Directions This exam has two parts, the first is short answer (6 points each) while the second has traditional problems (12 points each). Closed book, no calculators - but you may use one $3 " \times 5 "$ card with notes.

Part A: Short Answer Problems (5 problems, 6 points each)
$\mathrm{A}-1$. Find all complex values of 1^{i} in the form $a+i b$.
A-2. a) For which values of the constant c is $u(x, y):=2 y+e^{3 y} \sin c x$ the real part of an analytic function $f=u+i v$?
b) For these values of c, find the corresponding function $f(z)$.
$\mathrm{A}-3$. If $\sum a_{n} z^{n}$ is the power series expansion of $\frac{1}{\cos (z+1)}$ about $z=0$, what is its radius of convergence?

A-4. Compute $\oint_{C} \frac{e^{z}}{z^{2}-2 z} d z$, where C is the ellipse $x^{2} / 25+y^{2} / 9=1$ (counterclockwise).
A-5. Let $f(z)$ be holomorphic for $0<|z|<\infty$. If f has no zeroes and $|f(z)| \geq|f(2)|$ in the disk $|z-2|<1$, what can you conclude about $f(z)$? Justify your assertions.

Part B: Traditional Problems (6 problems, 12 points each)
B-1. Let $f(z)$ be holomorphic in $\{|z| \leq 1\}$ except for a simple pole at $z=i / 2$. If f also satisfies $f\left(\frac{1}{2}\right)=0$ as well as $|f(z)| \leq 1$ on $|z|=1$, show that $|f(0)| \leq 1$.
$\mathrm{B}-2$. Find a conformal map $f(z)=u+i v$ from the unit disk $\{|z|<1\}$ to the first quadrant, $\{u>0, v>0\}$.

B-3. Give a complete clear proof of the fundamental theorem of algebra: Every nontrivial complex polynomial has at least one root.

B-4. Evaluate $\int_{0}^{\infty} \frac{\cos x}{1+x^{2}} d x$.

B-5. Let $g(z)$ be holomorphic in the closed unit disk $D=\{|z| \leq 1\}$ and assume that $|g(z)| \leq 2$ for $|z|=1$. How many roots does $h(z):=g(z)+5 z^{3}-2$ have in D ? As usual, justify your assertions.

B-6. Let $h(z)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{z}}$, where $z=x+i y$, and assume the sequence a_{n} is bounded, say $\left|a_{n}\right| \leq M$. Show that $h(z)$ is holomorphic in the half-plane $\{x>1\}$.

