Exam 2

DIRECTIONS This exam has two parts, Part A is short answer (35 points) while Part B has traditional problems (60 points). All contour integrals are assumed to be in the positive sense (counterclockwise).

Short Answer Problems [5 points each] (35 points total)

For A1–A5 let f(z) be holomorphic for $0 < |z| < \infty$. What can you say about f(z) if you are told the following? Briefly justify your assertions.

A1. $|z^2 f(z)| < 5$.

A2. $|f(z)| \to \infty$ as $|z| \to 0$.

A3. $f(\frac{1}{n}) = 1 + (-1)^n$, $n = 1, 2, \dots$

A4. $|f(z)| \le |z| + 1$ and $f(\frac{1}{n}) = 0$, $n = 1, 2, \dots$

- A5. $|f(z)| \le |f(3)|$ for |z-3| < 2.
- A6. Evaluate $\frac{1}{2\pi i} \oint_{|z-1|=2} \frac{e^{2z}}{z^2} dz$.

A7. Describe the singularities of $\varphi(z) := \frac{1 - \cos(z^5)}{\sin^3 z}$ at z = 0 and at $z = \pi$.

Traditional Problems [10 points each] (60 points total)

- B1. Let g(z) be holomorphic in the disk $\{|z| \leq 3\}$ with $|g(z)| \leq 7$ on the circle $\{|z| = 3\}$. Find some explicit upper bound for |g'(z)| in the disk $\{|z| \leq 1\}$.
- B2. Let f(z) = u + iv be holomorphic at $z_0 = x_0 + iy_0$ and $f'(z_0) \neq 0$. Show that the level curves of u and v through z_0 intersect orthogonally.

[You may use without (the simple) proof that if

- i). h(x, y) = const is a level curve of the smooth real-valued function h(x, y) and
- ii). the gradient $\nabla h(x_0, y_0) \neq 0$ at a point on this curve,

then $\nabla h(x_0, y_0)$ is orthogonal to the tangent line of h at (x_0, y_0) .]

B3. Let $\Omega \in \mathbb{C}$ be the region *exterior* to the two disks |z-1| < 1 and |z+1| < 1. Find a conformal map w = f(z) from Ω to the horizontal strip $-1 < \text{Im}\{w\} < 1$.

- B4. Let h(z), z = x + iy, be holomorphic in the strip |y| < 10 with |h(z)| < 1 there. Prove that $\cos z + h(z)$ has an infinite number of zeroes in this strip. [NOTE: $|\cos z|^2 = \cosh^2 y \sin^2 x$].
- B5. For real λ let $I(\lambda) := \int_{-\infty}^{\infty} e^{-(x+i\lambda)^2} dx$. Show that $I(\lambda) = I(0)$ for all real λ . SUGGESTION: Consider a contour integral around a rectangle with corners at $\pm R$ and $\pm R+i\lambda$. [Remark: This is the main step in showing that $f(x) := \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$ is its own Fourier transform.]
- B6. Consider $\sum_{n=1}^{\infty} \frac{(-1)^n}{n!(n-z)}$. Let $K \subset \mathbb{C}$ be a compact set that does not contain any positive integers, $z = 1, 2, \ldots$. Show that the series converges uniformly on K to an analytic function.