Directions This exam has two parts, Part A is short answer (35 points) while Part B has traditional problems (60 points). All contour integrals are assumed to be in the positive sense (counterclockwise).

Short Answer Problems [5 points each] (35 points total) For A1-A5 let $f(z)$ be holomorphic for $0<|z|<\infty$. What can you say about $f(z)$ if you are told the following? Briefly justify your assertions.

A1. $\left|z^{2} f(z)\right|<5$.

A2. $|f(z)| \rightarrow \infty$ as $|z| \rightarrow 0$.

A3. $f\left(\frac{1}{n}\right)=1+(-1)^{n}, \quad n=1,2, \ldots$

A4. $|f(z)| \leq|z|+1$ and $f\left(\frac{1}{n}\right)=0, \quad n=1,2, \ldots$

A5. $|f(z)| \leq|f(3)|$ for $|z-3|<2$.

A6. Evaluate $\frac{1}{2 \pi i} \oint_{|z-1|=2} \frac{e^{2 z}}{z^{2}} d z$.

A7. Describe the singularities of $\varphi(z):=\frac{1-\cos \left(z^{5}\right)}{\sin ^{3} z}$ at $z=0$ and at $z=\pi$.

Traditional Problems [10 points each] (60 points total)
B1. Let $g(z)$ be holomorphic in the disk $\{|z| \leq 3\}$ with $|g(z)| \leq 7$ on the circle $\{|z|=3\}$. Find some explicit upper bound for $\left|g^{\prime}(z)\right|$ in the disk $\{|z| \leq 1\}$.

B2. Let $f(z)=u+i v$ be holomorphic at $z_{0}=x_{0}+i y_{0}$ and $f^{\prime}\left(z_{0}\right) \neq 0$. Show that the level curves of u and v through z_{0} intersect orthogonally.
[You may use without (the simple) proof that if
i). $h(x, y)=$ const is a level curve of the smooth real-valued function $h(x, y)$ and
ii). the gradient $\nabla h\left(x_{0}, y_{0}\right) \neq 0$ at a point on this curve, then $\nabla h\left(x_{0}, y_{0}\right)$ is orthogonal to the tangent line of h at $\left(x_{0}, y_{0}\right)$.]

B3. Let $\Omega \in \mathbb{C}$ be the region exterior to the two disks $|z-1|<1$ and $|z+1|<1$. Find a conformal map $w=f(z)$ from Ω to the horizontal strip $-1<\operatorname{Im}\{w\}<1$.

B4. Let $h(z), z=x+i y$, be holomorphic in the strip $|y|<10$ with $|h(z)|<1$ there. Prove that $\cos z+h(z)$ has an infinite number of zeroes in this strip. [Note: $|\cos z|^{2}=\cosh ^{2} y-\sin ^{2} x$].

B5. For real λ let $I(\lambda):=\int_{-\infty}^{\infty} e^{-(x+i \lambda)^{2}} d x$. Show that $I(\lambda)=I(0)$ for all real λ.
Suggestion: Consider a contour integral around a rectangle with corners at $\pm R$ and $\pm R+i \lambda$. [Remark: This is the main step in showing that $f(x):=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$ is its own Fourier transform.]

B6. Consider $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!(n-z)}$. Let $K \subset \mathbb{C}$ be a compact set that does not contain any positive integers, $z=1,2, \ldots$. Show that the series converges uniformly on K to an analytic function.

