1. Map the region between the lines $x-y=1, x-y=2$ conformally onto the upper half-plane, $\operatorname{Im} \zeta \geq 0$.
2. Find a region in the z-plane in which the function $e^{z^{2}}$ assumes every value (except zero) exactly once.
3. Determine how many linearly independent homogeneous polynomials $P_{n}(x, y)$ of degree n in two real variables x and y exist such that $\frac{\partial^{2} P_{n}}{\partial x^{2}}+\frac{\partial^{2} P_{n}}{\partial y^{2}}=-0$.
4. Assuming that the values of $\int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}$ is known, compute

$$
\int_{0}^{\infty} \cos \left(x^{2}\right) d x \text { and } \int_{0}^{\infty} \sin \left(x^{2}\right) d x
$$

by looking at these as integrals in the complex plane. Sketch briefly the necessary convergence arguments.
5. Find the three power or Laurent series expansions for $\frac{1}{z^{2}-1}$ such that every point except $z= \pm 1$ is a point of absolute convergence of one of these series.
6. Let $f(z)=\frac{z}{e^{z-1}}=\sum_{n=0}^{\infty} b_{n} z^{n}$ be the power series expansion of $f(z)$ in a neighborhood of $z=0$. Find $\limsup p_{n \rightarrow \infty}\left|b_{n}\right|^{1 / n}$ and show that $b_{2 n+1}=0$ for $n=1,2,3, \ldots$

1. Find a function $w=f(z)$ mapping the sector $|\arg z|<\alpha<\pi$ conformally onto the unit disk $\{|w|<1\}$. Describe the behavior of $f(z)$ near $z=0$.

2. Evaluate the following integrals

a). $\oint_{|z|=3} \frac{\sin (z+1)}{z(z+1)} d z$
b). $\oint_{|z|=3} \frac{z(z+1)}{\sin (z+1)} d z$,
c). $\oint_{|z|=3} z^{7} e^{1 / 2} d z$.
where the integration is taken counterclockwise.
3. Let $\sum_{n=0}^{\infty} a_{n} z^{n}, \Sigma_{n=0}^{\infty} b_{n} z^{n}$ have radii of convergence r_{a} and r_{b}, respectively. What can be said about the radius of convergence of
a). $\sum_{n=0}^{\infty}\left(a_{n}+b_{n}\right) z^{n} \quad$ and \quad b). $\sum_{n=0}^{\infty} a_{n} b_{n} z^{n}$?
4. Let $\phi(t)$ be a continuous function of t for $0 \leq t \leq 1$ and let $f(z):=\int_{0}^{1} \frac{z \phi(t)}{t-z^{2}} d t$
a) For which values of z does $f(z)$ represent an analytic function?
b) Find the Laurent expansion at infinity.
5. Let $f(z):=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ have a positive radius of convergence.
a) Does there exist a series $g(w)=w+\sum_{n=2}^{\infty} b_{n} w^{n}$ satisfying

$$
f(g(w))=w ?
$$

b) Is the series $g(w)$ uniquely determined? Does it have a positive radius of convergence? Why?
6. How many roots does the equation $\frac{1}{2} e^{z}+z^{4}+1=0$ possess in the left half-plane $\operatorname{Re} z<0$? Justify your assertion.

1. a) Find the harmonic function which equals $\bar{z}^{5} z^{2}+z^{3-2}{ }^{2}$ on $|z|=1$
b) Find the harmonic function which equals $4 x^{3}-y^{2}$ on $|z|=1$.
2. Let $f(z)$ be analytic and bounded in the upper half plane and continuous in its closure. Suppose that $|f| \leq 1$ on the real axis. Prove $|\mathrm{f}| \leq 1$ everywhere.
3. Assume that $f_{n}(z)$ is a sequence of analytic functions in $|z| \leq 1$ converging uniformly to $f(z) \neq 0$. If $f(0)=0$ and if w is sufficiently close to zero prove that there are positive numbers, ס, N such that for all $n>N$ the equation $f_{n}(z)=w$ has at least one root in $|z| \leq \delta$.
4. Let $\mathrm{f}(\mathrm{z}) \neq 0$ be meromorphic in $|z| \leq 1$ and let a_{1}, \ldots, a_{n}, be its zeros in $|z| \leq 1$ and b_{1}, \ldots, b_{m} its poles in $|z| \leq 1$. If $f(0) \neq 0, \infty$ prove that
$\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(e^{i \theta}\right)\right| d \theta=\log |f(0)|+\sum_{j=1}^{n} \log \frac{1}{\left|a_{j}\right|}-\sum_{k=1}^{m} \log \frac{1}{\left|b_{k-}\right|}$.
Mint: Use Blaschke product.
5. Evaluate the Fourier transform of $u(x)=\frac{x}{\left(1+x^{2}\right)^{2}}$, i.e.

$$
\hat{u}(\xi)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \frac{x e^{-i x \xi}}{\left(1+x^{2}\right)^{2}} d x \quad \text { for all } \xi
$$

6. Let p be a polynomial of the form

$$
p(z)=z^{n}+a_{n-1} z^{n-1}+\ldots+a_{0}
$$

and let $f(z)$ be analytic for $|z| \leq 1$. Prove that

$$
|f(0)| \leq \max _{|z|=1}|f(z) p(z)|
$$

Hint: Consider $\frac{f(z) p(z)}{B(z)}$ where $B(z)$ is the Blaschke product corresponding to the roots of p in $|z|<1$.

Complex Variables

1. Represent all complex values of $(-1)^{i}$, and $(1+i)^{2 / 3}$ in the form $a+b i$.
2. a) For each condition below give an example of a function analytic in $\{0<|z|<1\}$ which (i) has a simple pole at $z=0$ and vanishes at $z=1 / 2$.
(ii) has an essential singularity at $z=0$ and a pole of order 2 at $z=1$.
b) Map the unit circle conformally onto the half-strip $\{\operatorname{Re} w>0\},\{|\operatorname{Im} w|<\pi\}$
3. Evaluate the following integrals - justifying your answers.
a) $\oint \frac{e^{z^{2}}-e^{z}}{e^{2 z}-1} d x$ on $|z|=1$.
b) $\oint \frac{e^{z^{2}}-e^{z}}{e^{2 z}-1} d x \quad$ on $\quad|z|=15$.
c) $\int_{-\infty}^{\infty} \frac{\sin x}{x\left(x^{2}+1\right)} d x$
4. F is analytic in $|z|<10$ and $\operatorname{Im} F=\sin \theta$ on $|z|=1$. Find F in $|z|<10$. Justify your answer
5. Where does the series $\sum_{n=1}^{\infty} \frac{z^{n}}{n(n+1)}$ converge? Why? Express it in terms of elementary func-
tions. tions.
6. Prove thet there is no function analytic in $|z| \leq 1$ such that

$$
|f(z)|<1 \quad \text { on } \quad|z|=1, \quad f\left(\frac{1}{2}\right)=0, \quad \text { and } \quad f\left(-\frac{1}{2}\right)=\frac{19}{20} .
$$

Math. 213a. Due October $2 \dot{3}, 1965$

1. Determine the curstants A and E so that the function

$$
\frac{1}{z^{2}}+\frac{A}{(z-1)^{2}}+\frac{S}{z(z-1)}
$$

has a zero of highest possible order at ∞.
2. Develsp

$$
\frac{1}{z i \angle+1)^{2}(3+2)^{3}}
$$

in partial fractions.
3. Give a complete proof skowing thit the reauced form

$$
R(z)=\frac{F(z)}{C(z)}
$$

of a rational function is uaigue except for a common constant factor in
P and Q. (In other words, if $\Gamma_{/}^{\prime} Q=P_{1} / Q_{1}$ and both fractions are reduced, show that $P_{1}=c P, Q_{1}=c Q$ with some constant c).
4. Show first that

$$
P(z)=\frac{a_{0}+a_{1} z+\cdots+a_{n} z^{n}}{\bar{a}_{n}+\bar{a}_{n-1} z+\cdots+\bar{a}_{0} z^{n}}
$$

satisfies $|R(z)|=1$ on the unit circle $|z|=1$. Next prove that the most general maticnal function with that property has the above form except for a factor $c z^{m}$ with $|c|=1$. (Flint: Rember that $|z|=1$ gives $\bar{z}=1 / z$.
5. If $\lim _{n \rightarrow \infty} z_{n}=A$, prove that

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left(z_{1}+\cdots+z_{n}\right)=A_{c}
$$

(Suggestion: Why may one as well assume that $\mathrm{A}=0$?)

Math. 213a Due Oṙniex 25, 29ót
Page 2
6. eind the radins of convergence of
7. If $f(z)=\sum a_{n} z^{n}$, what is $\sum n^{3} a_{n} z^{n}$?

$$
\sum n^{p} z^{n}, \sum \frac{z^{n}}{n!}, \sum n!z^{n}, \sum z^{n!}
$$

Math 213a
Homework

1. Find e^{z} for $z=-\frac{\pi i}{2}, \frac{3}{4} \pi_{i}^{1} \frac{2}{3} \pi i$.
2. For what values of z is e^{z} equal to $2,-1, i,-i / 2,-1+2 i$?
3. Find the real and imaginary parts of exp (e^{z}).
4. Determine all values of $2^{i}, i^{i},(-1)^{i}{ }^{i}$.
5. Show that $|\cos z|^{2}=\frac{1}{2}(\cosh 2 y+\cos 2 x)$ and find a corresponding expression for $|\sin z|^{2}$.
6. Express arc tan win terms of the logarithm.
7. Give a definition of the "apples" in ai triangle, and prove that the sum of the angles is π.

Math, 213a
Hour-examination

1. Expand $\frac{z+1}{z^{2}(z-1)}$ in partial fractions.
2. What are the values of $(1+i)^{i}$?
3. For what values of z is

$$
\sum_{1}^{\infty} n\left(\frac{1-z}{1+z}\right)^{n}
$$

convergent, and what is the sum?

4. Prove that a continuous function from one metric space to another maps connected sets on connected sets.
5. Find the image of the region $1<|z+1|<2$ under the mapping $w=\frac{z^{2}}{z+T}$. Is the mapping one to one?
6. The circle $|z-1|=1$ is mapped by $w=\frac{z+i}{2 z-1}$. Where is the center of the image circle?
7. What is the value of

$$
\int_{\gamma}|z|^{2} \mathrm{~d} z
$$

where γ is the clock-wise boundary of the first quadrant oi $|z|<1$.
8. In the following integrals C is the circle $|z|=2$ in the positive sense. Find
a) $\int_{C} \frac{z d z}{z-1}$, b) $\int_{C} \frac{d z}{z^{2}-1}$, c) $\int_{C} \frac{e^{z} d z}{(z-1)^{?}}$.
9. What is

$$
f(z)=\frac{1}{2 \pi^{i}} \int_{C} \frac{\varphi(\dot{C}) d \zeta}{\zeta-z}
$$

if C is the unit circle (positive sense) and $\varphi(\varphi)=\varphi+\varphi^{-1}$.
(Different answers for $|z|<1$ and $|z|>1$).

