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Math 609 Jerry L. Kazdan
April 28, 2009 10:30–11:50

Complex Analysis Exam II

Directions This exam has two parts, Part A has 4 short answer problems (5 points each so 20
points) while Part B has 7 traditional problems, 10 points each so 70 points).
Closed book but you may use one 3× 5 card with notes (on both sides).
All contour integrals are assumed to be in the positive sense (counterclockwise).

Short Answer Problems [5 points each (20 points total)]

A1. If f(z) is an entire function with |f(z)| ≥ 1 everywhere, what can you conclude about f ?
Justify your assertions.

Solution Then g(z) := 1/f(z) is an entire function. Moreover |g(z)| ≤ 1. Consequently g is
a constant, so f is a constant.

A2. If f(z) is an entire function and f(x + 2π) = f(x) for all real x , does f(z + 2π) = f(z) for
all complex z? Proof or counterexample.

Solution True. Let g(z) := f(z + 2π)− f(z). then g is entire and vanishes on the real axis.
Consequently g(z) = 0 everywhere.

A3. The function
z3 − 1

z2 + 3z − 4
has a power series expansion in a neighborhood of the origin. What

is its radius of convergence? Justify your assertion.

Solution Since z2 + 3z− 4 = (z− 1)(z + 4), the point z = 1 is a removable singularity. Thus
the radius of convergence is 4.

A4. Assume the entire function f(z) has no zeroes on any of the circles |z| = n , n = 1, 2, 3, . . .
and also that ∮

|z|=n

1
f(z)

dz 6=
∮
|z|=n+1

1
f(z)

dz, n = 1, 2, 3, . . . .

Is this function transcendental? Proof or counterexample.

Solution The assumption implies that f(z) has at least one zero in the annulus n < |z| < n+1.
Thus it has infinitely many zeros so must be transcendental.
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Traditional Problems [10 points each (70 points total)]

B1. Assume f(z) is meromorphic for all |z| < ∞ and satisfies

|f(z)| ≤
(

2|z|
|z − 1|

)3/2

.

What can you conclude about f ? Justify your assertions.

Solution We claim the only possibility is f(z) ≡ 0.

Proof: Clearly the only possible singularity of f(z) is at z = 1. Let g(z) := (z − 1)2f(z).
Then

|g(z)| ≤ (2|z|)3/2|z − 1|1/2.

Since g(z) is bounded nearz = 1, it has at most a removable singularity there. Consequently
g is an entire function. Because it grows at most like |z|2 for large z , it must be a quadratic
polynomial. But g(z) := (z− 1)2f(z) so f(z) ≡ constant. Noticing that g(0) = 0 we conclude
that f(0) = 0. Hence f(z) ≡ 0.

B2. Evaluate A =
∫ ∞

−∞

cos x

x2 + a2
dx where a > 0.

Solution Consider BR :=
∮

ΓR

eiz

z2 + a2
dz over the semicircle ΓR which is the boundary of

the half-disk |z| = R in the upper-half plane y > 0. For R > a the only singularity of the

integrand inside ΓR is at z = ia . Thus by the residue theorem BR = 2πi
e−a

2ia
=

πe−a

a
.

But also

BR =
∫ R

−R

eix

x2 + a2
dx +

∫
γR

eiz

z2 + a2
dz = I1 + I2,

where γR is the semi-circle z = Reiθ for 0 ≤ θ ≤ π . Since |eiz| = |eix−y| = e−y ≤ 1 on γR ,
then for R large I2 = O(1/R) → 0.

Letting R →∞ we conclude that

πe−a

a
= BR →

∫ ∞

−∞

eix

x2 + a2
dx.

. Taking the real parts of both sides, we conclude that∫ ∞

−∞

cos x

x2 + a2
dx =

πe−a

a
.
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B3. a) Let f(z) be holomorphic in |z| ≤ R with |f(z)| ≤ M on |z| = R . Show that

|f(z)− f(0)| ≤ 2M |z|
R

(1)

Solution To be brief, apply the Schwarz Lemma to g(z) := f(z) − f(0) and note that
|g(z)| ≤ 2M on |z| = R .
In greater detail, since g(z)/z is holomorphic in |z| ≤ R , by the maximum principle
|g(z)/z| ≤ 2M/R .

b) Use this to give a proof of Liouville’s theorem.

Solution Let R →∞ in (1).

B4. If f(t) is piecewise continuous and uniformly bounded for all t ≥ 0, show that for Re{z} > 0
the function (Laplace transform)

g(z) :=
∫ ∞

0
f(t)e−zt dt

is holomorphic for Re{z} > 0.

Solution The piecewise continuity and boundedness of f imply that the improper integral
exists for Re{z} > 0.

Step 1: Let gc(t) :=
∫ c
0 f(t)e−zt dt . We claim that gc(z) is an entire function. We explicitly

show that gc has a complex derivative:

g′c(z) = −
∫ c

0
f(t)e−ztt dt.

Indeed, since
e−ht − 1

h
+ t converges to 0 uniformly for t ∈ [0, c] , then

gc(z + h)− gc(z)
h

−
(
−

∫ c

0
f(t)e−ztt dt

)
=

∫ c

0
f(t)e−zt

[
e−ht − 1

h
+ t

]
dt → 0.

Step 2: To complete the proof, we claim the entire functions gc(z) converge uniformly to g(z)
in the half-space Re {z} ≥ δ for any δ > 0. Say |f(t)| ≤ M . Then

|g(z)− gc(z)| =
∫ ∞

c
|f(t)e−zt| dt ≤

∫ ∞

c
Me−δt dt =

Me−δc

δ

which converges to zero as c →∞ .

As alternates one can use Morera’s Theorem (but justify ine interchange of the order of inte-
gration) or directly take the derivative of g(z), justifying why one can differentiate under the
integral (say by the dominated convergence theorem).
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B5. Let fn(z) be a sequence of functions holomorphic in the connected open set Ω and assume
they converge uniformly on every compact subset of Ω. Show that the sequence of derivatives
f ′n(z) also converges uniformly on every compact subset of Ω.

Solution Let K ∈ Ω be any compact set and let r be the distance from K to the boundary of
Ω. There is a cover of K by a finite number of open disks of radius r/4. Say |z−a| < r/4 is one
of these disks. Then by the Cauchy Integral Formula applied to the larger disk |ζ − a| < r/2,
for any point z in this smaller disk

f ′n(z) =
1

2πi

∮
|ζ−a|<r/2

fn(ζ)
(ζ − z)2

dζ

But since |ζ − z| > r/2 and the fn ’s converge uniformly, we can pass limit under the integral
and conclude that the f ′n s converge uniformly in this disk:

f ′n(z) → 1
2πi

∮
|ζ−a|<r/2

f(ζ)
(ζ − z)2

dζ = f ′(z).

Because this finite collection of smaller disks cover K , we conclude that the convergence is
uniform in K .

B6. Find a conformal map from the unbounded region outside the disks {|z+1| ≤ 1}∪{|z−1| ≤ 1}
to the upper half plane.

Solution Step 1: Writing w = u+ iv , the map w = 1/z maps this region to the vertical strip
−1/2 < u < 1/2. [In greater detail, it maps the real axis to itself, the imaginary axis to itself,
the origin to infinity, and hence the circles |z± 1| = 1 to the vertical straight lines u = ±1/2.]

Step 2: By a translation, rotation, and stretching we can map this strip to the horiontal strip
−∞ < s < ∞ , 0 < t < π in the ζ = s + it plane.

Step 3: Then eζ maps this strip to the upper half-plane.

B7. Consider the family of polynomials

p(z; t) = zn + an−1(t)zn−1 + · · · a1(t)z + a0(t),

where the coefficients aj(t) depend continuously on the parameter t ∈ [0, 1]. Assume that
at t = 0 the polynomial p(z; 0) has k zeroes (counted with their multiplicity) in the disk
|z − c| < R and has no zeroes on the circle |z − c| = R .

Show that for all sufficiently small t the polynomial p(z; t) also has k zeroes in |z − c| < R .

Solution Write
p(z; t) = p(z; 0) + [p(z; t)− p(z; 0)].

Since the circle |z − c| = R is compact, on this circle |p(z; 0)| ≥ c for some c > 0. Now pick
t so small that |p(z; t) − p(z; 0)| < c/2 in this disk. Then by Rouché’s theorem p(z; t) and
p(z; 0) both have the same number of zeroes in this disk.

Remark: Although we picked t ∈ [0, 1], that was essentially irrellenvent.


