3 Appendix: Gauss’s Lemma on Quadratic
Reciprocity

We rewrite the proof of Gauss’s lemma as given in [Hardy-Wright] along the
lines of a course in abstract algebra [Herstein].

For each odd prime p we denote the field of residue classes (mod p) by
Zyp, and its group of units (i.e., all its nonzero elements) by U,. The natural
homomorphism Z — Z, takes values denoted by n — [n], where [r] is the
residue class of n. The existence of a solution x to the congruence z? = m
(mod p) means that [m] is a quadratic residue of p; if there is no solution,
[m] is called a quadratic nonresidue.

Definition 3.1 If m is not a multiple of a prime p, define the Legendre
symbol (%) to equal +1 if there ezists = such that 2> = m (mod p), and
equal to —1 if there is no solution x.

Proposition 3.1 The quadratic residues of U, form a subgroup Q, of indez
2 and order -;—(p —1). For any integer m not a multiple of p, we have

m¥t-D) = (’—;}) (mod p)

Proof. The group of units U, has p — 1 elements and is cyclic [Herstein,
Theorem 7.1.6]. If y is a generator, then U, = {y,y%...,y7"! = [1]}, a
group of order p — 1. It is clear that the subgroup generated by y2 is a set
of quadratic residues in U,; it is all of them, since we see that there are only
2(p — 1) quadratic residues by squaring each element in U, and noting that
2= (p—=z)* (mod p). Hence, the quadratic residues of p form a subgroup
of index 2 and order (p — 1),

Q= {y’,y"....y" = 1]}

Given an integer m not a multiple of p, then [m] is either in @, or it
is not. If [m] € @,, then [m] is a quadratic residue of p, and has order
dividing the order of Q, It follows that [m]z(P~) = [1]. If [m] ¢ Qp, it is a
quadratic nonresidue, and equal to an odd power y?**! of the generator y.
But yz(P~1) = [—1] since it is a Toot of z2 — [1] other than [1], and over a field
a polynomial only has as many roots as its degree! Hence,

{m]%(p—l) - (y2n+1)§(p—1) — yn(p—l)yé(p-—l) =[-1 ©



