WORKSHEET 13

1. Use the comparison theorem to deduce that the integrals are convergent or divergent.

- $\int_{0}^{\infty} \sin ^{2}(t) e^{-t} d t$
- $\int_{0}^{\infty} e^{t+\sin ^{2} t} d t$
- $\int_{0}^{\infty} \frac{1}{x+\sqrt{x}+1} d x$
- $\int_{0}^{\infty} \frac{x^{2}}{x^{2}+e^{x}+2} d x$

2. Check whether the following functions are probability density functions.

- $f(x)=-x^{2}$
- $f(x)= \begin{cases}1 / 2 & \text { if } 0 \leq x \leq 2 \\ 0 & \text { otherwise }\end{cases}$
- $f(x)= \begin{cases}1 / 2 & \text { if } 0 \leq x \leq 4 \\ 0 & \text { otherwise }\end{cases}$
- $f(x)= \begin{cases}2 x & \text { if }-1 \leq x \leq \sqrt{2} \\ 0 & \text { otherwise }\end{cases}$
- $f(x)= \begin{cases}2 x & \text { if } 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}$

3. Find the value c so that $f(x)=c \frac{1}{1+x^{2}}$ is a probability density function.
4. Exponential distribution

- Show that $f(x)=\left\{\begin{array}{ll}3 e^{-3 x} & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{array}\right.$ is a probability density function.
- What is its mean?
- What is its median?
- What is its standard deviation?

5. Uniform distribution

- Show that $f(x)=\left\{\begin{array}{ll}\frac{1}{5} & \text { if }-2 \leq x \leq 3 \\ 0 & \text { otherwise }\end{array}\right.$ is a probability density function.
- What is its mean?
- What is its median?
- What is its standard deviation?

6. Normal distribution: Use wolfram alpha or other computer program to verify the following statements. (open up http://www.wolframalpha.com and for instance type in the expression int_\{-infinity $\}^{\wedge}\{$ infinity $\left.\} e^{\wedge}\left\{-(x-2)^{\wedge} 2 / 18\right\} d x\right)$

- Show that $f(x)=\frac{1}{3 \sqrt{2 \pi}} e^{\frac{-(x-2)^{2}}{18}}$ is a probability density function.
- Its mean is 2 .
- Its standard deviation is 3 .

7. Marci is waiting for a bus in Hungary. The average waiting time is 6 minutes. Assume that the random variable corresponding to the waiting time is exponential (meaning that the probability density function is

$$
f(x)= \begin{cases}\lambda e^{-\lambda x} & \text { if } x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

for some number λ). What is the probability that Marci will wait at least 10 minutes for the bus? Hint: first calculate λ.
8. The biggest discovered atom is the Ununoctium. It has no stable isotopes, the first and only isotope synthesized is ${ }^{294}$-Ununoctium which has average life span 890 microsecond. Assume that the random variable corresponding to the life of ${ }^{294}$-Ununoctium is exponential. In other words, the mean of the random variable is 890 microsecond. What is the probability that ${ }^{294}$-Ununoctium will be stable for at least 1 second?

