Math 609 Jerry L. Kazda
April 28, 2009 10:30-11:5
Complex Analysis Exam 11

DIRECTIONS This exam has two parts, Part A has 4 short answer problems (5 points each so 20
points) while Part B has 7 traditional problems, 10 points each so 70 points).
Closed book but you may use one 3 x 5 card with notes (on both sides).

All contour integrals are assumed to be in the positive sense (counterclockwise).
Short Answer Problems [5 points each (20 points total)]

Al. If f(z) is an entire function with |f(z)] > 1 everywhere, what can you conclude about f?
Justify your assertions.

Solution Then g(z) :=1/f(z) is an entire function. Moreover |g(z)| < 1. Consequently g is
a constant, so f is a constant.

A2. If f(z) is an entire function and f(x 4 27) = f(x) for all real =z, does f(z + 27) = f(z) for
all complex z7 Proof or counterexample.

Solution True. Let g(z) := f(z 4+ 27) — f(2). then g is entire and vanishes on the real axis.
Consequently ¢(z) = 0 everywhere.
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A3. The function p R T— has a power series expansion in a neighborhood of the origin. What
z z—
is its radius of convergence? Justify your assertion.

Solution Since 22 +3z—4 = (2 —1)(2 +4), the point z = 1 is a removable singularity. Thus

the radius of convergence is 4.

A4. Assume the entire function f(z) has no zeroes on any of the circles |z| =n, n =1,2,3,...

and also that . .
dz#y{ ——dz, n=1,23,....
f{zzn (Z) |z|=n+1 (Z)

Is this function transcendental? Proof or counterexample.

Solution The assumption implies that f(z) has at least one zero in the annulus n < |z| < n+1.
Thus it has infinitely many zeros so must be transcendental.



Traditional Problems [10 points each (70 points total)]

B1.

B2.

Assume f(z) is meromorphic for all |z| < oo and satisfies

< (22 )3/2.

|z —1]

What can you conclude about f? Justify your assertions.

Solution We claim the only possibility is f(z) = 0.

PrOOF: Clearly the only possible singularity of f(z) is at z = 1. Let g(z) := (z — 1)2f(2).
Then
l9(2)| < (21z))>2]z — 1]'/2.

Since ¢(z) is bounded nearz = 1, it has at most a removable singularity there. Consequently
g is an entire function. Because it grows at most like |z|? for large z, it must be a quadratic
polynomial. But g(z) := (2 —1)2f(2) so f(z) = constant. Noticing that g(0) = 0 we conclude
that f(0) =0. Hence f(z) =0.
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Solution Consider Bpg := 7{ % dz over the semicircle I'g which is the boundary of
I'r z a
the half-disk |z| = R in the upper-half plane y > 0. For R > a the only singularity of the
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integrand inside ' is at z = ¢a. Thus by the residue theorem Bpr = 27ri62‘ _ e
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But also
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where g is the semi-circle z = Re for 0 < § < 7. Since |e?| = [¢®* Y| = e7¥ < 1 on g,
then for R large Iy = O(1/R) — 0.

Letting R — oo we conclude that

—a o] i
e e
a o TFta

. Taking the real parts of both sides, we conclude that
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B3.

B4.

a) Let f(z) be holomorphic in |z| < R with |f(z)] < M on |z| = R. Show that
2M |z
1) - 50 < 22 (1)

Solution To be brief, apply the Schwarz Lemma to g(z) := f(2) — f(0) and note that
lg(z)| <2M on |z| = R.

In greater detail, since g(z)/z is holomorphic in |z| < R, by the maximum principle
l9(2)/2| < 2M/R.

b) Use this to give a proof of Liouville’s theorem.

Solution Let R — oo in (1).

If f(t) is piecewise continuous and uniformly bounded for all ¢ > 0, show that for Re{z} >0
the function (Laplace transform)

g9(z) := /000 f(t)e *t dt

is holomorphic for Re{z} > 0.

Solution The piecewise continuity and boundedness of f imply that the improper integral
exists for Re{z} > 0.

Step 1: Let ge(t) := [y f(t)e *'dt. We claim that gc(z) is an entire function. We explicitly
show that g. has a complex derivative:
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gel2 + h}z —9e2) _ (— /ch(t)eZtt dt) = /ch(t)eZt F_hth_l + t] dt — 0.

Step 2: To complete the proof, we claim the entire functions g.(z) converge uniformly to g(z)
in the half-space Re {z} > ¢ for any § > 0. Say |f(¢)| < M. Then

Indeed, since + t converges to 0 uniformly for ¢ € [0, ], then
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which converges to zero as ¢ — oo.

As alternates one can use Morera’s Theorem (but justify ine interchange of the order of inte-
gration) or directly take the derivative of g(z), justifying why one can differentiate under the
integral (say by the dominated convergence theorem).



B5.

B6.

B7.

Let f,(z) be a sequence of functions holomorphic in the connected open set 2 and assume
they converge uniformly on every compact subset of {2. Show that the sequence of derivatives
11(z) also converges uniformly on every compact subset of .

Solution Let K € 2 be any compact set and let r be the distance from K to the boundary of
Q). There is a cover of K by a finite number of open disks of radius r/4. Say |z—a| < r/4 is one
of these disks. Then by the Cauchy Integral Formula applied to the larger disk |( — a| < r/2,
for any point z in this smaller disk

M) = - Q)
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But since | — z| > r/2 and the f,,’s converge uniformly, we can pass limit under the integral
and conclude that the f] s converge uniformly in this disk:

/ 1 f(©) o
Fl2) = 5 alersa (€ — 22 d¢ = f'(2).

Because this finite collection of smaller disks cover K, we conclude that the convergence is
uniform in K.

Find a conformal map from the unbounded region outside the disks {|z+1] < 1}U{|]z—1| < 1}
to the upper half plane.

Solution Step 1: Writing w = u+ v, the map w = 1/z maps this region to the vertical strip
—1/2 <wu < 1/2. [In greater detail, it maps the real axis to itself, the imaginary axis to itself,
the origin to infinity, and hence the circles |z £ 1| =1 to the vertical straight lines u = +1/2.]

Step 2: By a translation, rotation, and stretching we can map this strip to the horiontal strip
—o0 < §s< 00, 0<t<minthe ( = s+ it plane.

Step 3: Then e¢ maps this strip to the upper half-plane.

Consider the family of polynomials
p(z;t) = 2"+ an_1(t)2" 1 - a1 (t)z + ao(t),

where the coefficients a;(t) depend continuously on the parameter ¢ € [0,1]. Assume that
at t = 0 the polynomial p(z;0) has k zeroes (counted with their multiplicity) in the disk
|z — ¢| < R and has no zeroes on the circle |z —¢| = R.

Show that for all sufficiently small ¢ the polynomial p(z;t) also has k zeroes in |z —¢| < R.
Solution Write
p(z;t) = p(2;0) + [p(2;t) — p(;0)].

Since the circle |z — ¢| = R is compact, on this circle |p(z;0)| > ¢ for some ¢ > 0. Now pick
t so small that [p(z;t) — p(2;0)| < ¢/2 in this disk. Then by Rouché’s theorem p(z;t) and

p(2;0) both have the same number of zeroes in this disk.

REMARK: Although we picked ¢ € [0,1], that was essentially irrellenvent.



