WORKSHEET 16

1. What is n ! if $n=2, n=3, n=4, n=5$? If $n=0$?
2. What is $\frac{(n+2)!}{n!}$?
3. Show that the series $\sum_{n=2}^{\infty}(-1)^{n} \frac{1}{\sqrt{n+1}}$ is not absolutely convergent. We will show later that it is convergent.
4. Show that the series $\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{2 n+1}$ is not absolutely convergent. We will show later that it is convergent and the limit is $\pi / 4$.
5. Use the ratio test to show that the series $\sum_{n=0}^{\infty} \frac{(-2)^{n}}{n!}$ is convergent. We will show later that the limit is e^{2}.
6. Use the root test to show that the series $\sum_{n=1}^{\infty} \frac{1}{n 2^{n}}$ is convergent. We will show later that the limit is $\ln 2$.
7. Show that

$$
\frac{\frac{(n+1)^{n+1}}{(n+1)!}}{\frac{n^{n}}{n!}}=\frac{(n+1)^{n+1}}{(n+1) n^{n}}=\frac{(n+1)^{n}}{n^{n}}=(1+1 / n)^{n}
$$

What is its limit? What does it say about $\sum_{n=1}^{\infty} \frac{n^{n}}{n!}$ or about $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$?
8. Use the root or ratio test to decide whether the following series are absolutely convergent or not.

- $\sum_{n=2}^{\infty} \frac{(\ln n)^{n}}{n^{2}}$
- $\sum_{n=4}^{\infty} \frac{(n-2)!}{(-n)^{3}}$
- $\sum_{k=7}^{\infty} \frac{(3 k)!}{k!(2 k)!}$
- $\sum_{m=4}^{\infty}(m \ln (1+1 / m))^{2 m}$
- $\sum_{\varrho=3}^{\infty}(-1)^{\varrho} \tan ^{-1}\left(\frac{1}{\varrho}\right)^{\varrho}$
- $\sum_{\boldsymbol{\phi}=3}^{\infty}(-1)^{\boldsymbol{\omega}} \frac{\left(\boldsymbol{\omega}^{2}+1\right)\left(3^{\boldsymbol{\omega}}+3\right)}{4^{\boldsymbol{\alpha}}+\boldsymbol{\infty}}$
- $\sum_{\boldsymbol{\omega}=4}^{\infty} \frac{\boldsymbol{\omega}!}{\ln (\boldsymbol{\omega})^{\boldsymbol{n} / 2}}$
- $\sum_{\diamond=3}^{\infty} \frac{(\diamond+1)!}{\diamond \ln \diamond}$
- $\sum_{\alpha=10}^{\infty} \frac{\alpha!}{(2 \alpha+1)!} 2^{\alpha}$

Hard one: Suppose that a_{n} are positive numbers with $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=1 / 2$ for even values of n and $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=1 / 3$ for odd values of n.

- Does $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}$ exist?
- Can you determine whether the series $\sum a_{n}$ converges?

Hard one: In this problem we show that $\lim _{n \rightarrow \infty} \sqrt[n]{\frac{n!}{n^{n}}}=\frac{1}{e}$. Consider the graph of $\ln x$ between $x=1$ and $x=N$.

- Show that $\ln (n!)=\sum_{i=1}^{n} \ln i$.
- Show that $\int_{1}^{N} \ln x d x \leq \sum_{n=1}^{N} \ln n \leq \int_{1}^{N+1} \ln x d x$.
- Show that

$$
N \ln N-N \leq \ln (N!) \leq(N+1) \ln (N+1)-N-1 .
$$

- Show that using the sandwich theorem that

$$
\lim _{N \rightarrow \infty} \frac{\ln (N!)-N \ln N+N}{N}=0
$$

- Show that $\lim _{n \rightarrow \infty} \sqrt[n]{\frac{n!}{n^{n}}}=\frac{1}{e}$.

