WORKSHEET 16

- 1. What is n! if n = 2, n = 3, n = 4, n = 5? If n = 0?
- 2. What is $\frac{(n+2)!}{n!}$?
- 3. Show that the series $\sum_{n=2}^{\infty} (-1)^n \frac{1}{\sqrt{n+1}}$ is not absolutely convergent. We will show later that it is convergent.
- 4. Show that the series $\sum_{n=0}^{\infty} (-1)^n \frac{1}{2n+1}$ is not absolutely convergent. We will show later that it is convergent and the limit is $\pi/4$.
- 5. Use the ratio test to show that the series $\sum_{n=0}^{\infty} \frac{(-2)^n}{n!}$ is convergent. We will show later that the limit is e^2 .
- 6. Use the root test to show that the series $\sum_{n=1}^{\infty} \frac{1}{n2^n}$ is convergent. We will show later that the limit is $\ln 2$.
- 7. Show that

$$\frac{\frac{(n+1)^{n+1}}{(n+1)!}}{\frac{n^n}{n!}} = \frac{(n+1)^{n+1}}{(n+1)n^n} = \frac{(n+1)^n}{n^n} = (1+1/n)^n$$

What is its limit? What does it say about $\sum_{n=1}^{\infty} \frac{n^n}{n!}$ or about $\sum_{n=1}^{\infty} \frac{n!}{n^n}$?

- 8. Use the root or ratio test to decide whether the following series are absolutely convergent or not.
 - $\sum_{n=2}^{\infty} \frac{(\ln n)^n}{n^2}$ $\sum_{n=4}^{\infty} \frac{(n-2)!}{(-n)^3}$ $\sum_{k=7}^{\infty} \frac{(3k)!}{k!(2k)!}$ $\sum_{m=4}^{\infty} (m \ln(1+1/m))^{2m}$ $\sum_{\Im=3}^{\infty} (-1)^{\Im} \tan^{-1} \left(\frac{1}{\heartsuit}\right)^{\heartsuit}$ $\sum_{\clubsuit=3}^{\infty} (-1)^{\clubsuit} \frac{(\pounds^2+1)(3\bigstar+3)}{4\bigstar+\bigstar}$ $\sum_{\clubsuit=4}^{\infty} \frac{\pounds!}{\ln(\bigstar)^{\bigstar/2}}$ $\sum_{\Im=4}^{\infty} \frac{(\diamondsuit+1)!}{\Diamond \ln \diamondsuit}$ $\sum_{\alpha=10}^{\infty} \frac{\alpha!}{(2\alpha+1)!} 2^{\alpha}$

Hard one: Suppose that a_n are positive numbers with $\lim_{n\to\infty} \sqrt[n]{a_n} = 1/2$ for even values of n and $\lim_{n\to\infty} \sqrt[n]{a_n} = 1/3$ for odd values of n.

- Does $\lim_{n\to\infty} \sqrt[n]{a_n}$ exist?
- Can you determine whether the series $\sum a_n$ converges?

Hard one: In this problem we show that $\lim_{n\to\infty} \sqrt[n]{\frac{n!}{n^n}} = \frac{1}{e}$. Consider the graph of $\ln x$ between x = 1 and x = N.

- Show that $\ln(n!) = \sum_{i=1}^{n} \ln i$.
- Show that $\int_1^N \ln x dx \le \sum_{n=1}^N \ln n \le \int_1^{N+1} \ln x dx$.
- Show that

$$N \ln N - N \le \ln(N!) \le (N+1) \ln(N+1) - N - 1.$$

• Show that using the sandwich theorem that

$$\lim_{N \to \infty} \frac{\ln(N!) - N \ln N + N}{N} = 0.$$

• Show that $\lim_{n\to\infty} \sqrt[n]{\frac{n!}{n^n}} = \frac{1}{e}$.