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or
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to be dwelt upon at length
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LOGIC, n. The art of thinking and reasoning in strict

accordance with the limitations and incapacities of the

human misunderstanding.

The basic of logic is the syllogism, consisting of a major

and a minor premise and a conclusion – thus:

Major Premise: “60 men can do a piece of work 60 times

as quickly as 1 man.”

Minor Premise: “1 man can dig a posthole in 60 seconds;”

therefore –

Conclusion: “60 men can dig a posthole in 1 second.”

Ambrose Bierce, “The Devil’s Dictionary”
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1 Classics

A number of processes, which need resources, may interact

with each other in such a way that at any moment only

one of them is engaged in a “critical section”.

[Dijkstra 1968]: The Dining Philosophers.

Five philosophers who do nothing but eat and think

are seated at a round table with a fish in the center of the

table. Between each pair of the philosophers is a single

fork. A philosopher needs to have the two adjacent forks

to eat fish.

How should the philosophers share the forks so that all

are allowed to eat as much as they need and that none

will starve ?

[Chandy and Misra 1984]: The Drinking Philosophers.

The initial graph is arbitrary. (Big Bang).

In order to mix a drink, a philosopher needs some bot-

tles (not necessarily all).

In addition to that, here:

(a) The “communication topology” may be changed dur-

ing the course of actions and events.

(b) Quantitative time constraints are imposed on trajec-

tories.

(c) Furthemore, the numerical bounds may be modified

by the intermediate actions.
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2 A Fish Party

Dr. Fisher has invited his philosophical friends to a fish

party BYOF (bring-your-own-fork).

The philosophers are to be seated at a round table, with

each pair of the philosophers sharing one fork.

A philosopher needs to have the two adjacent forks to

eat fish.

It takes at least E min. to finish a piece of the fish after

he starts eating.

Each of the newcomers takes a seat by wedging himself

between two adjacent philosophers already seated there,

and putting his own fork on the appropriate place on the

table.
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How should the philosophers share the forks so that all

are allowed to eat as much as they need ?
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3 Semantics: Trajectories and Scenarios

A path (trajectory, realization) F , a mapping

F : Time 7→ STATE,

shows a possible course of events in the real-time system.

Due to conservation of energy, only finitely many “quan-

tum leaps” may happen within a bounded time interval.

Therefore, F is to be piecewise continuous.

Furthermore, F is to be a piecewise constant function,

a.k.a. a step function, whenever STATE is finite.

A scenario S associated with F is a chain of events

e0, e1, e2, e3, . . . , en, . . .

such that en describes the quantum leap of F at its n-th

discontinuity point tn, (t0 is the initial point).

state “p3 takes a seat” F(t)

“p3 comes in”
6

- time
t0 t1 t2

A trajectory F is legal iff F satisfies all quantitative time

constraints for some scenario S associated with F .

NOTE: “F ≡S G” respects translation: time 7→ time + α,

which is responsible for conservation of energy.
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4 Real-Time Systems: Adequacy is the Challenge

The pure existence:

The existence of a trajectory leading to swwwwwwwwwwwwwwwww�

~wwwwwwwwwwwwwwwww
The existence of a derivation for: Γ ` A(s)

A logical ideal: The full adequacy:

Trajectories F such that: F(t) = s.wwwwwwwwwwwwwwwww�

~wwwwwwwwwwwwwwwww
Derivations for: C(t0, s0) `T C(t, s).



5

5 Real-Time Systems: Obstructions to Logic

(a) Real time:

A global continuous measurable quantity time is as-

sumed in which events occur in irreversible succession

from the past through the present to the future:

from −∞ to +∞.

=⇒ A super-complicated set of trajectories.

(b) Potentially unbounded number of actors.

(c) Dynamically configured topology of actors.

=⇒ Beyond the finite automaton paradigm.

(d) Events with global quantitatively delayed effects.

(e) Global quantitative time constraints.

=⇒ Beyond the Markov processes paradigm.

(f) Instant local events.

=⇒ Näıve Horn axioms in the user terms.
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6 The Fish Party in Formal Terms

We introduce the following many-sorted predicates:

(i) Time(t) := “time is t (on the global clock)”.

(ii) E(p, f) := “p is allocated to f”.

(iii) P(p, s) := “Philosopher p is in state s”,

the domain of s is: {new, eat, idle},
(iv) F(f, d) := “Fork f is in state d”.

the domain of d is: {ready, busy},

An event is a quantum leap at t: Pre(t, s) ` Post(t, s′).

The intended meaning of logical connectives is as follows:

(i) A⊗B := “A and B co-exist”.

A1 ` B1 A2 ` B2

A1 ⊗A2 ` B1 ⊗B2

(ii) ∃xA(x) := “there appears x such that A(x)”.

A(t) ` ∃xA(x)

(iii) A⇒ B represents a function from A into B.

A, (A⇒ B) ` B

(iv) A ` B := “A can be transformed into B”.

A ` B B ` C
A ` C
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7 Configurations
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The initial configuration C0:
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is formalized as:

[Time(t0)⊗ ⊗
i=1,2

P(pi, idle)⊗ ⊗
i,j=1,2

E(pi, fj)⊗
⊗
j=1,2

F(fj, ready)].
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8 A New Guest Appears: Act 1

The event:

“A new guest comes into the existence

(with his own fork)”,

is axiomatized as:

Axiom NEW:

Time(t) ` ∃p, f [Time(t)⊗ P(p, new)⊗ E(p, f)⊗ F(f, ready)].
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9 A Newcomer Takes a Seat: Act 2

The event:

“A newcomer p (with his own fork f) takes a seat

by wedging himself between a philosopher p1 and

a fork f1 allocated to p1 beforehand,

and putting fork f down on the table,”

is axiomatized as:

Axiom SEAT:

[Time(t)⊗ P(p, new) ⊗ E(p, f)⊗ P(p1, idle)⊗ E(p1, f1) ]

`
[Time(t)⊗ P(p, idle) ⊗ E(p, f)⊗ P(p1, idle)⊗ E(p, f1)⊗ E(p1, f) ].
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10 A Philosopher Starts (Stops) Eating

The event

“Philosopher p needs to have two adjacent forks f1

and f2 to start eating,”

is axiomatized as:

Axiom EAT:

[Time(t)⊗ P(p, idle) ⊗ E(p, f1)⊗ E(p, f2)⊗ F(f1, ready)⊗ F(f2, ready) ]

`
[Time(t)⊗ P(p, eat) ⊗ E(p, f1)⊗ E(p, f2)⊗ F(f1, busy)⊗ F(f2, busy) ]

The event

“Philosopher p stops eating, which would release

its two adjacent forks f1 and f2,”

is axiomatized as:

Axiom IDLE:

[Time(t)⊗ P(p, eat) ⊗ E(p, f1)⊗E(p, f2)⊗ F(f1, busy)⊗ F(f2, busy) ]

`
[Time(t)⊗ P(p, idle) ⊗ E(p, f1)⊗ E(p, f2)⊗ F(f1, ready)⊗ F(f2, ready) ]
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11 Time is Ticking

The time advance is specified by:

Axiom TICK:

Time(t) ` Time(t+ε)
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As “axioms of reals” we take all true elementary facts:

` (1 < 2),

` (
√

2+
√

5 <
√

3+2),

` (1 < +∞),

. . .
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12 The Adequacy Problem

(A) Scenarios (Trajectories) =⇒ Derivations !!!
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(B) Derivations =⇒ Scenarios ???

“too many misleading derivations”:

E. g.,
Time(t) ` Time(t+ε)

Time(t) ` (Time(t)⊗ Time(t+ε))

BUT not in LL.

Theorem 12.1 (Kanovich, LICS’92)

The Horn fragment of linear logic is complete w.r.t. the

trajectory semantics.

Scenarios leading from Init(t0) to Goal(t)wwwwwwwwwwwwwwwwww�

~wwwwwwwwwwwwwwwwww
Linear logic derivations for: Γ,W (t0) ` Z(t)
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13 Quantitative Constraints vs Markov Property

A lower-bound constraint, or delay:

“It takes at least E min. to finish a piece of the fish

after philosopher p starts eating.”

stipulates that:

(i) when p started to eat at some moment t1, and stopped

to eat at a moment t2 afterwards (if any), the follow-

ing should hold:

t2 ≥ t1+E,

(ii) whereas, starting to eat at t̂1, our philosopher cannot

stop eating at whatever moment t̂2 such that:

t̂2 < t̂1+E,

(a) The Present determines the possible Future.

Markov processes, the Cauchy problem.

(b) The Future depends on the Past.

Differential equations with delayed arguments.

•p starts eating •e-a-t-i-n-g •p stops eating !!!

t1 now t2
- time

•p starts eating •e-a-t-i-n-g •p cannot stop !!!

t̂1 now t̂2
- time
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14 Obstructions: Proofs are Always Markovian

πPast,Now : Past ` Now πNow,Future : Now ` Future

γ(πPast,Now, πNow,Future) : Past ` Future

Corollary 14.1

Suppose that π2 proves a sequent of the form:

C(t, s) ` C(t2, s2).

Then whatever proof π′ of a sequent of the form:

C(t1, s1) ` C(t, s),

we take, γ(π′, π2) is always a legal proof of the sequent:

C(t1, s1) ` C(t2, s2).
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15 “Time-keepers” to keep the Markov property

“It takes at least E min. to finish a piece of the fish”

L(p, y) := “y is a number recorded by a secretary of p”.

•
“y := t1+E”

•keeping y •
“t2 ≥ y ?”

•p starts eating •e-a-t-i-n-g •p may stop ?

t1 now t2
- time

Axiom IDLE (adjusted with L(p, y) ):

[Time(t)⊗ P(p, eat) ⊗ E(p, f1)⊗E(p, f2)⊗ F(f1, busy)⊗ F(f2, busy)

⊗ L(p, y)⊗ (t ≥ y) ]

`
[Time(t)⊗ P(p, idle) ⊗ E(p, f1)⊗ E(p, f2)⊗ F(f1, ready)⊗ F(f2, ready)

⊗ L(p,−∞) ]

Axiom EAT (adjusted with L(p, y) ):

[Time(t)⊗ P(p, idle) ⊗ E(p, f1)⊗ E(p, f2)⊗ F(f1, ready)⊗ F(f2, ready)

⊗ L(p, y) ]

`
[Time(t)⊗ P(p, eat) ⊗ E(p, f1)⊗E(p, f2)⊗ F(f1, busy)⊗ F(f2, busy)

⊗ L(p, t+E) ]
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16 Four Final Horn Axioms: A(x, a) ` ∃y B(x, y, b)

Axiom NEW:

Time(t) ` ∃p, f [Time(t)⊗ P(p, new)⊗ E(p, f)⊗ F(f, ready)].

Axiom SEAT:

[Time(t)⊗ P(p, new) ⊗ E(p, f)⊗ P(p1, idle)⊗ E(p1, f1) ]

`
[Time(t)⊗ P(p, idle) ⊗ E(p, f)⊗ P(p1, idle)⊗ E(p, f1)⊗ E(p1, f) ].

Axiom EAT:

[Time(t)⊗ P(p, idle) ⊗ E(p, f1)⊗ E(p, f2)⊗ F(f1, ready)⊗ F(f2, ready)

⊗L(p, y) ]

`
[Time(t)⊗ P(p, eat) ⊗ E(p, f1)⊗E(p, f2)⊗ F(f1, busy)⊗ F(f2, busy)

⊗L(p, t+E) ]

Axiom IDLE:

[Time(t)⊗ P(p, eat) ⊗ E(p, f1)⊗E(p, f2)⊗ F(f1, busy)⊗ F(f2, busy)

⊗ L(p, y)⊗ (t ≥ y) ]

`
[Time(t)⊗ P(p, idle) ⊗ E(p, f1)⊗ E(p, f2)⊗ F(f1, ready)⊗ F(f2, ready)

⊗ L(p,−∞) ]

Axiom TICK: (should respect all upper bounds)

Time(t) ` Time(t+ε)
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17 Trajectories as Projections: Hidden Z

“Markovian” trajectories F̂ : TIME → STATE × Z.y
projection

“Non-Markovian” trajectories F : TIME → STATE.
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18 The Adequacy Problem

z
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̂Trajectories F̂ such that: F̂(t) = (s, z).wwww�
~wwww

LL derivations for: C(t0, s0, z0) `T C(t, s, z).

Trajectories F such that: F(t) = s.wwww�
~wwww

LL derivations for: C(t0, s0, z0) `T ∃z C(t, s, z).

Trajectories F such that, for some t: F(t) = s.wwww�
~wwww

LL derivations for: C(t0, s0, z0) `T ∃t∃z C(t, s, z).
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19 Coarse Hour-Glass + Precise One-Hand Watch

The bisimulation equivalence between “Markovian” tra-

jectories F̂ : TIME→ STATE× Z, is based on invariance of

the real-time systems under the translation

time 7→ time + α.

Invariants: Discrete part + Continuous part:

(a) The coarse relative time intervals between “now” and

each of the registered numbers.

E. g., “1 < z1−t ≤ 2”, “2 ≤ z2−t < 3”, “z3−t < 0”.

t
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(b) The absolute time distribution of all the registered

numbers together but on the “circular” one-hand

watch:
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20 The Individual Invariants on the Hour-Glass

t

z1

'

t̂

ẑ1

whenever: z1−t ≈ ẑ1− t̂. E. g., 1 < z1−t, ẑ1− t̂ ≤ 2.

Lemma 20.1 (“An Action”)

Let C(t, s, z1, z2, z3, ...) ' C(t̂, s, ẑ1, ẑ2, ẑ3, ...).

Suppose that an action β is able to transform

C(t, s, z1, z2, z3, ...) into C(t, s′, z′1, z
′
2, z
′
3, ...).

Then the action β is also able to transform

C(t̂, s, ẑ1, ẑ2, ẑ3, ...) into C(t̂, s′, ẑ′1, ẑ
′
2, ẑ
′
3, ...),

and, besides,

C(t, s′, z′1, z
′
2, z
′
3, ...) ' C(t̂, s′, ẑ′1, ẑ

′
2, ẑ
′
3, ...).

Lemma 20.2 (“A Long Tick”)

Let C(t, s, z1, z2, z3, ...) ' C(t̂, s, ẑ1, ẑ2, ẑ3, ...).

Then

C(t+1, s, z1, z2, z3, ...) ' C(t̂+1, s, ẑ1, ẑ2, ẑ3, ...).

Proof.

(a) If z1−t ≈ ẑ1− t̂, then z1−(t+1) ≈ ẑ1−(t̂+1).

(b) �
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21 The All-Together Invariant on the Watch

Lemma 21.1 (“A Short Tick”)

Let C(t, s, z1, z2, z3, ...) ' C(t̂, s, ẑ1, ẑ2, ẑ3, ...).

Then for any ε, one can find an ε̂ such that

C(t+ε, s, z1, z2, z3, ...) ' C(t̂+ε̂, s, ẑ1, ẑ2, ẑ3, ...).

Proof. Each of these absolute z1, z2, z3, ... is immovable.

A key point of the “continuous part”:
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22 Is Real Time Really Continuous ?

Lemma 22.1 (“A Short Tick”)

Let C(t, s, z1, z2, z3, ...) ' C(t̂, s, ẑ1, ẑ2, ẑ3, ...).

Then for any ε, one can find an ε̂ such that

C(t+ε, s, z1, z2, z3, ...) ' C(t̂+ε̂, s, ẑ1, ẑ2, ẑ3, ...),

and, besides, ε̂ can be chosen as a simple rational com-

bination of ẑ1, ẑ2, ẑ3, . . . .

Theorem 22.1 Let all bounds be commensurable. that is,

exactly divisible by the same unit an integral number of

times.

Then any legal trajectory F : TIME→ STATE can be ad-

justed to a legal trajectory F̃ : TIME→ STATE so that

(a) F̃ matches just the same scenarios associated

with F, and

(b) each of the discontinuity points of F̃ is rational.

Corollary 22.1 If all bounds are commensurable, then:

Trajectory semantics with ‘Continuous Time’wwwwwwwwwwwwwwwwww�

~wwwwwwwwwwwwwwwwww
Trajectory semantics with ‘Rational Time’
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23 Concluding Remarks

(a) The comprehensive logical system that automatically

exploits peculiarities of the systems in question.

(b) Spec:

“Näıve”, Flexible, Easy-to-specify, Easy-to-modify.

Easy-to-catch-a-mistake.

(b1) Instant Events ⇐⇒
Horn Axioms: Pre(t, s) ` Post(t, s′).

(b2) Time advance ⇐⇒
Horn Axioms: Time(t) ` Time(t+ε).

(b3) Time Constraints ⇐⇒
Horn Axioms: Pre(t, s, z) ` Post(t, s′, z′).

(c) Comprehensive = “Derivations ⇐⇒ Scenarios”

(d) Exec:

Complexity in accordance with the original systems.

(e) Higher-Order Problems:

(e1) reachability, safety, liveness, deadlock, schedula-

bility, membership with incomplete information,

(e2) protocol analysis, simulation, monitoring, diag-

nosis,

(e3) stability of topology, connectedness, acyclicity,

etc.


