Complex Analysis Exam II

Directions This exam has two parts, Part A has 4 short answer problems (5 points each so 20 points) while Part B has 7 traditional problems, 10 points each so 70 points).
Closed book but you may use one 3×5 card with notes (on both sides).
All contour integrals are assumed to be in the positive sense (counterclockwise).
Short Answer Problems [5 points each (20 points total)]
A1. If $f(z)$ is an entire function with $|f(z)| \geq 1$ everywhere, what can you conclude about f ? Justify your assertions.

A2. If $f(z)$ is an entire function and $f(x+2 \pi)=f(x)$ for all real x, does $f(z+2 \pi)=f(z)$ for all complex z ? Proof or counterexample.

A3. The function $\frac{z^{3}-1}{z^{2}+3 z-4}$ has a power series expansion in a neighborhood of the origin. What is its radius of convergence? Justify your assertion.

A4. Assume the entire function $f(z)$ has no zeroes on any of the circles $|z|=n, n=1,2,3, \ldots$ and also that

$$
\oint_{|z|=n} \frac{1}{f(z)} d z \neq \oint_{|z|=n+1} \frac{1}{f(z)} d z, \quad n=1,2,3, \ldots
$$

Is this function transcendental? Proof or counterexample.

Traditional Problems [10 points each (70 points total)]
B1. Assume $f(z)$ is meromorphic for all $|z|<\infty$ and satisfies

$$
|f(z)| \leq\left(\frac{2|z|}{|z-1|}\right)^{3 / 2}
$$

What can you conclude about f ? Justify your assertions.
B2. Evaluate $A=\int_{-\infty}^{\infty} \frac{\cos x}{x^{2}+a^{2}} d x$ where $a>0$.
B3. a) Let $f(z)$ be holomorphic in $|z| \leq R$ with $|f(z)| \leq M$ on $|z|=R$. Show that

$$
|f(z)-f(0)| \leq \frac{2 M|z|}{R}
$$

b) Use this to give a proof of Liouville's theorem.

B4. If $f(t)$ is piecewise continuous and uniformly bounded for all $t \geq 0$, show that for $\operatorname{Re}\{z\}>0$ the function (Laplace transform)

$$
g(z):=\int_{0}^{\infty} f(t) e^{-z t} d t
$$

is holomorphic for $\operatorname{Re}\{z\}>0$.

B5. Let $f_{n}(z)$ be a sequence of functions holomorphic in the connected open set Ω and assume they converge uniformly on every compact subset of Ω. Show that the sequence of derivatives $f_{n}^{\prime}(z)$ also converges uniformly on every compact subset of Ω.

B6. Find a conformal map from the unbounded region outside the disks $\{|z+1| \leq 1\} \cup\{|z-1| \leq 1\}$ to the upper half plane.

B7. Consider the family of polynomials

$$
p(z ; t)=z^{n}+a_{n-1}(t) z^{n-1}+\cdots a_{1}(t) z+a_{0}(t),
$$

where the coefficients $a_{j}(t)$ depend continuously on the parameter $t \in[0,1]$. Assume that at $t=0$ the polynomial $p(z ; 0)$ has k zeroes (counted with their multiplicity) in the disk $|z-c|<R$ and has no zeroes on the circle $|z-c|=R$.
Show that for all sufficiently small t the polynomial $p(z ; t)$ also has k zeroes in $|z-c|<R$.

