## Homework Set 8

Due: Tues, March 31, 2009.

The Problem Collection is at
http://www.math.upenn.edu/ kazdan/609S09/hw/hw-collection.html

1. Problem Collection p. $12 \# 6$
2. Problem Collection p. 22 \#5
3. Problem Collection p. 51 \#3, 4 [deleted: does not exist)
4. Problem Collection p. 54 \#12, 15
5. Problem Collection p. 55 \# 18
6. Problem Collection p. 56 \#26
7. Problem Collection p. 57 \#31
8. Some results on Infinite Products.
a) Let $0 \leq b_{k}$ and $b_{k} \neq 1$. If $\sum b_{k}$ converges, show that $\Pi\left(1-b_{k}\right)$ converges. [Hint: First do the special case where $b_{1}+b_{2}+\cdots<\frac{1}{2}$. The general case reduces to this by simply discarding a finite number of terms.]
b) If $0 \leq b_{k}<1$ but $\sum b_{k}$ diverges, show that $\Pi\left(1-b_{k}\right)$ diverges to 0 .
c) Let $a_{k} \in \mathbb{C}$. Show that $\Pi\left(1+a_{k}\right)$ converges absolutely if and only if $\sum\left|a_{k}\right|$ converges.
d) If $\Pi\left(1+a_{k}\right)$ converges absolutely, prove that $\Pi\left(1+a_{k}\right)$ converges.
9. Let $f$ be an entire function that is never zero. Show there is an entire function $g$ so that $f(z)=e^{g(z)}$. [HINT: . Use the entire function $h(z):=f^{\prime}(z) / f(z)$ to obtain $g$ ].

Bonus Problem Let $f$ be an entire function with the two properties:

$$
\text { a). } f(x+2 \pi)=f(x) \text { for all } x \in \mathbb{R}, \quad \text { b). }|f(z)| \leq e^{c|z|} \text { for some } c>0 .
$$

Show that $f$ has the form $f(z)=\sum_{k=-n}^{n} a_{k} e^{i k z}$ where $n \leq c$.

