Complex Analysis Exam II

Directions This exam has two parts, Part A has 4 short answer problems (5 points each so 20 points) while Part B has 7 traditional problems, 10 points each so 70 points).
Closed book but you may use one 3×5 card with notes (on both sides).
All contour integrals are assumed to be in the positive sense (counterclockwise).
Short Answer Problems [5 points each (20 points total)]
A1. If $f(z)$ is an entire function with $|f(z)| \geq 1$ everywhere, what can you conclude about f ? Justify your assertions.

Solution Then $g(z):=1 / f(z)$ is an entire function. Moreover $|g(z)| \leq 1$. Consequently g is a constant, so f is a constant.

A2. If $f(z)$ is an entire function and $f(x+2 \pi)=f(x)$ for all real x, does $f(z+2 \pi)=f(z)$ for all complex z ? Proof or counterexample.

Solution True. Let $g(z):=f(z+2 \pi)-f(z)$. then g is entire and vanishes on the real axis. Consequently $g(z)=0$ everywhere.

A3. The function $\frac{z^{3}-1}{z^{2}+3 z-4}$ has a power series expansion in a neighborhood of the origin. What is its radius of convergence? Justify your assertion.

Solution Since $z^{2}+3 z-4=(z-1)(z+4)$, the point $z=1$ is a removable singularity. Thus the radius of convergence is 4 .

A4. Assume the entire function $f(z)$ has no zeroes on any of the circles $|z|=n, n=1,2,3, \ldots$ and also that

$$
\oint_{|z|=n} \frac{1}{f(z)} d z \neq \oint_{|z|=n+1} \frac{1}{f(z)} d z, \quad n=1,2,3, \ldots
$$

Is this function transcendental? Proof or counterexample.
Solution The assumption implies that $f(z)$ has at least one zero in the annulus $n<|z|<n+1$. Thus it has infinitely many zeros so must be transcendental.

Traditional Problems [10 points each (70 points total)]
B1. Assume $f(z)$ is meromorphic for all $|z|<\infty$ and satisfies

$$
|f(z)| \leq\left(\frac{2|z|}{|z-1|}\right)^{3 / 2} .
$$

What can you conclude about f ? Justify your assertions.
Solution We claim the only possibility is $f(z) \equiv 0$.
Proof: Clearly the only possible singularity of $f(z)$ is at $z=1$. Let $g(z):=(z-1)^{2} f(z)$. Then

$$
|g(z)| \leq(2|z|)^{3 / 2}|z-1|^{1 / 2}
$$

Since $g(z)$ is bounded near $z=1$, it has at most a removable singularity there. Consequently g is an entire function. Because it grows at most like $|z|^{2}$ for large z, it must be a quadratic polynomial. But $g(z):=(z-1)^{2} f(z)$ so $f(z) \equiv$ constant. Noticing that $g(0)=0$ we conclude that $f(0)=0$. Hence $f(z) \equiv 0$.

B2. Evaluate $A=\int_{-\infty}^{\infty} \frac{\cos x}{x^{2}+a^{2}} d x$ where $a>0$.
Solution Consider $B_{R}:=\oint_{\Gamma_{R}} \frac{e^{i z}}{z^{2}+a^{2}} d z$ over the semicircle Γ_{R} which is the boundary of the half-disk $|z|=R$ in the upper-half plane $y>0$. For $R>a$ the only singularity of the integrand inside Γ_{R} is at $z=i a$. Thus by the residue theorem $B_{R}=2 \pi i \frac{e^{-a}}{2 i a}=\frac{\pi e^{-a}}{a}$.
But also

$$
B_{R}=\int_{-R}^{R} \frac{e^{i x}}{x^{2}+a^{2}} d x+\int_{\gamma_{R}} \frac{e^{i z}}{z^{2}+a^{2}} d z=I_{1}+I_{2}
$$

where γ_{R} is the semi-circle $z=R e^{i \theta}$ for $0 \leq \theta \leq \pi$. Since $\left|e^{i z}\right|=\left|e^{i x-y}\right|=e^{-y} \leq 1$ on γ_{R}, then for R large $I_{2}=O(1 / R) \rightarrow 0$.
Letting $R \rightarrow \infty$ we conclude that

$$
\frac{\pi e^{-a}}{a}=B_{R} \rightarrow \int_{-\infty}^{\infty} \frac{e^{i x}}{x^{2}+a^{2}} d x
$$

. Taking the real parts of both sides, we conclude that

$$
\int_{-\infty}^{\infty} \frac{\cos x}{x^{2}+a^{2}} d x=\frac{\pi e^{-a}}{a} .
$$

B3. a) Let $f(z)$ be holomorphic in $|z| \leq R$ with $|f(z)| \leq M$ on $|z|=R$. Show that

$$
\begin{equation*}
|f(z)-f(0)| \leq \frac{2 M|z|}{R} \tag{1}
\end{equation*}
$$

Solution To be brief, apply the Schwarz Lemma to $g(z):=f(z)-f(0)$ and note that $|g(z)| \leq 2 M$ on $|z|=R$.
In greater detail, since $g(z) / z$ is holomorphic in $|z| \leq R$, by the maximum principle $|g(z) / z| \leq 2 M / R$.
b) Use this to give a proof of Liouville's theorem.

Solution Let $R \rightarrow \infty$ in (1).

B4. If $f(t)$ is piecewise continuous and uniformly bounded for all $t \geq 0$, show that for $\operatorname{Re}\{z\}>0$ the function (Laplace transform)

$$
g(z):=\int_{0}^{\infty} f(t) e^{-z t} d t
$$

is holomorphic for $\operatorname{Re}\{z\}>0$.
Solution The piecewise continuity and boundedness of f imply that the improper integral exists for $\operatorname{Re}\{z\}>0$.
Step 1: Let $g_{c}(t):=\int_{0}^{c} f(t) e^{-z t} d t$. We claim that $g_{c}(z)$ is an entire function. We explicitly show that g_{c} has a complex derivative:

$$
g_{c}^{\prime}(z)=-\int_{0}^{c} f(t) e^{-z t} t d t
$$

Indeed, since $\frac{e^{-h t}-1}{h}+t$ converges to 0 uniformly for $t \in[0, c]$, then

$$
\frac{g_{c}(z+h)-g_{c}(z)}{h}-\left(-\int_{0}^{c} f(t) e^{-z t} t d t\right)=\int_{0}^{c} f(t) e^{-z t}\left[\frac{e^{-h t}-1}{h}+t\right] d t \rightarrow 0 .
$$

Step 2: To complete the proof, we claim the entire functions $g_{c}(z)$ converge uniformly to $g(z)$ in the half-space $\operatorname{Re}\{z\} \geq \delta$ for any $\delta>0$. Say $|f(t)| \leq M$. Then

$$
\left|g(z)-g_{c}(z)\right|=\int_{c}^{\infty}\left|f(t) e^{-z t}\right| d t \leq \int_{c}^{\infty} M e^{-\delta t} d t=\frac{M e^{-\delta c}}{\delta}
$$

which converges to zero as $c \rightarrow \infty$.
As alternates one can use Morera's Theorem (but justify ine interchange of the order of integration) or directly take the derivative of $g(z)$, justifying why one can differentiate under the integral (say by the dominated convergence theorem).

B5. Let $f_{n}(z)$ be a sequence of functions holomorphic in the connected open set Ω and assume they converge uniformly on every compact subset of Ω. Show that the sequence of derivatives $f_{n}^{\prime}(z)$ also converges uniformly on every compact subset of Ω.

Solution Let $K \in \Omega$ be any compact set and let r be the distance from K to the boundary of Ω. There is a cover of K by a finite number of open disks of radius $r / 4$. Say $|z-a|<r / 4$ is one of these disks. Then by the Cauchy Integral Formula applied to the larger disk $|\zeta-a|<r / 2$, for any point z in this smaller disk

$$
f_{n}^{\prime}(z)=\frac{1}{2 \pi i} \oint_{|\zeta-a|<r / 2} \frac{f_{n}(\zeta)}{(\zeta-z)^{2}} d \zeta
$$

But since $|\zeta-z|>r / 2$ and the f_{n} 's converge uniformly, we can pass limit under the integral and conclude that the $f_{n}^{\prime} \mathrm{s}$ converge uniformly in this disk:

$$
f_{n}^{\prime}(z) \rightarrow \frac{1}{2 \pi i} \oint_{|\zeta-a|<r / 2} \frac{f(\zeta)}{(\zeta-z)^{2}} d \zeta=f^{\prime}(z)
$$

Because this finite collection of smaller disks cover K, we conclude that the convergence is uniform in K.

B6. Find a conformal map from the unbounded region outside the disks $\{|z+1| \leq 1\} \cup\{|z-1| \leq 1\}$ to the upper half plane.

Solution Step 1: Writing $w=u+i v$, the map $w=1 / z$ maps this region to the vertical strip $-1 / 2<u<1 / 2$. [In greater detail, it maps the real axis to itself, the imaginary axis to itself, the origin to infinity, and hence the circles $|z \pm 1|=1$ to the vertical straight lines $u= \pm 1 / 2$.]
Step 2: By a translation, rotation, and stretching we can map this strip to the horiontal strip $-\infty<s<\infty, 0<t<\pi$ in the $\zeta=s+i t$ plane.
Step 3: Then e^{ζ} maps this strip to the upper half-plane.

B7. Consider the family of polynomials

$$
p(z ; t)=z^{n}+a_{n-1}(t) z^{n-1}+\cdots a_{1}(t) z+a_{0}(t),
$$

where the coefficients $a_{j}(t)$ depend continuously on the parameter $t \in[0,1]$. Assume that at $t=0$ the polynomial $p(z ; 0)$ has k zeroes (counted with their multiplicity) in the disk $|z-c|<R$ and has no zeroes on the circle $|z-c|=R$.
Show that for all sufficiently small t the polynomial $p(z ; t)$ also has k zeroes in $|z-c|<R$.
Solution Write

$$
p(z ; t)=p(z ; 0)+[p(z ; t)-p(z ; 0)] .
$$

Since the circle $|z-c|=R$ is compact, on this circle $|p(z ; 0)| \geq c$ for some $c>0$. Now pick t so small that $|p(z ; t)-p(z ; 0)|<c / 2$ in this disk. Then by Rouché's theorem $p(z ; t)$ and $p(z ; 0)$ both have the same number of zeroes in this disk.
Remark: Although we picked $t \in[0,1]$, that was essentially irrellenvent.

