whose least positive residues (mod p) are greater than p/2 has even parity.
(Write —=2=p—2 (mod p), -4 =p—4 (mod p), etc., and count in the
two cases p of the form 8n + 1 or of the form 8n + 3. O

Remark 2.1 By the same token (Gauss’s lemma), —2 is a quadratic non-
residue of primes p = 5,7 (mod 8).

Lemma 2.2 Letz, j, and k be the unit quaternions, and let ( = i+k . Then
the set R = {a + b( | a,b integers} is a commutative subring of the algebra
of real quaternions. Moreover, R is isomorphic to the ring Z[\/=2] and is a
euclidean domain.

Proof. It is routine to check that R is a commutative subring of the quater-
nions containing the integers. Note that (> = —2, so that the map given by
a+ b( — a+ by/~2 is an isomorphism of the rings R and Z[+/=2]. Now the
ring Z[\/=2] is known to be a Euclidean domain [1, Theorem 246], but we
show it directly in an outline.

Note that R is an involutive subring of the quaternions, where (a+ ()" =
a—>b(, and that it has norm d defined by d(a+b() = a?+2b? = (a+b{)(a+b()*,
a positive integer unless a = b = 0. Note that d(uv) = d(u)d(v) for all u and
vin R. To check that one has division with remainder one only has to copy
the proof of the same for the Gaussian integers [2, theorem 3.8.1]. O

Lemma 2.3 For any integers a, b, z, and y, we have the identity
(a® 4 2b*)(2® 4 2y%) = (az — 2by)* + 2(bz + ay)?

Proof. Note that d((a + b()(z + y() = d((az — 2by) + (bz + ay)()
=d(a+b()d(z + y(). O

Theorem 2.1 Given prime p = 1,3 (mod 8), there ezist integers = and y
such that

p=22" 4y
Proof. By lemma 1 there is a solution z of 222 = —1 (mod p). Then p
divides 2z? + 1 both in Z and in the larger ring R. Since p divides 222 +1 =
(14 z¢)(1 — z(), but p clearly divides neither 1 + z{ nor 1 — z(, it follows
that p is not a prime element of the euclidean ring R. Whence p factors into
nonunits

p = (a+b{)(c+ d{) (1)
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