
Guide to Math 241

Part I. Solving PDEs in bounded regions

Step 1. Apply separation of variables to get ordinary differential equation(ODE)s for
each variable.
Step 2. Interprete boundary condition(BC)s as restrictions for the corresponding
ODEs, then solve each ODE that has 2 restrictions as an eigenvalue problem.
Step 3. Plug in the eigenvalues you get from step 2 and solve the rest of the ODEs, so
you can form the general solution.
Step 4. Determine the coefficients in the general solution by initial condition(IC)s.

In step 1, we have the following cases:

(1) One-Dimensional interval: 0 ≤ x ≤ L

For heat equation ∂u
∂t = k ∂

2u
∂x2

, let u(x, t) = X(x)T (t), the ODEs are:

T ′(t) = −kλT (t)

X ′′(x) = −λX(x)

For wave equation ∂2u
∂t2

= c2 ∂
2u
∂x2

, let u(x, t) = X(x)T (t), the ODEs are:

T ′′(t) = −c2λT (t)

X ′′(x) = −λX(x)

(2) Two-Dimensional rectangle: 0 ≤ x ≤ L, 0 ≤ y ≤ H

For heat equation ∂u
∂t = k∆u, let u(x, y, t) = X(x)Y (y)T (t), the ODEs are:

T ′(t) = −kλT (t)

X ′′(x) = −µX(x)

Y ′′(y) = −(λ− µ)Y (y)

For wave equation ∂2u
∂2t

= c2∆u, let u(x, y, t) = X(x)Y (y)T (t), the ODEs are:

T ′′(t) = −c2λT (t)

X ′′(x) = −µX(x)

Y ′′(y) = −(λ− µ)Y (y)

For Laplace’s equation ∆u = 0, let u(x, y) = X(x)Y (y), the ODEs are:

X ′′(x) = −λX(x)

Y ′′(y) = λY (y)
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(3) Two-Dimensional disk(annulus) or a sector of a disk(annulus), where the
spacial part is described by polar coordinates (r, θ)

For heat equation ∂u
∂t = k∆u, let u(r, θ, t) = R(r)Θ(θ)T (t), the ODEs are:

T ′(t) = −kλT (t)

Θ′′(θ) = −µΘ(θ)

r2R′′(r) + rR′(r) + (λr2 − µ)R(r) = 0

For wave equation ∂2u
∂2t

= c2∆u, let u(r, θ, t) = R(r)Θ(θ)T (t), the ODEs are:

T ′′(t) = −c2λT (t)

Θ′′(θ) = −µΘ(θ)

r2R′′(r) + rR′(r) + (λr2 − µ)R(r) = 0

For Laplace’s equation ∆u = 0, let u(r, θ) = R(r)Θ(θ), the ODEs are:

Θ′′(θ) = −λΘ(θ)

r2R′′(r) + rR′(r)− λR(r) = 0

(4) Two-Dimensional sphere or a sector of a sphere, where the spacial part is
described by spherical coordinates (φ, θ)

For heat equation ∂u
∂t = k∆u, let u(φ, θ, t) = Φ(φ)Θ(θ)T (t), the ODEs are:

T ′(t) = −kλT (t)

Θ′′(θ) = −µΘ(θ)(
sinφ Φ′(φ)

)′
+
(
λ sinφ− µ

sinφ

)
Φ(φ) = 0

For wave equation ∂2u
∂2t

= c2∆u, let u(φ, θ, t) = Φ(φ)Θ(θ)T (t), the ODEs are:

T ′′(t) = −c2λT (t)

Θ′′(θ) = −µΘ(θ)(
sinφ Φ′(φ)

)′
+
(
λ sinφ− µ

sinφ

)
Φ(φ) = 0

For Laplace’s equation ∆u = 0, let u(φ, θ) = Φ(φ)Θ(θ), the ODEs are:

Θ′′(θ) = −λΘ(θ)

(
sinφ Φ′(φ)

)′ − λ

sinφ
Φ(φ) = 0
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(5) Three-Dimensional cylinder(cylindrical shell) or a sector of a cylinder (cylind-
rical shell), where the spacial part is described by cylindrical coordinates (r, θ, z)

For heat equation ∂u
∂t = k∆u, let u(r, θ, z, t) = R(r)Θ(θ)Z(z)T (t), the ODEs are:

T ′(t) = −kλT (t)

Θ′′(θ) = −µΘ(θ)

Z ′′(z) = −νZ(z)

r2R′′(r) + rR′(r) + [(λ− ν)r2 − µ]R(r) = 0

For wave equation ∂2u
∂2t

= c2∆u, let u(r, θ, z, t) = R(r)Θ(θ)Z(z)T (t), the ODEs are:

T ′′(t) = −c2λT (t)

Θ′′(θ) = −µΘ(θ)

Z ′′(z) = −νZ(z)

r2R′′(r) + rR′(r) + [(λ− ν)r2 − µ]R(r) = 0

For Laplace’s equation ∆u = 0, let u(r, θ, z) = R(r)Θ(θ)Z(z), the ODEs are:

Z ′′(z) = λZ(z)

Θ′′(θ) = −µΘ(θ)

r2R′′(r) + rR′(r) + (λr2 − µ)R(r) = 0

(6) Three-Dimensional ball(spherical shell) or a sector of a ball(spherical shell),
where the spacial part is described by spherical coordinates (r, φ, θ)

For heat equation ∂u
∂t = k∆u, let u(r, φ, θ, t) = R(r)Φ(φ)Θ(θ)T (t), the ODEs are:

T ′(t) = −kλT (t)

Θ′′(θ) = −µΘ(θ)(
r2R′(r)

)′
+ (λr2 − ν)R(r) = 0(

sinφ Φ′(φ)
)′

+
(
ν sinφ− µ

sinφ

)
Φ(φ) = 0

For wave equation ∂2u
∂2t

= c2∆u, let u(r, φ, θ, t) = R(r)Φ(φ)Θ(θ)T (t), the ODEs are:

T ′′(t) = −c2λT (t)

Θ′′(θ) = −µΘ(θ)(
r2R′(r)

)′
+ (λr2 − ν)R(r) = 0(

sinφ Φ′(φ)
)′

+
(
ν sinφ− µ

sinφ

)
Φ(φ) = 0
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For Laplace’s equation ∆u = 0, let u(r, φ, θ) = R(r)Φ(φ)Θ(θ), the ODEs are:

Θ′′(θ) = −λΘ(θ)(
r2R′(r)

)′ − µR(r) = 0(
sinφ Φ′(φ)

)′
+
(
µ sinφ− λ

sinφ

)
Φ(φ) = 0

In step 2, we have the following cases:

(1) For ODE X ′′(x) = −λX(x)

If X(0) = 0, X(L) = 0, then

λn =
n2π2

L2
, Xn(x) = sin

nπx

L
, n = 1, 2, · · ·

If X ′(0) = 0, X ′(L) = 0, then

λn =
n2π2

L2
, Xn(x) = cos

nπx

L
, n = 0, 1, · · ·

If X(−L) = X(L), X ′(−L) = X ′(L), then

λn =
n2π2

L2
, Xn(x) = An cos

nπx

L
+Bn sin

nπx

L
, n = 0, 1, · · ·

If X(0) = 0, X ′(L) = 0, then

λn =
(n− 1

2)2π2

L2
, Xn(x) = sin

(n− 1
2)πx

L
, n = 1, 2, · · ·

If X ′(0) = 0, X(L) = 0, then

λn =
(n− 1

2)2π2

L2
, Xn(x) = cos

(n− 1
2)πx

L
, n = 1, 2, · · ·

(2) For ODE r2R′′(r) + rR′(r) = −λR(r)

Setting r = et will change this equation to R′′(t) = −λR(t), therefore we can relate it to the
previous case.

If R(a) = 0, R(b) = 0, then

λn =

(
nπ

ln b
a

)2

, Rn(r) = sin
nπ ln x

a

ln b
a

, n = 1, 2, · · ·

If R′(a) = 0, R′(b) = 0, then

λn =

(
nπ

ln b
a

)2

, Rn(r) = cos
nπ ln x

a

ln b
a

, n = 0, 1, 2, · · ·
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If R(a) = R(b), R′(a) = R′(b), then

λn =

(
2nπ

ln b
a

)2

, Rn(r) = An sin
2nπ ln x√

ab

ln b
a

+Bn cos
2nπ ln x√

ab

ln b
a

, n = 0, 1, 2, · · ·

If R(a) = 0, R′(b) = 0, then

λn =

(
(n− 1

2)π

ln b
a

)2

, Rn(r) = sin
(n− 1

2)π ln x
a

ln b
a

, n = 1, 2, · · ·

If R′(a) = 0, R(b) = 0, then

λn =

(
(n− 1

2)π

ln b
a

)2

, Rn(r) = cos
(n− 1

2)π ln x
a

ln b
a

, n = 1, 2, · · ·

(3) For ODE r2R′′(r) + rR′(r) + (λr2 − ν2)R(r) = 0

If |R(0)| < +∞, R(a) = 0, then

λn =
(zν,n
a

)2
, Rn(r) = Jν(

√
λnr), n = 1, 2, · · ·

where Jν(z) is Bessel function of the first kind, and zν,n is the n-th zero of Jν(z), ν can be any
non-negative real number, not necessary an integer.

(4) For ODE
(

sinφ Φ′(φ)
)′

+
(
µ sinφ− m2

sinφ

)
Φ(φ) = 0

If |Φ(0)| < +∞, |Φ(π)| < +∞, then

µn = n(n+ 1), Φn(φ) = Pmn (cosφ), n ≥ m

where Pmn (x) is associated legendre function(sperical harmonic) of first kind, m and n are
non-negative integers.

(5) For ODE
(
r2R′(r)

)′
+
(
λr2 − n(n+ 1)

)
R(r) = 0

If |R(0)| < +∞, R(a) = 0, then

λn =
(zn+ 1

2
,k

a

)2
, Rn(r) = r−

1
2Jn+ 1

2

(√
λnr
)
, k = 1, 2, · · ·

where zn+ 1
2
,k is the k-th zero of Jn+ 1

2
(z).

(6) For regular Sturm-Liouville problem:(
p(x)φ′(x)

)′
+ q(x)φ(x) + λσ(x)φ(x) = 0, a ≤ x ≤ b

p(x), q(x) and σ(x) are continuous for a ≤ x ≤ b and p(x) > 0, σ(x) > 0.

If β1φ(a) + β2φ
′(a) = 0, β1φ(a) + β2φ

′(a) = 0, then we can list eigenvalues in an increasing
order λ1 < λ2 < · · · , for each eigenvalue λn, we have a corresponding eigenfunction φn(x), and
they are related by Rayleigh quotient.
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In step 3, we have the following cases:

(1) For ODE T ′(t) = −λT (t), the solution is T (t) = c1e
−λt

(2) For ODE X ′′(x) = −λX(x)

If λ > 0, then
X(x) = c1 cos

√
λx+ c2 sin

√
λx

If λ = 0, then
X(x) = c1 + c2x

If λ < 0, then

X(x) = c1e
√
−λx + c1e

−
√
−λx

or we can write it as
X(x) = c1 cosh

√
λx+ c2 sinh

√
λx

In all the cases above, we can do a shift for x, i.e., replace x by x− a for a suibable a so as to
fit the boundary restrictions.

(3) For ODE r2R′′(r) + rR′(r) = −λR(r)

If λ > 0, then
R(r) = c1 cos

(√
λ ln r

)
+ c2 sin

(√
λ ln r

)
If λ = 0, then

R(r) = c1 + c2 ln r

If λ < 0, then

X(x) = c1r
√
−λ + c1r

−
√
−λ

In all the cases above, we can do a scale for r, i.e., replace r by r
a for a suibable a so as to fit

the boundary restrictions.

(4) For ODE r2R′′(r) + rR′(r) + (λr2 − ν2)R(r) = 0, ν ≥ 0

If λ > 0, then
R(r) = c1Jν(

√
λr) + c2Yν(

√
λr)

where Yν(z) is Bessel function of the second kind.

If λ = 0, the equation becomes the one in case (2).

If λ < 0, then
R(r) = c1Iν(

√
−λr) + c2Kν(

√
−λr)

where Iν(z) is modified Bessel function of the first kind, Kν(z) is modified Bessel function of
the second kind.
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(5) For ODE
(
r2R′(r)

)′
+
(
λr2 − n(n+ 1)

)
R(r) = 0

If λ > 0, then

R(r) = c1r
− 1

2Jν(
√
λr) + c2r

− 1
2Yν(
√
λr)

If λ = 0, then
R(r) = c1r

n + c2r
−n−1

If λ < 0, then

R(r) = c1r
− 1

2 Iν(
√
−λr) + c2r

− 1
2Kν(

√
−λr)

In step 4, we have the following cases:

(1) If φn(x) are orthogonal functions with weight σ(x), i.e.∫ b

a
φm(x)φn(x)σ(x)dx = 0, m 6= n

and we expand f as

f(x) =
∑

Anφn(x)

then

An =

∫ b
a f(x)φn(x)σ(x)dx∫ b
a φ

2
n(x)σ(x)dx

In particular, for trigonometric functions, the weight function σ(x) = 1; for Bessel functions,
the weight function σ(x) = x.

(2) If φm,n are orthogonal functions with 2 variables ((x, y) or (r, θ)), and we expand f as

f =
∑∑

Am,nφm,n

then

Am,n =

∫∫
fφm,n dA∫∫
φ2m,n dA

where dA = dxdy = rdrdθ.

(3) If φm,n,k are orthogonal functions with 3 variables ((x, y, z) or (r, θ, z) or (r, φ, θ)), and we
expand f as

f =
∑∑∑

Am,n,kφm,n,k

then

Am,n,k =

∫∫∫
fφm,n,k dV∫∫∫
φ2m,n,k dV

where dV = dxdydz = rdrdθdz = r2 sinφdrdφdθ.
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Part II. Solving PDEs in unbounded regions

Step 1. Apply Fourier transform (usually on x), to get an ODE.
Step 2. Solve this ODE.
Step 3. Take inverse Fourier transform of the solution in step 2, and express the result
as convolution of initial condition and Fourier inverse of a function.
Step 4. Compute the inverse Fourier transform of a certain function and write the
solution as an integration.

Note: If the domain of x is semi-infinite: 0 ≤ x <∞, we first take odd/even extensions of ICs
according to BC(if BC is of first type, e.g., u(0, t) = 0, then take odd extension; if BC is of
second type, e.g., ∂u

∂x(0, t) = 0, then take even extension), then use the 4 steps above to solve
the PDE on −∞ < x <∞ with extended ICs.

Definitions:

Denote F as Fourier transform of x variables, i.e. F takes a function f(x) about x to a
function F (ω) about ω, by

F (ω) = F[f ](ω) =
1

2π

∫ ∞
−∞

f(x)eiωxdx

Its inverse is denoted as F−1, which is defined by

f(x) = F−1[F ](x) =

∫ ∞
−∞

F (ω)e−iωxdω

Properties:

(1). Fourier transform and its inverse are linear:

F[c1f + c2g] = c1F[f ] + c2F[g], F−1[c1F + c2G] = c1F
−1[F ] + c2F

−1[G]

(2). Fourier transform and inverse Fourier transform are inverse to each other:

F−1[F[f ]] = f

(3). Fourier transform takes differential of x to multiplication by −iω:

F
[∂f
∂x

]
= −iωF[f ], F

[∂2f
∂x2

]
= −ω2F[f ]

(4). Fourier transform commutes with partial derivatives other than x:

F
[∂f
∂t

]
=

∂

∂t
F[f ], F

[∂f
∂y

]
=

∂

∂y
F[f ]

(5). Inverse Fourier transform takes shift by α to multiplication by eiαx:

F−1[F (ω + α)] = eiαxF−1[F ]
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(6). Inverse Fourier transform takes multiplication to convolution:

F−1[FG] =
1

2π
F−1[F ] ∗ F−1[G]

where convolution (∗) takes two functions f , g of x to a new function f ∗ g of x, it is defined as

(f ∗ g)(x) =

∫ ∞
−∞

f(x̄)g(x− x̄)dx̄

Useful indentities:

(1)

F−1[e−βω
2
] =

√
π

β
e
−x

2

4β

(2)
F−1[eiαω] = 2πδα(x)

where δα(x) is the delta function, it is charactered by the property that when integrating with
a function, it evaluates the function at α, i.e.

∫∞
−∞ δα(x)f(x)dx = f(α)

(3)
F−1[cosαω] = π

(
δα(x) + δ−α(x)

)
(4)

F−1
[sinαω

ω

]
=

{
π |x| < α

0 |x| > α

(5)

F−1[e−α|ω|] =
2α

x2 + α2

(6)
f ∗ δα = f(x− α)

(7)

f ∗ Rectα =

∫ x+α

x−α
f(x̄)dx̄

where Rectα(x) =

{
1 |x| < α

0 |x| > α
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Part III. Finite difference numerical methods

For heat or wave equation on 0 ≤ x ≤ L, we adopt the following notations:

N : a sufficient large integer

∆x =
L

N
xj = j∆x, j = 0, 1, · · · , N
∆t : a chosen small increment of time

tm = m∆t, m = 0, 1, · · ·

u
(m)
j = u(xj , tm)

For a given PDE, we get a difference equation by:

replacing
∂2u

∂t2
by

u
(m+1)
j − 2u

(m)
j + u

(m−1)
j

(∆t)2

replacing
∂u

∂t
by

u
(m+1)
j − u(m)

j

∆t

replacing
∂2u

∂x2
by

u
(m)
j+1 − 2u

(m)
j + u

(m)
j−1

(∆x)2

replacing
∂u

∂x
by

u
(m)
j+1 − u

(m)
j−1

2∆x

replacing u by u
(m)
j

replacing other functions by their values at (xj , tm).

So we can compute u
(m+1)
j (1 ≤ j ≤ N − 1), from previous layers, then we compute u

(m+1)
0 and

u
(m+1)
N from boundary conditions by:

replacing u(0, t) by u
(m+1)
0

replacing
∂u

∂x
(0.t) by

u
(m+1)
1 − u(m+1)

0

∆x

replacing u(L, t) by u
(m+1)
N

replacing
∂u

∂x
(L.t) by

u
(m+1)
N − u(m+1)

N−1
∆x
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