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The aim of this course is to show, what meaning has the notion of number
in modern mathematics; tell about the problems arising in connection with
different understanding of numbers and how these problems are being solved.
Of course, I can explain only first steps of corresponding theories. For those
who want to know more, I indicate the appropriate literature.

0.1 Preface

The “muzhiks” near Vyatka lived badly. But
they did not know it and believed that they live
well, not worse than the others

A.Krupin, “The live water.”

When a school student first meet mathematics, (s)he is told that it is a
science which studies numbers and figures. Later, in a college, (s)he learns
analytic geometry which express geometric notions using numbers. So, it
seems that numbers is the only object of study in mathematics.

True, if you open a modern mathematical journal and try to read any
article, it is very probable that you will see no numbers at all. Instead, au-
thors speak about sets, functions, operators, groups, manifolds, categories,
etc.

Nevertheless, all these notions in one way or another are based on num-
bers and the final result of any mathematical theory usually is expressed by
a number.

So, I think it is useful to discuss with math major students the ques-
tion posed in the title. I want to show, what meaning can have the term
“number” in modern mathematics, speak of some problems arising in this
connection and of their solutions.

I hope, this will help novices to orient themselves in the reach, beautiful
and complicated world of mathematics.



Chapter 1

The chain
N ⊂ Z ⊂ Q ⊂ R ⊂ C ⊂ H ⊂ O

This chain of subsequent extensions of the notion of number (or at least first
4-6 members of it) you must already know. The symbols occurring here are
now the standard notations for the sets of natural, integer, rational, real or
complex numbers, quaternions and octonions. (The latter are also known
as octaves and Cayley numbers).

I want to discuss here the transition from one link of the chain to the
next one and show that the ideas used in these transitions are working in
other, sometimes unexpected and beautiful theories.

1.1 From N to Z and from Z to Q: the Grothendieck
group, the Lie fields and derived categories

We pull ourselves to the sky by the shoe laces.

J.-P. Serre, “Local algebra and multiplicity
theory”.

We can add natural numbers but not always to subtract them; the in-
tegers can be multiplied but not always divide. The wish to circumvent
this inconvenience actually provoked the transition from natural numbers
to integers and from integers to rationals.

Recall how these transitions are made. If we want to subtract a natural
number m from a natural number n, then, in case m ≥ n the answer can
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not be a natural number. Let us denote it temporally by nªm. If we want
that in the extended set of numbers the habitual rules were verified, we have
to identify nªm with all expressions of the form (n + k)ª (m + k), k ∈ N
and also with expressions (n− k)ª (m− k), 1 ≤ k ≤ min(m, n).

In other words, the symbols n1 ªm1 and n2 ªm2 are identified if n1 +
m2 = n2 + m1.

Consider now all expressions of the form n ªm, n, m ∈ N. We can not
only add them (componentwise) but also subtract according to the rule

n1 ªm1 − n2 ªm2 = (n1 + m2)ª (n2 + m1). (1.1)

E.g., we have 0 ª 0 −m ª n = n ªm. One can check that equivalence
classes form an additive group. Do it yourself (This exercise is for those who
only start to study the group theory).

It is rater easy to establish that the group in questin is isomorphic to Z.
Indeed, for m > n all symbols of the form (m + k) ª (n + k) are identified
with the natural number m − n, for m = n they are identified with zero,
and for m < n with the negative number m− n.

The procedure of constructing of multiplicative group Q∗ consisting of
non-zero rational numbers from the semigroup Z\{0} is completely analo-
gous. Namely, we consider the formal symbols m : n where m, n ∈ Z\{)}
and identify m1 : n1 with m2 : n2 if m1n2 = m2n1. It is clear that the
equivalence class of the symbol m : n can be identified with the rational
number f = m

n .
More interesting example. Consider the collection of all finite groups Γ.

In case, when Γ1 is a normal subgroup in Γ and Γ2 is the quotient group
Γ/Γ1, it is natural to say that Γ is divisible by Γ1 and the quotient is equal
to Γ2. We denote by [Γ] the class of all finite groups isomorphic to Γ.

Define a new group G as follows. By definition, G is the abelian group
generated by all symbols [Γ] with the relations

[Γ] = [Γ1] + [Γ2] (1.2)

if Γ1 is a normal subgroup in Γ and Γ2 = Γ/Γ1.
One can check that any element of G has the form

g = n1 · [Γ1] + · · ·+ nk · [Γk] (1.3)

where Γ1, . . .Γk are finite groups.

Theorem 1 The group G is a free abelian group with countable set of gen-
erators. As generators one can take the symbols [Γ] where Γ is a cyclic group
Zp of a prime order p, or a simple non-abelian finite group.
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So, an element g ∈ G can be uniquely written in the form (1.3) where
Γi belong to the list of groups pointed out in the theorem.

Exercise 1 Show that in the group G the classes [Z6] and [S3] define the
same element [Z2] + [Z3], though Z6 and S3 are not isomorphic.

Exercise 2 Express in terms of generators the following elements of G:
a) [Zn, n is not a prime.
b) [Sn] where Sn is the group of permutations of n objects.
c) [Tn(Fq)] where Tn(Fq) is the group of all invertible upper triangular

matrices of order n with entries from a finite field with q = pk elements (p
is prime).

In all cases considered above we construct a group using the same method:
by introducing new elements (negative numbers, fractions, formal linear
combinations etc) and by splitting a set into equivalence classes. The
most general form of this method until recently was the notion of so-called
Grothendieck group G(C) of a small additive category C (see [21])1

This group by definition, is commutative and generated by equivalence
classes of objects of C with relations

[A] = [B] + [C] (1.4)

where B is a subobject of A and C is the corresponding quotient object
A/B. For instance, the group G above is the Grothendieck group of the
category of finite groups.

Exercise 3 Show that for the category A of all abelian groups with finite
number of generators the group G(A) is isomorphic to Z.

One of the most brilliant applications of this construction is the so-called
K-theory, where the initial material is the collection of vector bundles over
a given smooth manifold. The detailed exposition of this young but already
very famous theory one can find in [1, 5].

A further generalization is possible when the operation in question is
non-commutative.

1Unfortunately, the notion of a category is not in the curriculum of any undergraduate
course, though in the modern mathematics it plays the role comparable with the notions
of a set and a function. The initial material about categories is given in [11, 12] and more
detailed information one can find in [6, ?, 9].
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Example 1 Let A denote an algebra with a unit over C generated by ele-
ments p and q with relations

pq − qp = 1. (1.5)

This algebra has a convenient realization as an algebra of differential oper-
ators on the real line with polynomial coefficients. The generators have the
form

p =
d

dx
(differentiation), q = x (multiplication by x).

Exercise 4 Show that A has no zero divisors, i.e. if ab = 0, then a = 0 or
b = 0.

Let us call a right fraction the expression ab−1 where a, b ∈ A and b 6= 0.
Analogously, a left fraction is an expression b−1a.

We say that a left fraction c−1d is equivalent to a right fraction ab−1 if
ca = db. Two left (respectfully, right) fractions we consider as equivalent
if they are equivalent to the same right (resp., left) fraction. The following
remarkable fact takes place.

Theorem 2 In any equivalence class there are both left and right fractions.
In any two classes there are left (resp., right) fractions with a common

denominator.

The theorem follows rather easily from the following important

Lemma 1 For any two non-zero elements of A there exists a common right
(resp., left) multiple.

Proof of the Theorem. Let A(n) denote the subspace in A consisting of all
elements which can be written as polynomials of degree ≤ n in generators
p, q. Check yourself that dim A(n) = 1

2(n + 1)(n + 2).
Assume now that that a, b are non-zero elements of A. They belong to

Am for some m. Consider the spaces2 a · A(n) and b · A(n). It is clear that
both spaces are contained in A(m+n). On the other hand, for n big enough,
we have

2 dimA(n) = (n + 1)(n + 2) >
1
2
(n + m + 1)(n + m + 2) = dimA(n+m).

2We denote by a ·A(n) the set of all elements of the form ax, x ∈ A.n In general, if A
and B are some sets and ∗ is an algebraic operation applicable to their elements, then the
symbol A ∗B denote the set of all a ∗ b where a ∈ A, b ∈ B.
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Therefore, a · A(n) and b · A(n) have a common non-zero element which
is a desired common right multiple of a and b.

¤

Exercise 5 Find a common right multiple of pn and qn.

Using Theorem 2, we can define the quotient skew field D for the algebra
A. Namely, we cal take the equivalence classes of fractions as elements of D
and define addition, subtraction and division by the rules:

ac−1 ± bc−1 := (a± b)c−1, ac−1 : bc−1 := ab−1. (1.6)

The multiplication by ab−1 can be defined as the division by the inverse
fraction ba−1. Of course, we have to check the correctness of all these def-
initions (i.e. independence of the result from the choice of representatives)
and also all the ordinary laws (commutativity of addition, distributivity of
multiplication and associativity of both laws). All this traditionally is left
to the reader.

The skew field D is a very interesting object. Many of its properties are
still not known. We recommend [10] to the interested reader.

The construction of the skew field D can be generalized. First of all, we
can start with several pairs of generators pi, qi, 1 ≤ i ≤ n and relations

pipj = pjpi, qiqj = qjqi, piqj − qjpi = δij . (1.7)

More essential and more interesting generalization we obtain by consid-
ering an associative algebra with generators x1, . . . , xn and relations of a
special form:

xixj − xjxi =
n∑

k=1

ck
ijxk, 1 ≤ i, j ≤ n (1.8)

where ck
ij are some constants. The left hand side of (1.8) is called a commu-

tator of xi and xj . It is usually denoted by [xi, xj ].

Exercise 6 Show that in any associative algebra the operation “commuta-
tor” satisfies the so-called Jacobi identity:

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0. (1.9)

It is worth to mention (or recall) here that a vector space with a bilinear
skew-symmetric operation satisfying (1.9) is called a Lie algebra. This name
is related to Lie groups which we shall discuss later.
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Come back to our associative algebra. We assume that the generators xi

are linearly independent. Then from exercise 6 it follows that the constants
ck
ij satisfy the equation

n∑

s=1

(cs
ijc

m
sk + cs

jkc
m
ki + cs

kic
m
sj) = 0 (1.10)

for all i, j, k, m.
In this case the linear span of x1, . . . , xn is a Lie algebra L and our

associative algebra is denoted by U(L) and is called a universal enveloping
algebra for L.

It is remarkable that the statements of the lemma and of the theorem 2
remain valid for the algebra U(L). Therefore, for any Lie algebra L a skew
field D(L) is defined as a quotient field of U(L). The study of skew fields Dn

and D(L) is one of most interesting parts of a new direction in mathematics
called non-commutative algebraic geometry (see [11, 8]).

In conclusion of this section we propose two simply formulated questions
which are still unsolved.

1. Does the Fermat equation

Xk + Y k = Zk (1.11)

has a non-trivial solution (XY Z 6= const) in the algebras A, An, U(L)?
It is known that in the polynomial algebra C[p, q] all solutions are trivial

for k > 2. In [10] a non-trivial solution of (1.11) is found for k = 3.

Exercise 7 Find the general solution to (1.11) in the algebra C[x, y].

2. Let P, Q ∈ A have the property

PQ−QP = 1.

Then the map ϕ : p 7→ P, q 7→ Q defines an endomorphism of the algebra
A into itself. Is it true that ϕ is actually an isomorphism?

In other words: is ϕ always invertible?
Or, does A contain a proper subalgebra isomorphic to A?
The commutative analogue of this problem is also non-solved. This is

so-called Jacobian problem. The exact formulation is
Let P, Q ∈ C[x, y) satisfy

[
∂P
∂x

∂Q
∂x

∂P
∂y

∂Q
∂y

]
= 1 (1.12)
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Is it true that the polynomial map

ϕ : (x, y) 7→ (
P (x, y), Q(x, y)

)

has a polynomial inverse map?
In the same circle of ideas is the notion of a derived category which

unexpectedly turned out to be a very effective method of solution of many
difficult algebraic and geometric problems. The idea of construction of a
derived category is rather simple and recall simultaneously the construction
of the Grothendick group and the construction of the quotient skew field.
View to the lack of time, place and competence, I refer to the book [9] for
the further information.

Answers and hints to the problems.

1. In both groups there is a normal subgroup isomorphic to Z3.
2. a) [Zn] =

∑
k ak[Zpk

], if n =
∏

k pak
k is the decomposition of n in

prime powers.
b) [S2] = [Z2], [S3] = [Z2] + [Z3], [S4] = 3[Z2] + [Z3], [Sn] = [Z2] + [An]

for n ≥ 5 Here An is a simple group of order n!
2 consisting of all even

permutations in Sn.
c) If q = pk, p prime and q − 1 =

∏
k pak

k is the decomposition in prime
powers, then [Tn(Fq)] = 1

2mn(n− 1)[Zp] +
∑

k ak[Zpk
].

3. Take [Z] as generator of G. Use the fact that for any n we have
Z/nZ ' Zn.

4. Introduce the notion of a leading term for elements of A, so that
the leading term of a ∈ A(n)\A(n−1) is [a] ∈ Cn[p, q]. Then check that
[ab] = [a] [b].

5. p2nqn

(2n)!n! =
∑n

k=0
qkpk

k!(n−k)!(n+k)!p
n

7. One of the possibilities: X = (A2 − B2)C, Y = 2ABC, Z = (A2 +
B2)C where A, B, C are arbitrary polynomials.

1.2 From Q to R: the idea of completion. p-adic
numbers and adeles

In a domain without center,
when center can be any
random point...

A.K. Tolstoj,“Don Juan”
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1.2.1 p-adic numbers

The real numbers are obtained from rational ones by the procedure of com-
pletion. This procedure can be applied to any metric space, i.e. a set where
a distance is defined for any pair of points. You can find a rigorous defini-
tion and basic theorems in any textbook in advanced calculus (e.g. [KG] or
[KF]).

Instead, we ask a seditious question: how natural is the ordinary defini-
tion of a distance between rational numbers:

d(r1, r2) = |r1 − r2|; (1.13)

is there an other way to describe the proximity between them? It turns out
that such a way exists. Here is an example. Let us choose a prime number p.
Any rational number r can be uniquely written in the form r = pk · mn where
k ∈ Z and m

n is an irreducible fraction whose numerator and denominator
are relatively prime to p. The quantity p−k is called the p-adic norm of r
and is denoted by ||r||p. One can check that the distance

dp(r1, r2) = ||r1 − r2||p (1.14)

has many properties of an ordinary distance (1.13) . For example, it satisfies
the Triangle inequality:

dp(r1, r2) ≤ dp(r1, r3) ≥ dp(r2, r3). (1.15)

In the same time there are differences. E.g., with respect to the dis-
tance (1.14) all triangles are isosceles and, moreover, the equal sides are not
shorter than the third side. The metric spaces with this property are called
ultrametric. The Triangle inequality takes here a stronger form:

dp(r1, r2) ≤ max {dp(r1, r3), dp(r2, r3)}. (1.16)

Exercise 8 Show that in an ultrametric space the following simple criterion
takes place

A series
∑∞

k=1 xn converges iff xn tends to 0 when n→∞.

Another remarkable property of the p-adic distance is that all integers
form a bounded set of diameter 1. If we apply to this set the completion
procedure, we get a compact set Op whose elements are called p-adic inte-
gers. They can be conveniently written in the form of infinite-digit numbers
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in a p-adic numerical system. Namely, every a ∈ Op can be uniquely written
as

a = . . . an . . . a2a1a0, 0 ≤ ai ≤ p− 1. (1.17)

It can be understood as a sum of the series

a =
∞∑

k=0

akp
k. (1.18)

Indeed, ||akp
k|| ≤ p−k, so that terms of the series tend to 0 and the series is

convergent. By definition, a is the sum.

Exercise 9 Construct a bicontinuous bijection of Op to the Cantor set. (It
is especially simple for p = 2 and slightly more complicated for general p.)

The p-adic numbers form a ring: we can add them, subtract and multiply.
It is also convenient to write a mixed-periodic p-adic number . . . AAAB in
the form (A)B.

Exercise 10 Compute the following quantities in O5:

a) (4) + (0)1, b) . . . (0)− (0)1, c) (1)× (4).
However, the set Op, unlike Z, has no natural order. Hence, there are

no positive and negative numbers. Indeed, the set N of natural numbers is
dense in Op (for instance, −1 = limn→∞ pn − 1).

Nevertheless, for p-adic numbers we can define an analogue of the func-
tion “signum”, which takes p different values.

We recall that the ordinary signum

sgn x =





1, if x > 0,

0, if x = 0,

−1, if x < 0

can be approximated on the segment [−1, 1] by the function xε where ε is
a small rational number 1

n (with an odd denominator n to make sense for
negative x). In the p-adic situation the role of ε = 1

n is played by pn.

Theorem 3 t:sgn For any a ∈ Op there exists a limit

lim apn
for n→∞. (1.19)

It is denoted by sgnp(a) and has the properties
a) sgnp(ab) = sgnp(a) · sgnp(b)
b) sgnp(a) depends only on the digit a0 of number a.
c) sgnp(a) = 0 if a0 = 0 and is a root of degree p− 1 from 1 if a0 6= 0.
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Thus, the p-adic line has p− 1 different “directions”.
For the proof of the theorem the following result is useful.

Lemma 2 If 0 < dp(a, b) < 1, then dp(ap, bp) < dp(a, b).

Unlike ordinary integers, many p-adic integers are invertible. Namely, if
a ∈ Op and sgn(a) 6= 0, then a−1 is also a p-adic integer. In particular, all
rational numbers with denominator relatively prime to p are p-adic integers.

Exercise 11 Show that the number a of the form (1.17) is rational if and
only if the sequence {an} is eventually periodic (i.e. periodic starting with
some place.)

If we apply the completion procedure with respect to the distance (1.14)
not to Z but to Q, we get the set of all p-adic numbers, not necessary
integers. This set is denoted by Qp. Its elements are conveniently written
as mixed p-adic fractions of the form

a = . . . an . . . a2a1a0.a−1 . . . a−k (1.20)

In particular, every p-adic number has the form a · p−k where a ∈ Op.
The rules of arithmetic operations on p-adic numbers are very similar to

the rules of operations on usual decimal fractions but with one additional
principle: all computations one must start with the last digit.

Here is an example of such computation in O5:

(123) . . . (123) (123)
+(10).1 (10).1 (10).1

=(224133).1 (302211)2.4 (312).3
(123)0.

(123)000.
(123)00000.
. . . ..........

. . . 210022042.3

Actually, here some relations between rational numbers are written. Can
you tell which ones?

Here is a little more complicated example.
√−1 =

√
. . . 4444 = sgn 2 = lim

n→∞ 25n
= . . . 212.
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Exercise 12 How, knowing a p-adic form of a rational number r to tell is
it positive or negative?

1.2.2 p-adic analysis

In the set Qp of p-adic numbers all operations of analysis are defined: four
arithmetic operations and the limit of a sequence. So, we can transfer to the
p-adic case almost all material of an advanced calculus which is studied in
the undergraduate school. Some theorem are true literally, the other need
some corrections and some are replaced by completely different (or even
opposite) statements.

For example, for the segment [0, 1], the favorite object of real analysis, a
natural p-adic analogue is the set Op of p-adic integers. This p-adic segment,
as well as the real one, is a ball.

Recall that in any metric space X a ball B, or, more precisely, a ball
Br(a) with a center a and a radius r is defined as a subset of the form

Br(a) = {x ∈ X | d(x, a) ≤ r}.

In our case X = Qp, B = Op. Here we have r = 1, but, unlike the usual
ball, the role of a center can be played by arbitrary point a ∈ Op

3.
Moreover, Op is a compact set, hence has all the properties of the seg-

ment [0, 1] which follow from its compactness.

Exercise 13 Prove that any continuous function on Op with values in Op

can be uniformly approximated by polynomials with coefficients in Op

Exercise 14 Consider the map s : Qp → R which sends a p-adic number
a of the form (1.20) to the real number s(a) =

∑
k akp

−k.
(In other words, the p-adic form of s(a) is obtained from the p-adic form

of a by the “reflection in the point”.)
Show that s is continuous and maps Qp onto R+ and Op onto [0, 1].

You might think that s is bijective and bicontinuous, but it is not so.
The reason is that the p-adic form of a real number is not unique. Note also
that in the case p = 2 the restriction of s to O2 is related to the so-called
“Cantor ladder” (or, in other terminology, “devil ladder”).

To those, who became interested in p-adic analysis I recommend the
following problems for the independent study:

What is a p-adic analogue of
3May be, A.K.Tolstoj had in mind exactly this?
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a) the signature of a quadratic form;
b) exponential and logarithmic functions;
c) the Fourier transform;
d) Γ-function and B-function of Euler?
An additional material you can find in [11, 12, 14].

1.2.3 Adeles

The main application of p-adic analysis until now were in the number the-
ory. In this language it is convenient to formulate different questions of
divisibility and residues modulo an integer. Last time, however there were
many attempts to use the p-adic analysis in mathematical physics. Some
of these attempts based only on the belief that any mathematical construc-
tion must have a physical meaning (and the simpler and more beautiful the
construction is, the more fundamental it meaning is.) Other attempts are,
essentially, ad absurdum: if the usual analysis is not enough, let us try the
p-adic one. Finally, there is one more important fact for which one can look
a physical explanation. The point is that the usual real field R can be united
with all p-adic fields Qp in one beautiful object: the ring A of adeles.

An adele a ∈ A is by definition a sequence

a = (a∞, a2, a3, a5, . . . , ap, . . . ) (1.21)

where a∞ ∈ R, ap ∈ Qp, and for almost all p (i.e. for all but a finite number
of them) ap ∈ Op.

The arithmetic operations and limits for adeles are defined component-
wise. The invertible adeles are called ideles4 The set of ideles is denoted by
A×. For an idele a we can define its norm by the formula

||a|| = |a∞| ·
∏
p

||ap||p. (1.22)

This infinite product make sense, because almost all factors are equal to 1.
Note now, that the field Q of rational numbers can be embedded into A×,
namely a rational number r can be considered as adele

r = (r, r, r, . . . , r, . . . )

where the first r is considered as a real number, the second one as a 2-adic
number, the third one as a 3-adic number etc. The adeles of this form are
called principal adeles. It is clear that any principal adele is actually an
idele. Moreover, the following is true

4Actually, ideles appeared first and provoked the invention of adeles as additive ideles.
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Exercise 15 Show that

||r|| = 1 for all r ∈ Q. (1.23)

The map r 7→ r defines an embedding of Q into A, so from now on we shall
not distinguish r and r.

Let now M be an algebraic manifold defined over the field of rational
numbers. (I.e., a system of algebraic equations with coefficients in Q). Then
we can consider the sets MK of solutions of this system over any Q-algebra
K. For K = R we get an ordinary real algebraic manifold and for K = A it
is an adelic manifold.

We come in this way to the so-called adelic analysis. It is remarkable,
that the adelic theorems relate together the real and p-adic facts. For ex-
ample many elementary and special (higher transcendental) functions have
nice p-adic and adelic analogues. Here I consider only two examples of these
analogues.

1.2.4 Tamagawa numbers

If M is a real algebraic manifold, then to any differential form ω of top
degree on M we can associate a measure µ = |ω| on M . Assume that
M is defined over Q and in appropriate local coordinates ω has rational
coefficients. When ω is multiplied by a rational number r, the measure |ω|
is multiplied by |r|.

It turns out that the set MQp of all points of M over Qp also has a
canonical measure µp = ||ω||p and the the replacement of omega by r · ω
leads to the multiplication of µp by ||r||p.

Finally, we can define an adelic manifold MA and a measure µA cor-
responding to the initial differential form ω. But now, the replacement of
omega by r · ω does not change the measure µA, since the adelic norm of r
is 1. Hence, the integral

I(M, ω) =
∫

MA

µA (1.24)

depends only on M and ω modulo multiplication on a rational number.
There is one case when such an equivalence class is naturally defined:

suppose that M is an homogeneous manifold with respect to some algebraic
group G acting rationally on M . When, a G-invariant differential form
of top degree, if it exists, is uniquely defined up to constant factor. The
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simplest example is the homogeneous space M = GA/GQ. In this case
I(M, ω) is called the Tamagawa number of the group G and is denoted by
τ(G). For many classes of groups this number is the product of the real
volume of the manifold GR/GZ and p-adic volumes of GOp for all primes p.
It is astonishing that τ(G) is often a very simple number, e.g. 1!

Consider in details two particular cases where G is an additive group of
the basic field Q or the unit circle on plane.

1. Additive group
In this case GK = K and the manifold M is A/Q. The differential form

in question is ω = dx. It defines the ordinary Lebesgue measure µ on R and
the Haar measure µp on Qp, normalized by the condition µp(Op) = 1 (i.e.
the measure of a unit ball is equal to 1).

Exercise 16 Show that A/Q is in a natural bijection with R/Z×
∏

p prime

Op.

We see that in this case τ(G) = volR(R/Z)×
∏

p prime

volp(Op) = 1.

2. Circle group
Here G is an algebraic manifold given by equation x2 + y2 = 1. The

group law is inspired by multiplication of complex numbers and is defined
by the formula

(x1, y1)(x2, y2) = (x1x2 − y1y2, x1y2 + x2y1).

We choose the form ω = dx
y = −dy

x as the top degree form on G with rational
coefficients.

Consider the group GQ of rational points of G. Let us suppose first that
(x, y) 6= (−1, 0) and rewrite the initial equation in the form

y2 = (1− x)(1 + x), or
y

1 + x
=

1− x

y
.

The common value of last two fractions is a rational number which we denote
by r. Then we have a system of linear equation for (x, y):

y = r(1 + x) 1− x = ry

with the solution

x =
1− r2

1 + r2
, y =

2r

1 + r2
. (1.25)

When r run through the set Q of all rationals, (x, y) runs through GQ with
the point (−1, 0) deleted.
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Actually, we can make r run through the set Q = Q ∪ {∞} and obtain
the whole set of solutions, including (−1, 0).

In terms of parameter r the group multiplication law looks like

r1 ∗ r2 =
r1 + r2

1− r1r2
. (1.26)

Now, let us try the same approach to study the group GQp . Namely,
assume that (x, y) 6= (−1, 0) and denote by λ the common value of fractions

y
1+x = 1−x

y . Then we obtain the system of linear equations

y = λ(1 + x) 1− x = λy

with determinant 1 + λ2. For some p the expression 1 + λ2 never vanishes
for λ ∈ Qp.

Exercise 17 Prove that for p = 2 and for a prime p of the form 4k− 1 the
equation

1 + λ2 = 0

has no solutions in Qp.

So, for this kind of primes we can parametrize the p-adic circle by the points
λ ∈ Qp = Qp ∪ {∞}:

x =
1− λ2

1 + λ2
, y =

2λ

1 + λ2
. (1.27)

But if p = 4k+1 the situation is different. Recall that the non-zero values
of the function sgnx are roots of degree p−1 from −1. When p = 4k+1, two
of these values are square root from −1. Denote by ±i the corresponding
points in Qp. The initial equation can be rewritten as

(x + iy)(x− iy) = 1.

So, in this case the group GQp is isomorphic to the multiplicative group Q×
p

of the field Qp. The corresponding parametrization looks like

x =
λ + λ−1

2
, y =

λ− λ−1

2i
. (1.28)

It turns out that the shape of the set GQp , the p-adic circle, depends on
the residue p mod 4.
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Theorem 4 The p-adic circle GQp consists of:
a) four disjoint balls of radius 1

4 if p = 2;
b) p− 1 disjoint balls of radius 1

p if p ≡ 1 mod 4;
c) p + 1 disjoint balls of radius 1

p if p ≡ −1 mod 4;

So, we have

vol(GO2) =
1
2
, vol(GOp) =

p− 1
p

for p = 4k − 1,

vol(GOp) =
p + 1

p
for p = 4k + 1.

(1.29)

Finally, observe that GZ consists of four points: {(±1, 0), (0, ±1)}.
Thus, the set GR/GZ is a quarter of a unit circle and has the length π

2 .
Collecting all this together we obtain for the Tamagawa number of the

group G the value

τ(G) =
π

2
·

∏

p prime,
p=4k+1

p− 1
p
·

∏

q prime,
q=4k−1

q + 1
q

. (1.30)

Note, that the both infinite products in this formula are actually divergent
– the first goes to 0, the second to ∞. But we can make sense of the whole
product, rewriting it in the form of a conditionally convergent series.

For this end we use the equalities

p− 1
p

=


∑

k≥0

p−k



−1

,
q + 1

q
=


∑

k≥0

(−q)−k



−1

.

and ∏

p prime,
p=4k+1

∏

q prime,
q=4k−1

∑

k≥0

p−k ·
∑

k≥0

(−q)−k =
∑

k≥0

(−1)k

2k + 1
=

π

4
.

(The last equality is the famous result of Leibniz and also the Taylor series
for arctan 1 ).

The final result is: τ(G) = 1.

Exercise 18 The well prepared readers can try to find the Tamagawa num-
ber for some more complicated groups. The most appropriate examples are
the group SO(3, R) of all real orthogonal matrices of order three and the
group SU(2, C) ' U(1, H) of unit quaternions.
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1.2.5 p-adic ζ-function

The classical ζ-function of Riemann is defined as a sum of the series

ζ(s) =
∑

n≥1

n−s, (1.31)

which is convergent for <(s) > 1. We shall see in a moment that this
function can be analytically extended to the whole complex plane C with
the origin deleted. Moreover, the values of ζ(s) at negative integer points
have very interesting arithmetic properties.

For this we need some elementary facts from the complex analysis: The
notion of a holomorphic function and its analytic continuation, the Cauchy
residue theorem and some properties of elementary functions.

Consider the integral

I(s) =
∮

zs

ez − 1
· dz

z
(1.32)

over the contour C starting at ∞, going along real axis from below, then
along small circle surrounding clockwise the origin and going back along real
axis from above to∞. Here the expression zs is understood as es(log |z|+i arg z

and 0 ≤ arg z ≤ 2π on the contour C. So, the integrand is holomorphic in
s and the integral converges for every s ∈ C. Therefore, its value I(s) is a
holomorphic function on C.

We compute this integral in two different ways. First, assuming <(s) > 1
and contracting our contour C to the twice passed ray [0, ∞), we get

I(s) = (1− e2πis)
∫ ∞

0

xs

ex − 1
ds

s
.

Further, since

1
ex − 1

=
∞∑

n=1

e−nx (sum of a geometric progression)

and ∫ ∞

0
xs−1e−nxdx = n−sΓ(s)

(by the substitution y = nx this integral is reduced to the definition of the
Γ-function), we obtain

I(s) = (1− e2πis)Γ(s)ζ(s) = −2i sin(πs)eπisΓ(s)ζ(s) for <(s) > 1. (1.33)
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This equality shows that ζ(s) can be analytically extended to C\{1}.
Second, for <(s) < 0 the value of the integrand on a big circle CR of

radius R is o(R<(s)−1, so the integral over CR tends to 0 when R→∞. If we
complete the contour C by CR, we can compute the new integral IR(s) by
the Cauchy residue formula. The integrand has poles at the points ±2nπi
and we get the result

IR(s) = 2πi
∑

|n|< R
2π

n 6=0

(2πin)s−1.

When R→∞, we get in the limit

I(s) = 2πi
∑

n6=0

(2πin)s−1.

The sum over positive n gives
∑

n≥1

(2πi)(2πin)s−1 = (2π)se
πis
2 · Γ(1− s)

The sum over negative n gives
∑

n≥1

(2πi)(−2πin)s−1 = −(2π)se
3πis

2 · Γ(1− s)

So, together we have

I(s) = (2π)s(e
πis
2 − e

3πis
2 )ζ(1− s) = −2i sin

πs

2
(2π)seπisζ(1− s). (1.34)

Comparing (1.33) and (1.34), we get the famous Riemann functional
equation for ζ(s):

ζ(s) =
(2π)s

2 cos
(

πs
2

)
Γ(s)

ζ(1− s). (1.35)

We mention some corollaries from this equation. First of all, replasing in
(1.35) s by 1− s and comparing the two expressions, we come to the Euler
identity:

Γ(s)Γ(1− s) =
π

sin(πs)
.

Second, for s = 2k, k ∈ N, we get

ζ(2k) =
(2π)2kζ(1− 2k)
2 cos (πk)Γ(2k)

= (−1)k 22k−1π2k

(2k − 1)!
ζ(1− 2k). (1.36)
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On the other hand, it is well-known that The value ζ(2k)
2π2k is a rational

number. To show it, consider the sequence of functions

fk(x) =
∑

n 6=0

e2πinx

(2πin)k
. (1.37)

This series is convergent absolutely for k ≥ 2 and conditionally for k = 1
and x /∈ Z. The sum is, evidently a periodic function: f(x + 1) = f(x). It
turns out that on the interval (0, 1) this function coinsides with a certain
polynomial of degree k, namely

fk(x) = −Bk(x)/k!. (1.38)

The polynomials Bk are called Bernoulli polynomials. They can be uniquely
determined by the properties:

a) B0(x) = 1;
b) B′

k(x) = kBk−1(x);
c)

∫ 1
0 Bk(x)dx = 0 for k ≥ 1.

The constant terms Bk(0) are denoted by Bk and are called Bernoulli
numbers. It is easy to see that they are rational and that B2k+1 = 0 except
k = 0.

From (1.37) and (1.38) follows that

ζ(2k) = (2πi)2kf2k(0) = −(2πi)2kB2k/(2k)!

and, using (1.36), we get

ζ(1− 2k) = −B2k/(2k). (1.39)

The following arithmetic properties of Bernoulli numbers were discovered
by E.Kummer.

Theorem 5 (Kummer congruences) If p− 1 is not a divisor of k, then
a) ||Bk||p ≤ 1;
b) if k ≡ m mod (p− 1)pN , then

(1− pk)Bk/k ≡ (1− pm)Bm/m mod pN+1.

¤
Let us define the p-adic ζ-function by the formula

ζp(k) = (1− pk−1)ζ(1− k). (1.40)
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From the Kummer congruences it follows, that ζp(k) is uniformly contin-
uous on every set Ma of the form a + (p− 1)N, a = 1, 2, . . . , p− 2. There-
fore, it can be extended to the closure of Ma in Qp which coincides with Op.
The culmination of these beautiful theory is the formula of Kubota-Leopold
which gives an integral presentation

ζp(k) =
∫

Op

x−kdµa(x) for k ≡ a mod (p− 1),

where µa is a measure on Op with support on O×
p . The details one can find

in [14].

Besides number-theoretic and probable physical applications, the exis-
tence of fields Qp essentially enlarges the horizon and the intuition of math-
ematicians. For any definition, theorem, formula one can ask: what is its
p-adic analogue? Sometimes the very possibility of such question can help
better understand the situation.

Here I stop the excursus into p-adic analysis and address the interested
readers to [14, 7, 22] (see also some exercises in [11, 12]).

Answers and hints to the problems.

8. Follows from the inequality ||a1 + a2 + · · ·+ an||p ≤ maxi ||ai||p.
9. Start from the case p = 2.
10. a) (0); b) (4); c) (3)4.
11. Recall the proof of the analogous property of decimal fractions.
12. If r = (A)B where the fragments A and B have the same length,

then r > 0 iff A > B in the usual sense.
13. Express the indicator function of a given ball using the p-adic signum.
14. Follows from the definition of convergence in Qp

15. Use the multiplicativity of the norm and check the statement for
prime numbers and for −1.

16. Let A0 denote the open5 subgroup in A consisting of those a for
which a ∈ Op for all p. Show that

A = A0 +Q and A
⋂
Q = Z.

17. Show, using the function sgnp and expp, that for p = 4k − 1 the
multiplicative group Q×

p is isomorphic to Z× Z4k−2 ×Op.
18. Answers: τ

(
SO(3, R)

)
= 2, τ

(
SU(2, C)

)
= 1.

5Actually, the fact that A0 is open in A defines the topology on A.
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1.3 From Q to R: the idea of order; non-standaed
analysis

Look at first puddle and there
you’ll find a sod which surpasses
and blacks out all other sods.

Saltykov-Shchedrin, “A story of
a town”

There is one more way to pass from rational numbers to reals. This way
does not use the notion of a distance, but instead is based on the natural
order in Q. We define a real number as a section c in the set Q, that is a
partition of Q into two parts A and B so that every element of A is less
than any element of B. If the set A has maximal element amax or the set B
has a minimal element bmin, we identify c with one of them. Actually, amax

and bmin can not exist simultaneously for a given c. Indeed, otherwise the
number amax+bmin

2 does not belong neither A nor B.
If A has no maximum and B has no minimum, then the section c defines

a new number which does not belong to Q. By definition, we consider c as
bigger than any a ∈ A but smaller than any b ∈ B.

For the sections one can define all arithmetic operations and check that
the set of all sections forms a field. This field is, by definition, the field R of
real numbers.

However, there is here something to think about. Can we go further and
consider sections in R as elements of a still bigger field? For example, can
we introduce an infinitesimal number ε which is positive, but smaller than
any fraction 1

n?
Formally, it contradicts to the well-known theorem about least upper

bound which claims that for any section c in R there exists either amax or
bmin. If we analyse the proof of this theorem6, we find out that it is based
on the axiom of Archimedes which claims that for any positive real numbers
M, ε, there exist a natural number N such that Nε > M .

But if we agree to sacrifice the axiom of Archimedes, we can indeed
construct many “non-archimedean” fields strictly containing R. Till some
time these fields were considered as funny examples and the analysis in these
fields as a crazy theory without applications. But in 1966 A. Robinson and
A.P. Bernstein, using non-standard analysis, have solved a difficult problem

6Sometimes, the existence of a least upper bound is taken as an axiom; then the
Achimedean property below becomes a theorem.
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of functional analysis: existence of a non-trivial invariant subspace for a
polynomially compact operator in Hilbert space.

This solution soon was translated to the ordinary mathematical language
by P.Halmos and a more general result was obtained by V.I.Lomonosov. But
now nobody can say that the non-standard analysis has no applications.
There are many popular introductions to the non-standard analysis - see
[22] and the bibliography there.

Here I describe only one original approach to the construction of a non-
archimedean extension of a real field. This approach was invented by John
Horton Conway, a famous Princeton mathematician. It requires as little of
prerequisit, that a fiction book [23] and an article [13] in a journal “Quant”
for school students were written based on this approach. Conway himself
calls his numbers surreal and we shall call them Conway numbers, or C-
numbers.

First of all about notations. In arithmetics of C-numbers only two digits
are used: ↑, or “up” and ↓, or “down”.

By definition, C-number is any completely ordered word in the alphabet
↑, ↓.7 The cardinality of a word can be arbitrary, but already countable
words form a very big field containing all real numbers and many non-
standard ones. We shall see soon that the empty word plays the role of
zero, so we denote it by 0.

There are two order relations on the set of C-numbers. First uses terms
bigger and smaller, denoted by > and <. It is defined lexicographically: we
compare two numbers a and b digit par digit. If all digits coincide, a = b, if
the first non-equal digit in a is bigger than in b, then a > b. As for digits,
we agree that ↑> 0 >↓.

For the second relation Coway uses the terms earlier or later and symbols
← and →. By definition, a← b if a is an initial subword of b.

To define arithmetical operations we need the

Theorem 6 (Basic Lemma) Let A and B be two sets of C-numbers such
that a < b for any a ∈ A, b ∈ B. Then

a) There exist C-numbers c which separate A and B, i.e. a < c < b for
all a ∈ A, b ∈ B.

b) Among all C-numbers c, separating A and B there exists a unique
earliest number, denoted by [A : B].

Conway defines all the arithmetic operations, following two principles:
succession and simplicity. The first principle means that an arithmetic op-

7Recall that a completely ordered set is an ordered set in which any non-empty subset
has a minimal element.
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eration, e.g. addition is defined not at once for all C-numbers at once, but
, starting with earlier numbers. According to the second principle, the re-
sult must be the simplest possible, i.e. the earliest number which does not
contradicts to the results already known.

Example. Let us find the sum 0 + 0. Since 0 is the earliest number,
there are no results already known. So, we can choose the answer among all
C-numbers. The earliest possibility is 0. Thus, 0 + 0 = 0.

Certainly, this example is curious, but for a reader got accustomed to
rigorous definition of analysis it could seem a bit lightheaded. Let us give
the definition of addition for a general case. For this we introduce some
notations.

We call upper slice of a C-number x the set of all C-numbers which are
bigger and earlier than x. Let us denote this set by xe. Analogously, we
define a lower slice of x as the set xc of all C-numbers which are less and
earlier than x.

E.g., if x =↑↓↑↑, then

xe = { ↑ } xc = { ↑↓↑, ↑↓, 0 }.

And if x =↑, then xe = ∅, xc = { 0 }.
Now we define the sum of two C-numbers by the formula

x + y =
[(

(xc+ y) ∪ (x + yc)
)

:
(
(xe+ y) ∪ (x + ye)

)]
. (1.41)

The formula (1.41) defines x + y under condition that we already know
the sums of all earlier summands (succession principle) and makes it in a
simplest way (simplicity principle) - see the Basic Lemma.

Exercise 19 Let ↑n and ↓n denote C-numbers written by n symbols ↑ or ↓.
Prove the equalities

a) ↑m + ↑n=↑m+n; b) ↓m + ↓n=↓m+n;

↑m + ↓n=





↑m−n if m > n

0 if m = n

↓n−m if m < n.

(1.42)

From the exercise we see, that the set of C-numbers contains a subgroup
isomorphic to the group Z.

Exercise 20 Prove that ↑↓ + ↑↓=↑.
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Hint: ↑↓e = { ↑ }, ↑↓c = { 0 }, ↑ + ↑↓=↑↑↓.
So, the C-number plays the role of one half of the number ↑. Further,

you can check that ↑↓↓ plays the role of one quarter of ↑, ↑↓↓↓ is one eight
of ↑ etc.

After these simple example one can guess, that all finite C-numbers form
a group isomorphic to the group Z[12 ] of all dyadic fractions. Moreover, the
writing of a dyadic fraction r = k

2n as a C-number is nothing but “record”
of searching this number in the following sense. We start from 0 ∈ R (it
is convenient to imaging the real line disposed vertically, so that numbers
increase from below upwards.) and are moving to our number r by steps of
size 1. Each step is marked in the record by the symbol ↑ or ↓ depending
on the direction of a move. We continue this way until we reach r (if it
is integer) or overstep it. In the last case we keep going in the direction
of r, but each next step is twice shorter than the previous one. As before,
every step is marked in the record by ↑ or ↓ depending on the direction of
a move. E.g., for a number r = 2 3

16 the record of our search is described by
the writing down r = 3− 1

2 − 1
4 − 1

8 + 1
16 and leads to the C-number ↑↑↑↓↓↓↑.

The same method can be applied to all real numbers and produce their
writing down as infinite C-numbers.

Exercise 21 Show that rational but not dyadic rational numbers correspond
to eventually periodic C-numbers (i.e. periodic, stating with some place).

For writing down periodic C-numbers it is convenient to use the symbol

︷︸︸︷ to denote a period. For example, the expression ↑
︷︸︸︷
↑↓ denotes the

C-number ↑↑↓↑↓↑↓ ..., corresponding to a real number 5
3 .

All C-numbers occuring until now were just fancy written real numbers.
This new way of writing down, though rather transparent, is much less
convenient than the ordinary decimal or dyadic system. The advatage of it
can be seen when we pass to non-standard numbers which are written down
as easy as the standard (real) numbers.

Consider, for example, the C-numbers ω =
︷︸︸︷
↑ and ε =

︷︸︸︷
↓ .

Exercise 22 Prove that ω > n and 0 < ε < 1
n for any n ∈ N.

So, ω is “infinitely big” and ε is “infinitely small” number. Moreover,
after we define a product of two positive C-numbers by the formula

x · y =
[(

(xc · y) ∪ (x · yc)
)

:
(
(xe · y) ∪ (x · ye)

)]
, (1.43)
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we can check that ω · ε =↑. Unfotunately, this check is rather long and
tedious, since we have to know the products of all earlier numbers. But it
is very instructive to those who wants to feel free with C-numbers.

It is time now to recall that in the definition of C-numbers the notion
of a complete order is used. The remakable fact is that all finite sets with
given cardinality admit essentially unique complete order. Namely, any two
such sets are isomorphic objects in the category COS of completely ordered
sets.

Still more remarkable fact is that the countable completely ordered sets
form infinite (and even uncountable) equivalence classes. You can find more
details in textbooks in set theory (see also some exercises in [11, 12]).

Observe that all C-numbers occuring until now belong to the class of N.

Here is an example of other type: the number
︷︸︸︷
↑ ↑. It could seem that it

is the same word as ω =
︷︸︸︷
↑ , but these words are ordered differently: the

first has a maximal element, while the first has not.

Exercise 23 Prove the equalities:

a)
︷︸︸︷
↑ ↑n= ω + n, b)

︷︸︸︷
︷︸︸︷
↑ = ω2.

Here I finish my introduction to non-standard analysis. The interested
readers can make experiments with C-numbers or try to read more serious
articles (see, e.g. [4].

Answers and hints.
1. Straightforward check by induction.
3. Compare the deduction of the formula for the some of the infinite

decreasing geometric progression.
5. a) Use induction. b) Use the formula (1.43).

1.4 From R to C, H and O: Clifford algebras, Dirac
equations and the projective plane over the
field F2

Most of ignorant people
understand by the occultism the
table-turning. It is not so.

Arkadij Averchenko.
“Occult sciences”.
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1.4.1 Complex numbers

The role of complex numbers in mathematics is really outstanding. First, it
is a simplest (and the only one, known to students) example of algebraically
closed field. It means that any polynomial with complex coefficients has a
complex root, hence, decomposes into linear factors.8

Second, the complex analysis, i.e. the the theory of complex-valued
functions of one or several complex variables, is a natural way to study
analytic functions of real variables. Many “purely real” facts about analytic
functions can be understood only by studying their extensions into complex
domain. For example, why the Taylor series for sin x and cos x are coverging
everywhere on R, while the Taylor series of 1

x2+1
and arctan x are coverging

only for |x| < 1? Or, why the antiderivative of (1 − x2)α can be found
explicitly for α = 1

2 , but can not for α = 1
3 , 1

4 etc?
Finally, the transition from real to complex numbers admits generaliza-

tions, one of which is the theory of Clifford algebras.
We assume that complex numbers are known well enough and will speak

here about further generalizations.

1.4.2 Quaternions

The inventor of quaternions, the famous irish mathematician Sir William
Rowan Hamilton has spent many years in attempt to find multiplication
law for 3-vectors which would generalize the multiplication of complex num-
bers (2-vectors). We know now that it is impossible. Only when Hamilton
dared to pass to 4-vectors, he found the solution. You can read about this
in [22]. These new numbers have been named quaternions. They form a
4-dimensional vector space H over reals with one real unit 1 and three imag-
inary units i, j, k, satisfying the relations

i2 = j2 = k2 = ijk = −1. (1.44)

The legend is that these very relations were carved by Hamilton into the
side of the Broom Bridge on the Royal Canal in Dublin on October 16 of

8Unfortunately, the algebraic closures of other fields are more complicated. For exam-
ple, the algebraic closure of Qp is not complete with respect to natural extension of p-adic
norm. The corresponding completion Cp is described in [14]. This field is more and more
used in modern number theory, but its role is still incomparable with the role of complex
numbers.

The algebraic closure of a finite field Fp has rather simple structure: it is a union of
finite fields Fq, q = pn (see the description in chapter 2). However, this field has no natural
topology except discrete one.
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1843.
But the algebraic structure of H is better reflected by another system of

equations, which is almost equivqlent to (1.44)

i2 = j2 = k2 = −1, ij + ji = jk + kj = ki + ik = 0. (1.45)

Exercise 24 Show that (1.45) implies that ijk = ±1. So, the algebras,
generated by i, j,k, satisfying (1.45) and i′, j′,k′, satisfying (1.44) are iso-
morphic and the isomorphism is given by

i 7→ i′, j 7→ j′, k 7→ ±k′.

The system (1.44) in its turn is equivalent to

(ai + bj + ck)2 = −(a2 + b2 + c2) for all a, b, c ∈ R. (1.46)

Hamilton himself wrote a quaternion in the form q = x0+x1i+x2j+x3k
and call x0 ∈ R the scalar part of q and x = (x1, x2, x3) ∈ R3 the vector
part of q.

The product of two quaternions is defined as follows. The scalar parts
are multiplied as ordinary real numbers. The product of a scalar and a
vector is also the ordinary product of a real vector by a real number. As for
the product of two vectors, it has the form

xy = x · y + x× y. (1.47)

Here the first summand is the so-called scalar or dot product:

x · y = x1y1 + x2y2 + x3y3

and the second summand is a vector product:

x× y = det

∥∥∥∥∥∥

x1 x2 x3

y1 y2 y3

i j k

∥∥∥∥∥∥
.

These two operations are now used far beyond the quaternion theory.
The scalar (or dot) product is an essential part in the definition of Euclidean
and Hilbert spaces (see chapter 2). The vector product is the first example
of a Lie algebra commutator (see the definition in section 1).

It is convenient to realize the elements q ∈ H by 2× 2 complex matrices
of a special form:

q = x0 + x = x0 + x1i + x2j + x3k ←→
(

x0 + ix1 x2 + ix3

−x2 + ix3 x0 − ix1

)

This correspondence observed all arithmetical operations. Note also that

the subfield C ⊂ H is realized by matrices of the form
(

z 0
0 z̄

)
.
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1.4.3 Clifford algebras

The identity (1.46) suggests the general definition of a Clifford algebra
Cl(V, Q), related to a vector space V over a field K and a quadratic form
Q on V .9 By definition, Cl(V, Q) is the algebra, generated over K by the
unit 1 and the space V with defining relations

v2 = Q(v) · 1 for any v ∈ V. (1.48)

Exercise 25 Show that the algebras C and H are the clifford algebras re-
spectively for K = V = R, Q(x) = −x2 and K = R, V = R2, Q(x, y) =
−x2 − y2.

Exercise 26 Let K = C, V = Cn, Q is any non-degenerate quadratic form
on V (all such form are equivalent). Show that

Cl(V, Q) '
{

Mat2k(C) for n = 2k,

Mat2k(C)⊕Mat2k(C) for n = 2k + 1.
(1.49)

The Clifford algebras over R are more diverse. I am giving here the table
of algebras Cp, q = Cl(Rp+q, Qp, q where Qp, q is the quadratic form of the
type

Qp, q(x1, . . . , xp+q) = x2
1 + · · ·+ x2

p − x2
p+1 − · · · − x2

p+q.

q�p 0 1 2 3 4 5 6 7
0 R 2R R(2) C(2) H(2) 2H(2) H(4) C(8)
1 C R(2) 2R(2) R(4) C(4) H(4) 2H(4) H(8)
2 H C(2) R(4) 2R(4) R(8) C(8) H(8) 2H(8)
3 2H H(2) C(4) R(8) 2R(8) R(16) C(16) H(16)
4 H(2) 2H(2) H(4) C(8) R(16) 2R(16) R(32) C(32)
5 C(4) H(4) 2H(4) H(8) C(16) R(32) 2R(32) R(64)
6 R(8) C(8) H(8) 2H(8) H(16) C(32) R(64) 2R(64)
7 2R(8) R(16) C(16) H(16) 2H(16) H(32) C(64) R(128)
8 R(16) 2R(16) R(32) C(32) H(32) 2H(32) H(64) C(128)

In this table we use the short notation K(n) for the algebra Matn(K)
and 2K(n) for the algebra Matn(K)⊕Matn(K)

9Recall that a quadratic form is a map Q : V → K given by the formula Q(v) = B(v, v)
where B : V × V → K is a symmetric bilinear map. Actually, B can be restored from Q

by the formula B(v1, v2) = 1
2

“
Q(v1 + v2)−Q(v1)−Q(v2)

”
.
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The proof of these relations and also the role of Clifford algebras in
topology are given in [5] (see also [11] and exercises in chapter 1).

Until now we considered only the Clifford algebras related to non-degenerate
quadratic forms. The opposite case of a zero quadratic form is also of inter-
est. This algebra is called exterior or Grassmann algebra. We shall speak
about it in chapter 2.

One of Clifford algebras was used after three quarters of a century since
its discovery by the great british physicist P.A.M. Dirac in the quantum
electrodynamics. The idea of Dirac was very simple but rather crazy. He
wanted to replace the wave equation10

¤ f :=
(
∂2

t − ∂2
x + ∂2

y + ∂2
z

)
f = 0 (1.50)

by some equivalent equation of the first order in time. For this Dirac assumed
that the operator (1.50) is a square of some operator of the first order:

¤ = (γ0∂t + γ1∂x + γ2∂y + γ3∂z)
2 . (1.51)

Of course, this equality is impossible if coefficients γi are the ordinary num-
bers. “Too bad for ordinary numbers” – said Dirac and defined a new sort
of numbers which he needed. Namely, suppose that

γ2
0 = −γ2

1 = −γ2
2 = −γ2

3 = 1 and γiγj + γjγi = 0 for i 6= j. (1.52)

Then (1.51) will be satisfied. Of course, our reader recognizes in (1.52) the
definition of a real Clifford algebra C1,3 ' Mat2(H). So, the new Dirac
numbers are just 2× 2 quaternionic matrices, or, 4× 4 complex matrices of
special kind.

Note, that the algebra, generated by iγk, k = 0, 1, 2, 3, is isomorphic to
the Clifford algebra C3,1 ' Mat4(R). Therefore, the 4 × 4 matrices γk can
be chosen pure imaginary.

The famous Dirac equation which describes the elementary particles of
Fermi type (electrons, muons, neutrinos) has the form

iðθ := i
(
γ0∂t + γ1∂x + γ2∂y + γ3∂z

)
θ = mθ (1.53)

where m is a real number (the mass of the particle) and θ is a real 4-vector
(so-called Majorana spinor.

10The symbol := or =: tells that the equation in question is the definition of the part
to which the colon is directed. In our case it is the definition of the symbol ¤.
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1.4.4 Octonions, or Cayley numbers

Among real Clifford algebras exactly three are fields, or skew-fields: R, C
and H. The Frobenius theorem claims that there are no other associative
finite-dimensional division algebras over R. However, if we drop the associa-
tivity restriction, a curious exemple of a division algebra can be constructed.

It is an algebra O of so-called Cayley numbers, or octonions. As a real
vector space it is spanned by the ordinary unit 1 and by seven imaginary
units ek, 1 ≤ k ≤ 7 with defining relations:

e2
k = −1, 1 ≤ k ≤ 7; eiej = ±ek(i,j) (1.54)

where the choice of signs and the function k are defined by the table.

0 1 2 3 4 5 6 7
1 −0 3 −2 5 −4 7 −6
2 −3 −0 1 6 −7 −4 5
3 2 −1 −0 7 6 −5 −4
4 −5 −6 −7 −0 1 2 3
5 4 −7 6 −1 −0 3 −2
6 7 4 −5 −2 −3 −0 1
7 −6 5 4 −3 2 −1 −0

If on the intersection of i-th row and j-th column we see the number ±k,
it means that ei · ej = ±ek.

This table has remarkable properties (which allow to recover it essentially
uniquely):

1. In each row and in each column all digits from 0 to 7 occur.
2. In each row and in each column there are 4 signs + and 4 signs −.

3. In each fragment of the type
±a ±b
±b ±a

the number of + and − are

odd (i.e. there are 3 + and 1 − or 1 + and 3 −).
We dicuss below the geometric interpretation of the table and now give

another realization of O. An element X ∈ O is written as a pair of quater-
nions (q, r); the addition is defined componentwise and multiplication is
given by the formula

(q1, r1) · (q2, r2) = (q1 · q2 − r̄2 · r1, r2 · q1 + r1 · q̄2). (1.55)

Here the bar denotes the quaternionic conjugation: (x0, x) = (x0, −x).
The distribution of signs and indices in (1.54) is related with a beau-

tiful geometric configuration: the projective plane over the field F2 of two
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elements. We recall that the projective plane over a field K is a collection
P2(K) of all 1-dimensional subspaces (lines) in a 3-dimensional vector space
over K. Usually, a point in P2(K) is given by 3 homogeneous coordinates
(x0 : x1 : x2). These coordinates can not vanish simultaneously and are
defined up to common factor. In our case the only invertible element of K
is 1; so, the homogeneous coordinates are defined uniquely. So, P2(F2) is
identified with F3

2\{origin} and consists of seven points. A projective line
on P2(F2) is a subset, defined by a linear equation

a0x0 + a1x1 + a2x2 = 0.

The coefficients (a0 : a1 : a2) in this equation can be considered as homo-
geneous coordinates of a point a in the dual projective plane P2(F2)∗. So,
we have 7 lines and 7 points in P2(F2). It is easy to understand that every
line contains 3 points and every point belongs to 3 lines. The multiplica-
tion table in O is related to the geometry of P2(F2) in the following sense:
we can enumerate the points on the projective plane in such a way, that
ei · ej = ±eK iff the points pi, pj and pk belong to the same line.

As for the sign in (1.54), it can be defined by the orientation of lines. Here
by orientation we understand the cyclic order on a line, i.e. a numeration of
the points up to cyclis permutation. The sign rule have the form: ei ·ej = ek

if the points pi, pj , pk define the orientation of the line in question.
In conclusion, I propose to readers the following subject to think about.

The projective plane contains projective subspaces of smaller dimensions:
lines and points. Let us consider the subalgebra of O generated by units,
corresponding to a given projective subspace.

a) Show that this subalgebra is isomorphic to C for points and to H for
lines.

b) Which algebras (if any) correspond to projective spaces of bigger
dimensions?

Exercise 27 How many points, lines, planes etc are in the n-dimensional
space over the finite field Fq with q = pl elements?

Hint. Introduce the notation
[

n
k

]

q

:= (qn−1)(qn−1−1)···(q−1)
(qk−1)···(q−1)(qn−k−1)···(q−1)

.

Answer: there are
[

n
k

]

q

k-dimensional subspaces.
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