \quad n = 1, 2, 3, \dots$$

Is this function transcendental? Proof or counterexample.

Traditional Problems [10 points each (70 points total)]

B1. Assume f(z) is meromorphic for all $|z| < \infty$ and satisfies

$$|f(z)| \le \left(\frac{2|z|}{|z-1|}\right)^{3/2}$$

What can you conclude about f? Justify your assertions.

- B2. Evaluate $A = \int_{-\infty}^{\infty} \frac{\cos x}{x^2 + a^2} dx$ where a > 0.
- B3. a) Let f(z) be holomorphic in $|z| \leq R$ with $|f(z)| \leq M$ on |z| = R. Show that

$$|f(z) - f(0)| \le \frac{2M|z|}{R}$$

b) Use this to give a proof of Liouville's theorem.

B4. If f(t) is piecewise continuous and uniformly bounded for all $t \ge 0$, show that for $Re\{z\} > 0$ the function (Laplace transform)

$$g(z) := \int_0^\infty f(t) e^{-zt} \, dt$$

is holomorphic for $\operatorname{Re}\{z\} > 0$.

- B5. Let $f_n(z)$ be a sequence of functions holomorphic in the connected open set Ω and assume they converge uniformly on every compact subset of Ω . Show that the sequence of derivatives $f'_n(z)$ also converges uniformly on every compact subset of Ω .
- B6. Find a conformal map from the unbounded region outside the disks $\{|z+1| \le 1\} \cup \{|z-1| \le 1\}$ to the upper half plane.
- B7. Consider the family of polynomials

$$p(z;t) = z^{n} + a_{n-1}(t)z^{n-1} + \dots + a_{1}(t)z + a_{0}(t),$$

where the coefficients $a_j(t)$ depend continuously on the parameter $t \in [0,1]$. Assume that at t = 0 the polynomial p(z;0) has k zeroes (counted with their multiplicity) in the disk |z-c| < R and has no zeroes on the circle |z-c| = R.

Show that for all sufficiently small t the polynomial p(z;t) also has k zeroes in |z-c| < R.