Homework Set 8

DUE: Tues, March 31, 2009.

The Problem Collection is at http://www.math.upenn.edu/ kazdan/609S09/hw/hw-collection.html

- 1. Problem Collection p. 12 #6
- 2. Problem Collection p. 22 #5
- 3. Problem Collection p. 51 #3, 4 [deleted: does not exist)
- 4. Problem Collection p. 54 #12, 15
- 5. Problem Collection p. 55 #18
- 6. Problem Collection p. 56 #26
- 7. Problem Collection p. 57 #31
- 8. Some results on Infinite Products.
 - a) Let $0 \le b_k$ and $b_k \ne 1$. If $\sum b_k$ converges, show that $\Pi(1-b_k)$ converges. [HINT: First do the special case where $b_1 + b_2 + \cdots < \frac{1}{2}$. The general case reduces to this by simply discarding a finite number of terms.]
 - b) If $0 \le b_k < 1$ but $\sum b_k$ diverges, show that $\Pi(1-b_k)$ diverges to 0.
 - c) Let $a_k \in \mathbb{C}$. Show that $\Pi(1+a_k)$ converges absolutely if and only if $\Sigma |a_k|$ converges.
 - d) If $\Pi(1+a_k)$ converges absolutely, prove that $\Pi(1+a_k)$ converges.
- 9. Let f be an entire function that is never zero. Show there is an entire function g so that $f(z) = e^{g(z)}$. [HINT: . Use the entire function h(z) := f'(z)/f(z) to obtain g].

Bonus Problem Let f be an entire function with the two properties:

a).
$$f(x+2\pi) = f(x)$$
 for all $x \in \mathbb{R}$, b). $|f(z)| \le e^{c|z|}$ for some $c > 0$.

Show that f has the form $f(z) = \sum_{k=-n}^{n} a_k e^{ikz}$ where $n \le c$.