Unit 1

Logic and Proofs




}Ehapter 1

Introduction

1.1 Knowledge and Proof

The purpose of many professions and subjects is to gain knowledge about some aspect
of reality. Mathematics and science would seem to fit this description. (You might try
to think of subjects you have studied that are not in this category. For example, do you
think that the main goal of learning to paint or to play tennis is to gain knowledge?) At
sotne point, if you want to become proficient in such a subject, you have to understand
how knowledge can be acquired in it. In other words, you have to understand what you
mean when you say you “know” something, in a technical subject like mathematics or
even in ordinary life.

What do you mean when you say you “know” something? Do you just mean that
you believe it or think that it’s true? Noj; clearly, to know something is stronger than just
to believe or have an opinion. Somehow, there’s more certainty involved when you say
you know something, and usually you can also provide some kind of reasons and/or
justification for how you know something. How do you acquire enough grounds and/or
certainty to say you know something?

Here is a random sample of facts I would say I know:

[ like chocolate chip cookies.

Paper burns more easily than steel.

The world’s highest mountain is in Nepal.

Mars has two moons.

The Bastille was overrun on July 14, 1739.
if you examine this list, you'll see that there seem to be two obvious sources of this
knowledge. One source is firsthand experience; consider the first two statements. The
ofher source is things read in books or heard from other people, such as the last three
statements. But how reliable are these sources of knowledge? No one has ever been to
Mars. From what ["ve read, cveryone who has ever observed Mars carefully through a

good telescope has concluded that it has two moons, and so I confidently believe it. But
do I really know it? Would I stake my life on it? Would I be completely devastated and
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disillusioned if someone announced that a third moon had been discovered or that the
storming of the Bastille actually occurred early in the morning of July 157 Regarding
the staterrient about burning, all my experience (and perhaps even some understanding
of physics and chemistry) indicates that this statement is true. But do I really know it in
any general or universal sense? Do I know that paper burns more easily than steel in
subzero temperatures? At altitudes over two miles? Or even on February 297

A branch of philosophy called epistemology studies questions like these. It can be
defined as the study of knowledge and how it is acquired. In a sense, this book is about
the epistemology of mathematics, but it concentrates on mathematical methods rather
than on philosophical issues. The purpose of this chapter is simply to start you thinking
about what you mean when you say that you know something, especially in
mathematics.

Mathematics is a subject that is supposed to be very exact and certain, Over
thousands of years, mathematicians have leamed to be extremely careful about what they
accept as an established fact. There are several reasons for this. The most obvious is that
much of mathematics is very abstract and even the most talented mathematician’s intuition
can be led astray. As a result, mathematics has evolved into a discipline where nothing is
considered to be known unless it has been “proved.” In other words, any serious work in
mathematics must involve reading and writing mathematical proofs, since they are the only
accepted way of definitively establishing new knowledge in the field.

Before we begin our study of proofs in mathematics, let’s take a look at what the
word *“proof” means in some other subjects besides mathematics. There are many other
subjects in which people talk about proving things. These include all the natural sciences
such as physics, chemistry, biology, and astronomy; diseiplines based on the application
of science such as medicine and engineering; social sciences like anthropelogy and
sociology; and various other fields such as philosophy and law.

In every subject we can expect to find slightly different criteria for what constitutes
a proof. However, it turns out that all of the sciences have a pretty similar standard of
what a proof is. So we begin by discussing briefly what proofs are supposed to be in
science, since they are quite different from proofs in mathematics. Then we also take a

look at what a proof is in law, since it provides a sharp contrast to both mathematical
proof and scientific proof,

Proofs in Science

We all have some idea of what scientists do to prove things. When a scientist wants to
prove a certain hypeothesis (an assertion or theory whose truth has not yet been proved),
she will usually design some sort of experiment to test the hypothesis. The sxperiment
might consist primarily of observing certain phenomena as they occur naturally, or it
might involve a very contrived laboratory setting. In either case, the experiment is used
to obtain data—factual results observed in the experiment. (In recent years, the word
“data” has been borrowed and popularized by the computer industry, which uses the
word to refer to any numerical or symbolic information. This is somewhat different from
the scientific meaning.) Then comes a process, usually very difficult and sometimes
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hotly disputed, of trying to determine whether the data support the hypothesis under
investigation.

- This description of what a scientist does is.so oversimplified that it leaves many
fmore questions unanswered than it answers. How do scientists arrive at hypotheses to
test in the first place? How do they design an experiment to test a hypothesis? Does it
make sense to conduct an experiment without having a particular hypothesis that you're
trying to prove? How well do the data from an experiment have to fit a hypothesis in
order to prove the hypothesis? Do scientists have to have a logical explanation, as well
as supporting experiments, for why their hypotheses are frue? And how do scientists
handle apparently contradictory experimental results, in which one experiment seems
to prove a hypothesis and another seems just as clearly to disprove it?

These are just a few of the difficult questions we could ask about proofs in science.
But without straining ourselves to such an extent, we can certainly draw some obvicus
conclusions. First of all, there is general agreement among scientists that the most
important test of a hypothesis is whether it fits real-world events. Therefore, the most
common and trusted way to prove something in science is to gather enough supporting
data to convince people that this agreement exists. This method of establishing general
laws by experimentation and observation is known as the scientific methed or the
empirical method. It normally involves inductive reasoning, which usually refers to
the mental process of “jumping” from the specific to the general, that is, using a number
of observations in particular situations to conclude some sort of universal law.

Does pure thought, not connected with observing real-world events, have a role in
science? It definitely does. Can you prove something in science by logic or deduction
or calculations made on paper without experimental evidence? Well, these methods are
definitely important in science, and some of the most important discoveries in science
have been brilliantly predicted on paper long before they could be observed. In fields
like astronomy, nuclear physics, and microbiology, it’s getting so difficult to observe
things in a direct, uncomplicated way that the use of theoretical arguments to prove
hypotheses is becoming_more and more acceptable. An interesting contemporary
example in astronomy concerns the existence of black holes in space. These were
predicted by very convincing reasoning decades ago, but no one has observed one. Most
astronomers are quite sure that black holes exist, but they would probably hesitate to say
that their existence has been proven, no matter how ironclad the arguments seem. With
few exceptions, scientific theories derived mentaily are not considered proved until they
are verified empirically. We will see that this type of attitude is very different from what
goes on in mathematics.

Proofs in Law

Everyone also has some idea of what it means to prove something in law. First of all,
note that a proof in a court of law is a much less objective and permanent thing than a
proof in mathematics or science. A proof in mathematics or science must stand the test
of time: if it does not stand up under continual scrutiny and criticism by experts in the
field, it can be rejected at any time in the future. In contrast, to prove something in a jury
trial in a court of law, all you have to do (barring appeals and certain other
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complications) is convince one particular set of twelve people, just for a little while. The
jurors aren’t experts in any sense. In fact, they aren’t even allowed to know very much
in advance about what’s going on; and you even have some say in who they are.
Furthermore, it doesn’t even matter if they change their minds later on!

Now let’s consider what kinds of methods are allowable in law proofs. Can a
lawyer use the scientific method to convince the Jjury? In a loose sense, the answer to
this is definitely yes. That is, he can certainly present evidence to the jury, and evidence
usually consists of facts and observations of actual events, A lawyer may also conduct
simple experiments, try to convince the jury to make an inductive conclusion, and use
various other methods that are similar to what a scientist does. Of course, lawyers are
rarely as rigorous as scientists in their argumentation. But at least we can say that most
proof methods that are scientifically acceptable would also be allowed in a court of law,

What other methods of proof are available to lawyers? Well, they can certainly use
logic and deductive reasoning to sway the jury. As we will sec, these are the main tools
of the mathematician. Lawyers can also appeal to precedent (previous legal decisions)

or to the law itself, although such appeals are generally made to the judge, not the jury.

This is analogous to the practice in science or mathematics of using a previously
established result to prove something new. :

Are there any methods of persuasion available to a lawyer that are totally different
from scientific and mathematical methods? Again, the answer is yes. A lawyer can use a
variety of psychological and emotional tricks that would be completely improper in
science or mathematics. The only time that a lawyer can use these psychological tools
freely is during opening and closing statements (“Ladies and gentlemen of the jury, look
at my client’s face. How could this sweet old lady have committed these seventeen
grisly...”). However, many psychological ploys can also be used with witnesses, as long
as they are used subtly. These include leading questions, attempts to confuse or badger
witnesses, clever tricks with words, gestures, facial expressions and tones of voice used
to create a mood or impression, and so on. Without going into greater detail, we can see
that the guidelines for proofs in law are very broad and freewheeling, for they include
almost everything that the scientist and the mathematician can use plus a good deal more.

Exercises 1.1

(1) List six statements that you would say that you know, and explain how you
know each one. Pick statements with as much variety as possible,

(2) (a) Briefly discuss the differences (in your own mind) among believing that

something is true, thinking that something is true, and knowing that something is true.

(b) Which combinations of these conditions do you think are possible? For
example, is it possible to know something is true without believing it is?

(3) Briefly discuss under what circumstances you think it’s appropriate to use the
inductive method of drawing a general conclusion from a number of specific instances.
For example, if someone is chewing gum the first three times you meet him, would you
be tempted to say he “always chews gum”?
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(4) Mention a few ways in which a lawyer can try to convince a jury to believe
something that is not true. Give some specific examples, either made up or from actual
cases you have heard about.

1.2 Proofsin Mathematics

‘The preceding discussions of proofs in science and proofs in law were inciuded
primarily to provide a contrast to the main subject of this book. In this section we begin
to look at the very special meaning that the word “proof” has in mathematics.

How do we prove something in mathematics? That is, how do we establish the
cotrectness of a mathematical statement? This question was first answered by various
Greek scholars well over two thousand years ago. Interestingly, their basic idea of what
a mathematical proof should be has been accepted, with relatively minor modifications,
right up until this day. This is in sharp contrast to the situation in science, where even
in the last three hundred years there have been tremendous changes, advances, and
controversy about what constitutes a proof. In part, this is because the range of methods
allowed in mathematical proofs is quite a bit more specific and narrow than in other
fields.

Basically, almost every mathematician who has ever addressed this issue has

- agreed that the main mechanism for proving mathematical statements must be logic and
deductive reasoning. That is, the reasoning that leads from previously accepted
statements to new results in mathematics must be airtight, so that there is no doubt about
the conclusion. Inductive reasoning, which is the mainstay of the sciences but by its very
nature is not totally certain, is simply never allowed in mathematical proofs.

There are examples that dramatically illustrate this point. In number theory (the
branch of mathematics that studies whole numbers) there are some very famous
conjectures. (Like a hypothesis, a conjecture is a statement that has not been proved,
although there is usually evidence for believing it. The word “conjecture™ is generally
preferred by mathematicians.) One of these is Goldbach’s conjecture, which claims
that every even number greater than 2 can be written as the sum of two prime numbers.
In a few minutes, you can easily verify this for numbers up to 100 or so. In fact, it has
been verified by computer up into the #rillions. Yet no finite number of examples can
possibly constitute a mathematical proof of this statement, and in fact it is considered
unproved! Now imagine such a situation in science, where a proposed law turns out to
be true in millions of test cases, without a single failure. It is extremely unlikely that
scientists would consider the law unproved, with such overwhelming evidence for it.

-(By the way, number theory is full of interesting conjectures that have remained
unproved for centuries. We encounter more of these in Section 8.2.)

Thus the scientist’s most valuable proof method is not considered trustworthy in
mathematics. And, as we saw in the previous section, the mathematician’s most valuable
proof method—deduction—is of only limited use in science. For these reasons, most
specialists in the foundations of mathematics do not think that mathematics should be
classified as a science. There are some respected scholars who do call it an exact
science, but then they are careful to distinguish it from the empirical sciences.
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Discovery and Conjecture in Mathematics

Can we say"';hat the scientific method—observation, experimentation, and the formation
of conclusions from data—has no place in mathematics? No, that would be geing too
far. Even if empirical methods may not be used to prove a mathematical statement, they
are used all the time to enable mathematicians to figure out whether a staternent is likely
to be provable in the first place. This process of discovery in mathematics often has a
very different flavor from the process of proof. Higher mathematics can be very
intimidating, and one of the reasons is that many proofs in mathematics seem extremely
sophisticated, abstract, and nonintuitive. Often, this is because most of the real work is
hidden from the reader. That five-line, slick proof might well be the result of months or
even years of trial and error, guesswork, and dead ends, achieved finally through
patience and a little bit of luck. After that it might have been refined many times to get
it down from ten pages of grubby steps to five elegant lines. This point is worth
remembering when your self-confidence begins to fail. Thomas Edison’s famous
remark— “Genius is 1 percent inspiration and 99 percent perspiration”—is more true
of mathematics than most people realize.

Although the main goal of this book is to help you learn to read and write
mathematical proofs, a secondary goal is to acquaint you with how mathematicians
investigate problems and formulate conjectures. Examples and exercises relating to
discovery and conjecture appear thronghout the text. The last seven exercises in this
chapter are of this sort.

The process of discovering mathematical truths is sometimes very different from
the process of proving them. In many cases, the discovery method is completely useless
as a proof method, and vice versa. On the other hand, in many cases these two processes
are intimately related. An investigation into whether a certain statement is true often
leads to an understanding of why it is or isn’t true. That understanding in turn should
normally form the basis for proving that the statement is or isn’t true.

There is another important use of empirical methods in mathematics. It was stated
previously that deduction is the only way to prove new things from old in mathematics.
But this raises a big question: Where do you start? How do you prove the “first thing™?
Classical Greek scholars such as Eudoxus, Euclid, and Archimedes provided the answer
to this question. Since you can’t prove things deductively out of thin air, the study of
every branch of mathematics must begin by accepting some statements without proof.
The idea was to single out a few simple, “obviously true™ statements applicable to any
given area of mathematics and to state clearly that these statements are assumed without
proof. In the great works of Euclid and his contemporaries, some of these assumed
statements were called axioms and others were called postulates. (Axioms were more
universal, whereas postulates pertained more to the particular subject.) Today both types
are usually called axioms, and this approach is called the axiomatic method.

When a new branch of mathematics is developed, it is important to work out the
exact list of axioms that will be used for that subject. Once that is done, there should not
be any controversy about what constitutes a proof in that system: a proof must be a
sequence of irrefutable, logical steps that proceed from axioms and previously proved
statements. ‘
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Euclid was one c%f the most important mathematicians of ancient
Greece, and yet very little is known of his life. Not even the years of
his birth and death or his birthplace are¢ known. As a young man, he
probably studied geometry at Plato’s academy in Athens. Tt is known
that he spent much of his life in Alexandria and reached his creative
prime there around 300 B.C. He is most famous for his Elements, a
monumental work consisting of thirteen books, most of which deal
with geometry.

The Elements are the oldest surviving work in which mathematical
subjects were developed from scratch in a thorough, rigorous, and
axiomatic way. However, the great majority of the results in Euclid’s
Elements were first proved by someone other than Euclid. Fuclid is
remembered less for his original contributions to geometry than for the
impressive organization and rigor of his work. The Elements was
viewed as the model of mathematical rigor for over two thousand
years and is still used as a geometry textbook in some places.
Although it became clear in the last century that many of Fuclid’s
definitions and proofs are flawed by modern standards, this does not
diminish the importance of his achievement.

How are the axioms for any branch of mathematics determined? Here is where
empirical methods come in. Since the axioms are not expected to be proved deductively,
the only way to verify that they are true is by intuition and common sense, experience
and lots of cxamples—just the sorts of things a scientist is supposed to use. For
example, in the study of the ordinary algebra of the real numbers, two of the usual
axioms are the commautative laws:

x+y=y+x and xy=yx, forall numbersxandy

These are good choices for axioms, for they are extremely simple statemnents that
virtually everyone over the age of eight would agree are clearly true, so clearly true that
it would seem pointless even to try to prove them.

The choice of axioms in mathematics is not always such a smooth and
uncontroversial affair. There have been cases in which the developers of a subject split
info two camps over whether a particular statement should be accepted as an axiom, and
in which the disagreement went on for many years. There is usually no single correct
answer to such an issue.

The theory of the axiomatic method has been liberalized somewhat in the last two
centuries. The classical Greek idéa was that the axioms and postulates must be true.
Modern mathematics realizes that the idea of truth is often dependent on one’s
_ interpretation and that any axiom system that at least fits some consistent interpretation,
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or model, should be an allowable area of study. The most famous example of this

liberalization pertains to the parallel postulate of Euclid’s geometry, which implies the

existence &f straight lines in a plane that don’t meet. This seems to be obviously true;

bt early in the nineteenth century, it was noted that this postulate is false on the surface

of a sphere (with straight lines interpreted as great circles, since arcs of great circles are

the shortest paths between points on the surface of a sphere). Any two great circles on

a sphere must cross (see Figure 1.1). So if one wants to study the important subject of
spherical geometry, this postulate must be rejected and replaced with one that is false
in the plane. The subject of non-Euclidean geometry may have seemed like a strange

curiosity when it was first introduced, but it took on added significance in the twentieth

century when Albert Einstein’s general theory of relativity showed that our physical

universe is actually non-Euclidean.

As another example, consider the equations 1 +1=1and 1 + 1= 0. At first glance,
these are just wrong equations, and it would seem ridiculons to call them axioms. But they
are wrong only in our ordinary number systems. They are true (separately, not
simultaneously) in some less familiar systems of algebra, in which addition has a different
meaning. In fact, the first equation is an axiom of boolean algebra, and the second is an
axiom in the theory of fields of characteristic 2. Both of these subjects are related to the
binary arithmetic that is used in designing computer circuits. So it can be very fruitful to
have strange-looking statements be axioms in a specialized branch of mathematics. One
twentieth-century school of thought, called formalism, holds that mathematicians should
not worry at all about whether their axioms are “true” or whether the things they study
have any relationship at all to the “real world.” However, most modem mathematicians
would not go quite so far in their loosening of the ancient Greek viewpoint.

Figure 1.1 On a sphere, “straight lines” (great circles) are never parallel
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Organization of the Text

The main goal of this book i§ to teach you about mathematical proofs—how to read,
understand, and write them. The rest of Unit 1 includes two chapters on logic, which are
intended to provide enough of an understanding of logic to form a foundation for the
material on proofs that follows them. The last chapter of this unit is devoted to
mathematical proofs. It is perhaps the most important chapter of the book.

Since it has been pointed out that logic and deduction are the only mechanisms for
proving new things in mathematics, you might expect this whole book to be about logic.
But if you look at the table of contents, you will sec that only the first unit is directly
devoted to logic and proofs. This is becanse certain other subject matter is so basic and
important in mathematics that you can’t understand any branch of mathematics (let
alone do proofs in it} unless you understand this core material. This material is covered
in the book’s two other units.

Unit 2 is about sets, relations, and functions. These are all relatively new concepts
in the development of mathematics. The idea of a function is only two or three centuries
old, and yet in that time it has become an essential part of just about every branch of
mathematics, a concept almost as basic to modem mathematics as the concept of a
number. The idea of sets (including relations) and their use in mathematics is only about
a hundred years old, and yet this concept has also become indispensable in most parts
of contemporary mathematics. Chapter 7, on functions, includes several other important
topics such as sequences, cardinality, and counting principles.

Unit 3 is about number systems. The use of numbers and counting is almost
certainly the oldest form of mathematics and the one that we all learn first as children.
So it should come as no surprise to you that number systems like the integers and the
real numbers play an important role in every branch of mathematics, from geometry and
calculus to the most advanced and abstract subjects. This umit discusses the most
important properties of the natural numbers, the integers, the rational numbers, the real
numbers, and the complex nimbers. At the same time, it introduces some of the major
concepts of abstract algebra, real analysis and topology.

So that’s what you will learn about in this book: logic and proofs; sets, relations,
and functions; and number systems. I like to think of these three topics as the building
blocks or essential tools of mathematical proofs. The viewpoint of this book is that if
(and only if) you lean to understand and use these basic tools will you be well on your
way to success in the realm of higher mathematics.

Exercises 1.2

Throughout this text, particularly challenging exercises are marked with asterisks.
For the first three problems, you will probably find it helpful to have a list of all
prime numbers up to 200.or so. The most efficient way to get such a list is by a
technique called the sieve of Eratosthenes: first list all integers (whole numbers) from
2 up to wherever you want to stop, say 200. Now, 2 is the smallest number in the list,
so circle it and cross out all larger multiples of 2. Then 3 is the smallest remaining
number in the list, so circle it and cross out all larger multiples of 3. Then circle 5 and
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cross out all larger multiples of 5, Continue in this manner. When you’re done, the
circled numbers are all the prime numbers up to 200. (If your table goes up to 200, the

largest rl‘ymber whose multiples you need to cross out is 13. Can you see why? See
Exercise 8.)

(1) (2) Consider the expression #* - 1 + 41. Substitute at least a half dozen small
nonnegative integers for the variable » in this expression, and in each case test whether
the value of the expression tums out to be a prime number. Does it seem plausible that
this expression yields a prime number for every nonnegative integer n?

(b) Now find a positive integer value of » for which this expression is not a
prime number. Hint: You probably won't find the right » by trial and error. Instead, try
to think the problem through.

(2) Verify Goldbach’s conjecture for all the even numbers from 4 to 20 and from
100 to 110.

(3) An interesting variant of Goldbach’s conjecture, known as de Polignac’s
conjecture, is the claim that every positive even number can be written as the difference
of two prime numbers. As with Goldbach’s comjecture, it is not known whether this
statement is true or false. |

(a) Verify de Polignac’s conjecture for each positive even number up to 12,
*(b) In the unlikely event that one or both of these conjectures is actually false,
de Polignac’s conjecture would probably be much more difficult to disprove than
Goldbach’s conjecture. Can you explain why?

*(4} Try to prove each of the following statements. Since we have not begun our
study of axiomatic mathematics, the word “prove” is being used here in an informal
sense. That is, you should try to come up with what you think are convincing arguments
or explanations for why these statements are true. Perhaps you can succeed with pictures
and/or words. Or, you might need to resort to more sophisticated methods, such as
algebra or even calculus. (Don’t worry if you feel as if you're groping in the dark in this
problem. When we get to Chapter 4, we get much meore exact and technical about what
constitutes a proof.)

(a) A negative number times a negative number always equals a positive
mumber. (You may assume that the product of two positive numbers is always positive,
as well as basic algebraic rules for manipulating minus signs.)

(b) If you add a positive number to its reciprocal, the sum must be at least 2.

(¢) The area of a rectangle equals its length times its width. (You may assume
that the area of a one-by-one square is one, but this problem is still not easy.)

(d) A straight line and a circle meet in at most two points.

The remaining exercises have to do with the process of discovery in mathematics; as we
have discussed, this often precedes proof but is no less important.
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(5) (a) Complete the last three equations:

143 =4
1+3+5 =7
1+3+5+7 =2

1+3+5+7+9 = ?

(b) On the basis of the equations in part (a), make a conjecture about the sum
_of the first 7 odd numbers, where n can be any positive integer.

(c) Testyour conjecture for at least four other values of , including two values
that are greater than 10.

(6) Consider the following equations:
Ik =1 =1

P+2 =9 = (1+2)
P+2%3 =36=(1+2+3)

(a) On the basis of these equations, make a conjecture.
(b) Test your conjecture for at least two other cases.

(7) (2) Carefully draw three triangles. Make their shapes quite different from each
other.
(b} Ineach triangle, carefully draw all three medians. (A median is a line from
a vertex of a triangle to the midpoint of the opposite side. Use a ruler to find these
midpoints, unless you prefer to use an exact geometric construction!)
(¢) On the basis of your figures, make a conjecture about the medians of any
triangle.
*(d) After making some careful measurements with a ruler, make a conjecture
about how any median of a triangle is cut by the other medians.

(8) (a) If you haven’t already done so, construct the sieve of Eratosthenes for
numbers up to 200, as described before Exercise 1.

(b) By trial and etror, fill in each of the following blanks with the smallest
number that makes the statement correct:

(i) Every nonprime number less than 100 has a prime factor lessthan ____.

(ii) Every nonprime number less than 150 has a prime factor lessthan .

(iii) Every nonptime number less than 200 has a prime factorlessthan .
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(¢) Using your resulis from part (b), additional investigation if you need it, and
some logicgl analysis of the situation, fill in the following blank with the expression that
you think yields the smallest number that makes your conjecture correct:

Every nonprime number # has a prime factor equal to or less than

(%) The numbers 3, 4, and 5 can be the sides of a right-angled triangle, since they
satisfy Pythagoras’s theorem (the familiar a* + b* = ¢*). Positive integers with this
property are called Pythagorean triples. The triple 3, 4, 5 also has the property that the
largest number of the triple (the hypotenuse) is only one more than the middle number.

(a) Find two more Pythagorean triples with this property.
(b) Could the smallest member of a Pythagorean triple with this property be
an even number? Why or why not?
*(¢) Try to find a general formula or rule that can be used to list all Pythagorean
triples of this type
(d) Cantwo ofthe numbers in a Pythagorean triple be equal? Why or why not?
(You may use the fact that /2 is not equal to any fraction.)

(10) Starting with any positive integer, it is possible to generate a sequence of
numbers by these rules: If the current number is even, the next number is half the
current number. If the current number is odd, the next number is 1 more than 3 times the
current number. For example, one such sequence begins 26, 13, 40, 20, 10, 5, 16, ....

(2) Choose three or four starting numbers, and for each of them generate the
sequence just described. Keep going until the sequence stabilizes in a clear-cut way. (A
good range for most of your starting numbers would be between 20 and 50.)

{b) On the basis of your results in part (a), make a conjecture about what
happens to these sequences, for any starting number. It turns out that a general law does
hold here; that is, all such sequences end in exactly the same pattern. However, it is

quite difficult to prove this theorem, or even understand intuitively why it should be
true.

{11) The ancient game of Nim is very simple to play (in terms of both equipment
and rules) but is quile entertaining and challenging,. It is also a good setting for learning
about the mathematical theory of games. Here are the rules:

Nim is a competitive game between two players. To start the game, the players
create two or more piles of match sticks, not necessarily equal in number. One classic
starting configuration uses piles of three, four, and five, but the players can agree to any
starting configuration (see Figure 1.2).

After the setup, the players take turns, When it is his or her turn, a player must
remove at least one match stick from one pile. For instance, a player may remove an
entire pile at one turn; but a player may not remove parts of more than one pile at one
turn. The player who removes the last match stick wins the game.

Once the starting configuration is determined, Nim becomes a “finite two-person
win-lose game of perfect information.” The most irmportant mathematical result about
such a game is that one player (either the one who plays first or the one who plays
second) has a strategy that always wins for that player.
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Figure 1.2  One typical starting configuration for Nim

(a) Play several games of Nim (by yourself or with someone €lse) using only
two piles of sticks but of various sizes. On the basis of your experience, devise a rule
for determining which player has the winning strategy for which games of this type, and
what that strategy is. You will be asked to prove your conjecture in Section 8.2.

(b) An alternate version of Nim states that the one who removes the last match
stick Joses. Repeat part (a) with this alternate rule.

*(c) Repeat part (), now starting with three piles of sticks but with one of the
piles having only one stick.
*(d) Repeat part (c) using the alternate rule of part (b).

Suggestions for Further Reading: Literally thousands of fine books have been
written about the subjects touched on in this chapter, including inductive and deductive
reasoning, the processes of discovery and proof in science and mathematics, and the
history of the axiomatic method. A few of these appear in the References at the end of
this text; Davis and Hersh (1980 and 1986), Eves (1995), Kline (1959 and 1980),
Lakatos (1976), Polya (1954), and Stabler (1953). For a witty and informative
discussion of Goldbach’s conjecture and related problems of number theory, see
‘Hofstadter (1989).



Chapter 2

Propositional Logic

2.1 The Basics of Propositional Logic

What is logic? Dictionaries define it to be the study of pure reasoning or the study of
valid principles of making inferences and drawing conclusions. As Chapter 1
emphasized, logic plays an extremely important role in mathematics, more so than in the
sciences or perhaps in any other subject or profession. The field of mathematical logic
is divided into the branches of propesitional logic and predicate logic.

This chapter is about propositional logic. This is a very old subject, first developed
systematically by the Greek philosopher Aristotle, It has various other names, including
the propositional calculus, sentential logic, and the sentential ealculus. Basically,
propositional logic studies the meaning of various simple words like “and,” “or,” and
“not” and how these words are used in reasoning. Although it is possible to carry out

this study without any special terminelogy or symbols, it’s convenient to introduce
sorme. '

Definition: A proposition is any declarative sentence (including mathematical
sentences such as equations) that is true or false.

Example 1: (a) “Snow is white” is a typical example of a proposition. Most
people would agree that it’s a true one, but in the real world few things are absolute: city
dwellers will tell you that snow can be grey, black, or yellow.

(b) “3+2=15"is asimple mathematical proposition. Under the most common
interpretation of the symbols in it, it is of course true.

(c) *3+2="7"is also a proposition, even though it is false in the standard number
system. Nothing says a proposition can’t be false. Also, this equation could be true (and
the previous one false) in a nonstandard number system. _

(d) “Is anybody home?” is not a proposition; guestions are not declarative
sentences.

(e “Shut the door!” and “Wow!” are also nof propositions, because commands
and exclamations are not declarative sentences.

(f) “Ludwig van Beethoven sneezed at least 400 times in the year 1800 is a
sentence whose truth is presumably hopeless to verify or refute. Nonetheless, such
sentences are generally considered to be propositions.

16
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st

Aristotle (384-322 B.C.), like his teacher Plato, was a philosopher
who was very intetested in mathematics but did not work in
mathematics to any extent. Aristotle was apparently the first person to
develop formal logic in a systematic way. His treatment of
propositional logic does not differ greatly from the modern approach
to the subject, and the study of logic based on truth conditions is still
called Aristotelian logic.

Besides writing extensively on other humanistic subjects such as
ethics and political science, Aristotle also produced the first important
works on physics, astronomy, and biology. Some of his claims were
rather crude by modern standards and others were simply wrong. For
example, Aristotle asserted that heavy objects fall faster than light
ones, a belief that was not refuted until the sixteenth century, by
Galileo. Still, his scientific work was the starting point of much of
modern science. Very few people in the history of humanity have
contributed to as many fields as Aristotle.

o {2). “x> 5" is a mathematical inequality whose truth clearly depends on more
information, namely what value is given to the variable x. In a sense, the truth or falsity
of this example is much easier to determine than that of example f. Even so, we follow
standard practice and call such sentences predicates rather than propositions.

(h) “Diane has beautiful eyes” is a sentence whose truth depends not only on
getting more information (which Diane is being referred to?) but also on a value
judgment about beauty. Most logicians would say that a sentence whose truth involves
a value judgment cannot be a proposition.

We use the word statement as a more all-encompassing term that includes
propositions as well as sentences like the last two examples. Section 3.2 clarifies this
terminology further.

(i) “23 is a purple number” has more serious flaws than examples (g) and (h).
Neither more information nor a value judgment determines its truth or falsehood. Most
people would say this sentence is meaningless and therefore not a statement.

(j) “This sentence is false” is a simple example of a paradox. If it’s frue, then it
must be false, and vice versa. So there is no way it could sensibly be called true or false,
and therefore it is not a statement.

Notation: We usc the letiers P, Q, R, ... as propositional variables. That is, we
let these letters stand for or represent statements, in much the same way that a
mathematical variable like x represents a number.
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Notation: Five symbols, called connectives, are used to stand for the following
words:

. A for “and”

. vV for “or”

. ~ for “not”

. — for “implies” or “if ... then”
. <> for “if and only if”

The words themselves, as well as the symbols, may be called connectives. Using'

the connectives, we can build new statements from simpler ones. Specifically, if P and
Q are any two statements, then

PAQ, PVQ, ~P, P> Q, and P+ Q

are also statements.

Definitions: A statement that is not built up from simpler ones by connectives
and/or quantifiers is called atomic or simple. (Quantifiers are introduced in Chapter 3.)
A statement that is built up from simpler ones is called compound.

Example 2: “] am not cold,” “Roses are red and violets are blue,” and “If a
function is continuous, then it’s integrable” are compound statements because they
contain cormectives. On the other hand, the statements in Example 1 are all atomic.

—

Remarks: That’s pretty much all there is to the grammar of propositional logic.
However, there are a few other details and subtleties that ought to be mentioned.

(1) Notice that each connective is represented by both a symbol and a word (or
phrase). The symbols are handy abbreviations that are useful when studying logic or
learning about proofs. Otherwise, the usual practice in mathematics is to use the words
rather than the symbols. Similarly, propositional variables are seldom used except
when studying logic.

(2) Why do we use these particular five connectives? Is there something special
about them or the number five? Not at all. It would be possible to have dozens of
connectives. Or we could have fewer than five connectives—even just one—and still
keep the full “power” of propositional logic. (This type of reduction is discussed in the
excrcises for Section 2.3.) But it’s pretty standard to use these five, because five seems
like a good compromise numerically and because all these connectives correspond to
familiar thought processes or words.
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(3} When connectives are used to build up symbolic statements, parentheses are
often needed to show the order of operations, just as in algebra. For examplé, it’s
confusing to write P A Q V Ry since this could mean either PA (Q VR)or (PAQ)VR.

However, just as in algebra, we give the connectives a priority ordering that
resolves such ambiguities when parentheses are omitted. The priority of the
connectives, from highest to lowest, is~, A,V , =, +> . (This order is standard, except
that some books give A and \ equal priority.)

How is a statement interpreted when the same connective is repeated and there are
no parentheses? In the case of A or V, this is never a problem. The statement (P AQ) AR
has the same meaning as P A (Q A R), so it’s perfectly unambiguous and acceptable to
write P A Q A R; and the same holds for V. (Note that this is completely analogous to
the fact that we don’t need to put parentheses in algebraic expressions of the form
a + b + ¢ and abc.) On the other hand, repeating — or +> can create ambiguity. In
practice, when a mathematician writes a statement with the logical form P —+Q —+ R,
the intended meaning is probably (P — Q) A (Q — R), rather than (P — Q) —+ R or
P — (Q — R.) A similar convention holds for <> . This is analogous to the meaning
attached to extended equations and inequalities of the formsx =y =z, x <y <z, and so
on. But it’s often important to use parentheses or words to clarify the meaning of
compound statements.

Example 3
PV QAR rmeanis PV(QAR) |
P—+Q< ~Q—~P means (P Q)+ [(~Q)—(~P)]

Terminology: Each of the connectives has a more formal name than the word it
stands for, and there are situations in which this formal terminology is useful.

Specifically, the connective A (“and”) is also called conjunction. A statement of
the form P A Q is called the conjunction of P and @, and the separate statements P and
Q are called the conjuncts of this compound statement. ‘

Similarly, the connective V {“or”) is called disjunction, and a statement P V Q is
called the disjunction of the two disjuncts P and Q.

The connectives ~ , —*, and +> are called negation, conditional (or implication),
and biconditional (or equivalence), respectively.

Now it’s time to talk about what these connectives mean and what can be done
with them. In propositional logic, we are primarily interested in determining when
statements are true and when they are false. The main tool for doing this is the
following.

Definition: The truth functions of the connectives are defined as follows:

. P A Q is true provided P and Q are both true.
. PV Q is true provided at least one of the statements P and Q is true.
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. ~P is true provided P is false.
¢z P—Q istrucprovided P is false, or Q is true (or both).
. P <> Q is true provided P and Q are both true or both false.

Note that these truth functions really are functions except that, instead of using
numbers for inputs and outputs, they use “truth values,” namely “true” and “false.” (If
you are not very familiar with functions, don’t be concerned; we study them from
scratch and in depth in Chapter 7.) We usually abbreviate these truth values as T and F.

Since the domain of each truth function is a finite set of combinations of Ts and Fs,
we can show the complete definition of each truth function in a truth table, similar to
the addition and multiplication tables you used in elementary school. The truth tables
for the five basic connectives are shown in Table 2.1.

Table 2.1 Truth tables of the connectives

P Q | PAQ P Q | PvQ P|~P
T T T T T T T F
T F F T F T F T
F T F F T T
F F F F F F

P Q | P>Q P _Q | PeQ

T T T T T T

T F F T F ¥

F T T F T F

F F T F F T

It is important to understand how the truth functions of the connectives relate to
their normal English meanings. In the cases of ~ and A, the relationship is very clear, but
it is less so with the others. For example, the truth function for V might not correspond
to the most common English meaning of the word “or.” Consider the statement,
“Tonight I'll go to the volleyball game or I'll see that movie.” Most likely, this means
1 will do one of these activities but #ot both. This use of the word “or,” which excludes
the possibility of both disjuncts being true, is called the exclusive or. The truth function
we have defined for V makes it the inclusive or, corresponding to “and/or.” In English,
the word “or” can be used inclusively or exclusively; this can lead to ambiguity. For
instance, suppose someone said, “I'm going to take some aspirin or call the doctor.”
Does this statement leave open the possibility that the person takes aspirin and calls the
doctor? It may or may not. In mathematics, the word “or™ is generally used inclusively.
If you want to express an exclusive or in a mathematical statement, you must use extra
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words, such as “Either P or Q is true, but not both” or “Exactly one of the conditions P
and Q is true” (see Exercise 8).

There are enough subtlefies involving the connectives — and « that the entire next
section is devoted to them.

Using the five basic truth functions repeatedly, it’s simple to work out the truth
function or truth table of any symbolic statement. (If you have studicd composition of
functions, perhaps you can see that the truth function of any statement must be a
composition of the five basic truth functions.) Some examples are shown in Table 2.2.
Note how systematically these truth tables are constructed. If there are n propositional
variables, there must be 2" lines in the truth table, since this is the number of different
ordered n-tuples that can be chosen from a two-element set (Exercise 11). So a truth
table with more than four or five variables would get quite cumbersome. Notice that
these tables use a simple pattern to achieve all possible combinations of the
propositional variables. Also, note that before we can evaluate the output truth values
of the entire statement, we have to figure out the truth values of each of its
substatements.

We can now define some useful concepts.

Definitions: A tautology, or a law of propositional logic, is a statement whose
truth function has all Ts as outputs.

A contradiction is a statement whose truth function has all Fs as outputs (in other
words, it’s a statement whose negation is a tautology).

Two statements are called propositionally equivalent if a tautology results when
the connective +* is put between them. (Exercise 7 provides an alternate definition of
this concept.)

Example 4: One simple tautology is the symbolic statement P — P. This could
represent an English sentence like “If I don’t finish, then I don’t finish.” Note that this
sentence is obviously true, but it doesn’t convey any information. This is typically the
case with such simple tantologies.

One of the simplest and most important contradictions is the statement P A ~P. An
English example would be “I love you and I don’t love you.” Although this statement
might make sense in a psychological or emotional context, it is still a contradiction. That
is, from a logical standpoint it cannot be true.

The statement ~ P — Q is propositionally equivalent to PV Q, as you can easily
verify with tables. For instance, if I say, “If I don’t finish this chapter this week, I’'m in
trouble,” this is equivalent to saying (and so has essentially the same meaning as), “I
(must) finish this chapter this week or I'm in trouble.”

For the rest of this chapter, we use “equivalent” for the longer “propositionally
equivalent.” Note that statements can be equivalent even if they don’t have the same set of
propositional variables. For example, P —= (Q A ~ Q) is equivalent to ~ P, as you can
easily verify with truth tables.
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Table 2.2 Truth tables of three symbolic statements

Truth Table of (PAQ)V ~P

P Q PAQ ~P | ®eArQyv~P
T T T F T
T F F F F
F T F T T
F F F T T
Truth Table of P —[Q — (P A Q)]
P Q PAQ Q=2 (PAQ) | P[0 @AQ)
T T T T T
T F F T T
F T F F T
F F F T T
Truth Table of (P — Q) < (RAP)
P Q R P—Q RAP P Q) < RAP)
T T T T T T
T T F T F F
T F T F T F
T F F F F T
F T T T F F
F T F T F F
F F T T F F
T F F F T F F

The ideas we have been discussing are quite straightforward as long as we restrict
ourselves to symbolic statements. They become more challenging when they are applied
to English or mathematical statements. Since logic is such a vita! part of mathematics,
every mathematics student should fearn to recognize the logical structure of English and
mathematical statements and translate them into symbolic statements. With English
statements, there is often more than one reasonable interprefation of their logical
structure, but with mathematical statements there rarely is. Here are some examples of
how this is done.

Example 5: For each of the following statements, introduce a propositional
variable for each of its atomic substatements, and then use these variables and
connectives to write the most accurate symbolic translation of the original statement.

(2) Ilike milk and cheese but not yogurt.
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(b} Rain means no soccer practice.
(c) The only number that is neither positive nor negative is zero.
(d) 2+2=4. K

Solution: (a) Don’t be fooled by a phrase like “milk and cheese.” Connectives
must connect statements, and a noun like “milk™ is certainly not a statement. To
understand its logical structure, the given statement should be viewed as an abbreviation
for “I like milk and I like cheese, but I don’t like yogurt.” So we introduce the following
propositional variables:

P for “Ilike milk.”
Q for “Ilike cheese.”
R for “Ilike yogurt.”

The only remaining difficuity is how to deal with the word “but.” This word
conveys a different emphasis or mood from the word “and,” but the basic logical
meaning of the two words is the same. In other words, in statements where the word
“but” could be replaced by *and” and still make sense grammatically, the right

connective for it is A . So the best symbolic representation of the original statement is
PAQA~R.

(b) Once again, connectives must connect entire statements, not single words or
noun phrases. So we write:
P for “Itisraining.”
Q for “There is soccer practice.”
How should we interpret the word “means”? Although it would be plausible to think of

it as “if and only if,” the most sensible interpretation is that if it rains, there’s no soccer
practice. So we represent the given English statementas P = ~Q .

{c) Since this statement involves an unspecified number, we can use a
mathematical variable like x {o represent it. (It is possible to do this problem without
using a letter to stand for the unspecified number, but the wording gets a bit awkward.)
So we write:

P for “xis positive.”
Q for “xisnegative.”
R for “xis zero.”

Now we must inferpret various words. A bit of thought should convinee you that
“neither P nor Q” has the logical meaning ~ (P V Q) or its propositional equivalent
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~ P A~ Q. The words “the only” in this statement require a quantifier to interpret
precisely, but the gist of the statement seems to be that a number is neither positive nor
negative:if and only if the number is zero. So the statement can be represented
symbolically as (~P A~ Q) < R,

If we allow ourselves mathematical symbols as well as connectives, we would
probably prefer to represent the statement in the form

[~(x>NA~(x<0)]+x=0
or shorter still
x*0Ax 20y x=0

{We use the standard convention that a slash through an equal sign, an inequality
symbol, and so on, can be used instead of a negation symbol.)

It should be noted that quantifiers are required for a totally accurate translation of
this statement.

(d) This is sort of a trick question. The statement contains ro connectives, so it is
atomic. Therefore, the only way to represent it symbolically is simply P, where P
represents the whole statement!

1t is very tempting just to assume that this simple equation is a tautology. But since
its logical form is P, it’s not. It's certainly a true statement of arithmetic, and you might
even claim that it’s a law of arithietic, but it’s not a law of propositional logic. Even
a statement like 1 = 1 is technically not a tautology!

Exercises 2.1

(13 Construct the truth tables of the following statements:
(@ ~FPArQ)
(bt) P=>@®VQ)
(c) P»~P
(d P<~P
(e) P> (Q—(FAQ)
() ~PAQ > (~PA~Q)
(& PAQAR) « PAQ)AR
) [(PVQ—=R] < [P=R)AQ—R)]
i PAQV(PAR)

(2) For each of the following, state whether it is a proposition, with a brief
explanation. If you believe that a particular case is borderline, provide brief pros and
cons for whether it should be considered a proposition. For those which are
propositions, determine which are true and which are false, if possible.

{a) 10 is a prime number.
(b) Are there any even prime numbers?
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(¢) Turn off that musu: orI ]1 scream,

“(d) Life is'good.

(e) 3+5.

(f) The number 7 is bigger than 4.

(g) Benjamin Franklin had many friends.

{(h) The Chicago Cubs will win the World Series in the year 2106.
(i} Ilike olives but not very much.

(j) Goldbach’s conjecture is true. (This was described in Chapter 1.)

(3) Determine whether each of the following is a tautology, a contradiction, or
neither. If you can determine answers by commonsense logic, do so; otherwise,
construct truth tables,

@ ~@PAQ) > ~PA~Q

() ~PA~Q = ~BAQ)

© PeQ < QP

@ @-Q) < (Q~P)

@ [PYQVR] < [PV(@QVR)]
() [(PVQ)AR] < [PV(QAR)]

(4) Determine whether each of the following pairs of statements are propositionally
gquivaient to each other. If you can determine answers by commonsense logic, do so;
otherwise, construct truth tables.

{(a) PAQ and QAP

(b) P and ~~P

() ~PVQ) and ~PV~Q

@ ~®VQ) and ~PA~Q

() P—=+Q and QP

(f) ~P—>Q and ~P—2~Q

@ P<Qad PAQV~(PVQ
(h) PAQVR) and (PAQ)VR
(i) PAQAR) and PAQIAR
G P—(@Q—R) and (P> Q)~+R

k) P<(Q«R)and P Q<R

(5) Match each statement on the left with a propositionally equivalent one on the
right. As with the previous problem, see if you can do this without writing out truth

tables.

(@8 P+~Q (i) PA~P
(b) P (PAQ) (i) P~ Q
(©) PVQA~PAQ) (ii) ~(PAQ)
(d) P—~P (v) QP
(&) PVQPAQ @) P+ ~Q
(vi) ~P
(vii) P Q

(vii)) QA~P
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(6) For each of the following, replace the symbol # with a connective so that the
resulting symbolic statement is a tautology. If you can, figure these out without using
truth tables.

(@) [~@#Q] < [PA~Q]

®) P> @Q#R) < [P QAFP—R)]
) (P#Q Rl < [P R)A(Q—R)]
) [PAQ <Pl [P#Q]

() [(R#Q)>R]« [P (Q—R)]

(7) Show, using a commonsense argument, that for two symbolic statements to be
propositionally equivalent means precisely that they have the same truth value (both true
or both false) for any truth values of the propositional variables in them.

(8) Recall the discussion of the inclusive or and the exclusive or. Let the symbol

V represent the latter.

(a) Construct the truth table for P ¥ Q.

(b) Write a statement using our five basic connectives that is equivalent to
PYQ.

{c) Write a statement using only the connectives ~, A, and ¥ that is equivalent
toPVQ.

(d) Make up an English sentence in which you feel the word “or” should be
interpreted inclusively.

{(e) Make up an English sentence in which you feel the word “or” should be
interpreted exclusively. '

(f) Make up an English sentence in which you feel the word “or” can be
interpreted either way.

S

(9) LetP, Q, and R stand for “Pigs are fish,” “2 + 2 =4,” and “Canada is in Asia,”
respectively. Translate the following symbolic statements into reasonable-sounding
English. Also, determine whether each of them is true or false.

(@) PV~Q ®) Qe ~R
(© ~Q—*RA~P) (d P—~P

(10) For each of the following statements, introduce a propositional variable for each
- of its atomic substatements, and then use these variables and connectives to write the
most accurate symbolic translation of the original statement.

(a) Ineed to go to Oxnard and Lompoc.

(b) Ifa number is even and bigger than 2, it’s not prime.

(c) You're damned if you do and dammned if you don’t.

(d) Ifyou order from the dinner menu, you get a soup or a salad, an entree, and
a beverage or a dessert. (Be careful with the word “or” in this one.})

(e) Ifitdoesn’t rain in the next week, we won t have vegetables or ﬂowers but
if it does, we’ll at least have flowers.
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(f) No .shoes, no shirt, no service. (Of course, this is a highly abbreviated
gentence. You have to interpret it properly.)

(g) Men or wornen may apply for this job. (Be careful; this one’s a bit tricky.)

(11) (a) If a symbolic statement has just one propositional variable (say P), how
many lines are in its truth table?
(b) How many different possible truth functions are there for such a statement?
That is, in how many ways can the output column of such a truth table be filled in?
Explain.
*(c) Repeat parts (a) and (b) for a symbolic statement with two propositional
variables P and Q. Explain.
*(d) On the basis of the previous parts of this problem, make conjectures that
generalize them to a symbolic statement with an arbitrary number 7 of propositional
variables.

2.2 Conditionals and Biconditionals

The connectives — and +* are not only the most subtle of the five connectives; they are
also the two-most-important ones-in mathematical work. So it is worthwhile for us to
discuss them at some length. We begin this section by considering the meaning of
conditional statements.

In the previous section, we linked the connective — to the word “implies,” but in
ordinary language this word is not used very frequently. Probably the most common
way of expressing conditionals in English is with the words “If ... then ... .” As we see
shortly, there are several other words or combinations of words that also express
conditionals. .

Conditional and biconditional statements are often called implications and
equivalences, respectively. However, there is a tendency to reserve these latter words
for statements that are known to be true. For instance, “2 + 3 = 5 if and only if pigs can
fly” is a biconditional statement. But many mathematicians would not call it an
equivalence, since it is false.

Regardless of what words are used to represent conditionals, it takes some thought
to understand the truth function for this connective. Refer back to Table 2.1 and note
that the statement P — Q is false in only one of the four cases, specifically when P is
triue and Q is false.

Example 1: The best way to understand why this makes sense is to think of 2
conditional as a promise. Not every conditional can be thought of in this way, but many
can. So let’s pick one at random, like “If you rub my back today, I'll buy you dinner
tonight.” This is certainly a conditional; it can be represented as P — Q, where P is
“You rub my back today” and Q is “I’ll buy you dinner tonight.” Under what
circumstances is or is not this promise kept?
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Two of the four entries in the truth table are clear-cut, If you rub my back and I buy
you dinner, I've obviously kept the promise, so the whole conditional is true. On the
other harid, if you rub my back and I don’t buy you dinner, I've obviously broken my
promise and the conditional must be considered false. It requires more thought to
understand the two truth table entries for which P is false. Suppose you don’t rub my
back and I don’t take you to dinner. Even though I haven’t done anything, no one could
say I've broken my promise. Therefore, we define P -+ Q to be true if both P and Q are
false.

Finally, we get to the least intuitive case. Suppose you don’t rub my back but I go
ahead and buy you dinner anyway. Have I broken my promise? If you reflect on this
question, you will probably conclude that, although it’s unexpected for me to buy you
dinner after you didn’t rub my back, it’s not breaking my promise. To put it another
way, although my promise might lead most people to assume that if you don’t rub my
back, I won'’t buy you dinner, my statement doesn’t say anything about what I'll do if
you don’t rub my back. It is with these considerations in mind that the third entry in the
truth table is also a T. A good way to understand these last two cases is to admit that if
you den’t rub my back, my promise is true by default, because you haven’t done
anything to obligate me to act one way or the other regarding dinner.

Now here’s some useful terminology.

Definitions: In any conditional P — Q, the statement P is called the hypothesis
or antecedent and Q is called the conelusion or consequent of the conditional.

Definitions: Given any conditional P — Q,

* the statement Q — P is called its converse.
« the statement ~ P — ~Q is called its inverse.

; + the statement ~ Q — ~P is called its contrapositive.

We now come to the first result in this text that is labeled a “theorem.” Since our
serious study of proofs does not begin until Chapter 4, many of the theorems in this
chapter and the next are presented in a very nonrigorous way. In other words, the proofs
given for some of these theorems have more of the flavor of intuitive explanations than
of mathematical proofs.

Theorem 2.1: (a) Every conditional is equivalent to its own contrapositive,
(b} A conditional is not necessarily equivalent to its converse or its inverse.
(¢) However, the converse and the inverse of any conditional are equivalent to
each other.
{d) The conjunction of any conditional P — Q and its converse is equivalent
to the biconditional P +»> Q.
Proof: This theorem is so elementary that we can prove it rigorously at this point.
The proof simply requires constructing several truth tables. For instance, to prove part
(a) we only need to show that (P — Q) «* (~ Q — ~ P) is a tautology (Exercise 10). &
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- Example 2: - Consider the conditional “If you live in California, you live in
‘America.” This statement is tnie for all persons. Its converse is “If you live in America,
you live in California™; its inverse is “If you don’t live in California, you don’t live in
"America.” These two statements are not true in general, so they are not equivalent to the
 original. However, they are equivalent to each other. The contrapositive of the original
statement is “If you don’t live in America, you don’t live in California,” which has the
sarne meaning as the original and is always true.

By the way, it’s worth bearing in mind that implication is the only connective
whose meaning changes when the two substatements being connected are switched.
That is, P A Q is equivalent to Q A P, and so on. '

Let’s elaborate a bit on our earlier discussion of conditionals as promises. When
someone says “If you rub my back today, I'll buy you dinner tonight,” many people
would automatically read into it “And if you don’t rub my back, I won’t buy you

-~ dinner.” Note that this other promise is just the inverse of the original one. Now, there

" is no doubt that in ordinary language, when a person states a conditional, the inverse is

sometimes also intended. And then again, sometimes it is not. This kind of fuzziness is

a normal feature of spoken language, as we have already mentioned regarding the

" ambiguity of the word “or” (inclusive versus exclusive). But in mathematics and logic,

connectives must have precise meanings. The most nseful decision is to agree that

conditionals in general should not include their own inverses, for the simple reason that

if they did, there would be no difference between conditionals and biconditionals (by
Theorem 2.1 (¢) and (d)). '

In spoken language, conditionals aren’t always promises, but they almost always
at least convey some kind of causal connection between the antecedent and the
consequent. When we say “P implies Q” or even “If P then Q,” we normally mean that
the statement P, if true, @mehow causes or forces the statement Q to be true. In

- mathematics, most conditionals convey this kind of causality, but it is not a requirement.
""" Inlogic (and therefore in mathematics), the truth or falsity of a conditional is based
- strictly on truth values. ,

Example 3: The following three statements, although they may seem silly or even
. wrong, must be considered true:

If 2+ 2 =4, then ice is cold.
If 2 +2 =3, then ice is cold.
If 2+ 2 =73, then ice is hot.

On the other hand, the statement “If 2 + 2 = 4, then ice is hot” is certainly false.
There are quite a few ways of expressing conditionals in words, especially in

" mathematics. It is quite important to be familiar with all of them, so let’s talk about them
for a bit. You will find the most common ones listed in Table 2.3.
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Table 2.3 The most common ways to express a conditional P — Q in words
(13 P implies Q.
(2) If P then Q.
3y P, Q.
4) Qif P.
(5) P onlyif Q.
(6) Pis sufﬁpient for Q.
(7} Q is necessary for P.
(8) Whenever P, Q.
(9) Q whenever P.

Note that statements 1-4 of Table 2.3 contain nothing new—but pay attention to
the word order in statement 4. For example, in the sentence “I’ll buy you dinner if you
rub my back,” the hypothesis consists of the last four words and the conclusion is the
first four words.

Now consider statement 5. An example of this construction is “You’ll see the
comet only if you look in the right spot.” What is this saying? The answer is open to
debate, but the most likely meaning is “If you don 't look in the right spot, you won # (or
can’i) see the comet,” which is the contrapositive of “If you (expect to) see the comet,
you (have to) look in the right spot.” (The words in parentheses have been added to
make the sentence read better.) And this is what statement 5 says this sentence should
mean., Oni the other hand, it’s possible to believe that the sentence might also be saying,
“If you do look in the right spot, you’ll see the comet.” But we reject this interpretation
becanse it would mean that “only if ” would be a synonym for “if and only if.” We
therefore follow the standard convention that “P only if Q” is the converse of “P if Q,”
and neither of these means the same as “P if and only if Q.”

The pair of words “sufficient” and “necessary,” like the words *“if” and “only if,”
express conditionals in the opposite order from each other. Suppose you are told,
“Passing the midterm and the final is sufficient to pass this course.” This appears to
mean that if you pass these exams, you will pass the course. But does it also mean that
if you don’t pass both these exams, you can’t pass the course? Again, that interpretation
is possible, but the word “sufficient” seems to allow the possibility that there might be
other ways to pass the course. So, as with the words “if” and “only if,” we reject this
other interpretation so that the word “sufficient” conveys the meaning of a conditional,
not a biconditional.

Now, suppose instead that you are told “Passing the midterm and the final is
necessary to pass the course.” With only one word changed, this sentence has a
completely different emphasis from the previous one. This sentence certainly does not
say that passing the exams is any sort of guarantec of passing the course. Instead, it
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appears to say that you must%pass the exams to even have a chance of passing the course,
or, more directly, if you don 't pass the exams, you definitely won 't pass the course. So,
as statements 6 and 7 of Table 2.3 indicate, the word “necessary” is generally
considered to express the converse of the word “sufficient.”

Statements 8 and 9 indicate that the word “whenever” often eXpresses a
conditional. In the sentence “Whenever a function is continuous, it’s integrable,” the
word “whenever” is essentially a synonym for “if.”

English (and all spoken languages) has many ways of expressing the same thought,
and even Table 2.3 does not include all the reasonable ways of expressing conditionals.
It should also be pointed out that many statements that seem to have no connective in
them are really conditionals. For instance, the important theorem, “A differentiable
function is continuous,” is really saying that if a function is differentiable, it’s
continuous. “Hidden connectives” are also often conveyed by quantifiers, as Section 3.2
demonstrates.

IS"  Without any doubt, the most Jrequent logical error made by mathematics
students at all levels is confusing a conditional with its converse (or inverse) or
assuming that if a conditional is true, its converse must also be true, Learn to avoid this
confusion like the plague, and you will spare yourself much grief!

Biconditionals

There are various ways to think of biconditionals, one of which was stated in Theorern
2.1(d): P +> Q is equivalent to (P = Q) A (Q — P). That is, when you assert both a
conditional and its converse, you're stating a biconditional. That’s why the symbol for
a biconditional is a double arrow. That’s also why we use the phrase “if and only if” for
biconditionals. (By the way, mathematicians often use the abbreviation “iff” for “if and
only if.”) Table 2.4 shows this and other ways of expressing biconditionals.

We have seen that the words “necessary” and “sufficient” also have converse
meanings, and so the phrase “necessary and sufficient” is often used to express
biconditionals. For example, if you read that “a necessary and sufficient condition for
a number to be rational is that its decimal expansion terminates or repeats,” that means
that-a number is rational if and only if its decimal expansion terminates or repeats. (The
noun “condition” is often used in this way with the words “necessary” and/or
“sufficient.”) Another common way of expressing biconditionals in mathematics is with
the word “equivalent.” For example, an alternate way of stating the same fact about
numbers that was just given would be “Rationality is equivalent to having a decimal
expansion that either terminates or repeats.” (When mathematicians say that two
statements are equivalent, it does not necessarily mean that they are propositionally
equivalent. It just means that they can be proved to imply each other, using whatever
axioms and previously proved theorems are available in the situation.)

Finally, Table 2.4 indicates that the words “just in case” can also convey a
biconditional, as in “A number is rational just in case its decimal expansion either
terminates or repeats.”
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Table 2.4 The most common ways to express a biconditional P <> Q in words

(¥) P ifand onlyif Q.

(2) P is necessary and sufficient for Q.
(3) P isequivalentto Q.

(4) P and Q are equivalent,

(5) P (is true) just in case Q (is).

We have already mentioned that, in ordinary speech, statements that on the surface
are just one-way conditionals are often understood to be biconditionals. This is partly
because there are no fluid-sounding ways of expressing biconditionals in English. All
the phrases in Table 2.4 sound fine to a mathematician, but they are somewhat awkward
when used in ordinary conversation. If I say “You’ll pass this course if and only if you
pass the midterm and the final,” I'm clearly stating a biconditional, but it sounds strange.
Since people are not used to hearing the phrase “if and only if,” they might take this
statement to mean a biconditional even if the words “if and” are left out. This
interpretation could lead to some serious disappointment, since with these two words
omitted I would only be stating a conditional.

There are several useful ways of thinking of biconditionals. Most directly, a
biconditional represents a two-way conditional. Another way of looking at a
biconditional P «* Q is that if either P or Q is true, they both are. That is, either they’re
both true, or they’re both false. So a biconditional between two statements says that they
have the same #ruth values. For this reason, the biconditional connective is very similar
to an equal sign, except that it is applied to statements rather than to mathematical
quantities. To put it even more strongly, when mathematicians assert that two (or more)
statements are equivalent, they are more or less saying that these statements are different
ways of saying the same thing. )

We conclude this section with our first proof preview. These are called “previews”
because they occur before our in-depth study of proofs. Thus they are not axiomatic or
rigorous proofs. But each of them illustrates at least one important proof technique, and
we see later that each of them can be fleshed out to a more complete, rigorous proof.
Furthermore, the relatively informal style of these proof previews is typical of the way
mathematicians write proofs in practice,

In these proof previews, and occasionally elsewhere in proofs in this book,
comtments in brackets and italics are explanations to the reader that would probably not
be included under normal circumstances.

Proof Preview 1
Theorem: (a) Aninteger nis even if and only if # + 1 is odd.
(b) Similarly,  is odd if and only if n + 1 is even.
Proof: (a) [We are asked to prove a biconditional. By Theorem 2.1(d), one way
to do this—in fact, the most natural and common way—is to prove two conditional
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 statemenis: d forward directioy, and a reverse (or converse) direction. Now, how should
. wetrytoproved conditional siatement? Well, a conditional statement has the form “If
P then Q. That is, if P Is true, Q is supposed to be true too. Therefore, the logical way
to prove such a statement is to assume that P is true, and use this to derive the
conclusion that Q is also true.]

For the forward direction, assume that 7 is even. By definition of the word “even,”
that means that » is of the form 2m, for some integer 7. But from the equation n = 2m,
we can add 1 to both sides and obtain # + 1 = 2m + 1. Thus, n + 1 is odd [by the
analogous definition of what it means to be odd].

Conversely, assume that 7 + 1 is odd. That means 7 + 1 is of the form 2m + 1, and
by subtracting 1 from both sides of the equation 7 + 1 = 2m + 1, we obtain n = 2m. So
n is even. [Biconditional (a) is now proved because we have proved both directions of

Coit]

(b) For the forward direction, assume that » is odd. So n=2m + 1, for some integer
m. From this equation, we getn + 1= 2m + 2 = 2(m + 1). Therefore, n + 1 is even,
because it equals 2 times an integer. The reverse direction is left for Exercise 11. ®

The only nonrigorous feature of the previous proof is that it does not properly deal
with quantifiers (see Exercise 2 of Section 4.3). The proof is straightforward because
of the definition of the word “odd” it uses. If “odd” is defined to mean “not even,” this

thicorem becomes somewhat harder to prove. Exercise 12 covers 2 slightly different
approach to this result.

Exercises 2.2

{1} Consider a conditional statement P -+ Q. Write the following symbolic
statements. {Whenever you obtain two consecutive negation symbols, delete them).
(a) The converse-of the converse of the original statement
(b) The contrapositive of the contrapositive of the original statement
(c) The inverse of the conirapositive of the original statement

{2) Restate each of the following statements in the form of an implication (using
the words “If ... then ... ")
(a) Whenever a function is differentiable, it’s continuous.
(b) A continuous function must be integrable.
(c) A prime number greater than 2 can’t be even.
(d) A nonnegative number necessarily has a square root.
(e) Being nonmegative is a necessary condition for a number to have a square

root.
(f) A one-to-one function has an inverse function.

(3) Write the contrapositive of the following statements. (Replace any substatement
of the form ~ ~ P with P.)
(a) If John’s happy, Mary’s happy.
(b) If Mary’s not happy, John’s happy.




34 Chapter 2 Propositional Logic

(c) John’s not happy only if Mary’s not happy.
(d) Mary’s lack of happiness is necessary for John’s happiness.

(4) Write each of the following conditionals and its converse in the indicated forms
from Table 2.3. Some answers might be difficult to express in sensible English, but do
your best. For instance, statement (a) in form 9 could be “Whenever I read a good book,
I’'m happy all day,” and its converse in that form could be “Whenever I’'m happy all day,
I must be reading a good book.”

(a) Reading a good book is sufficient to keep me happy all day. (Forms 3, 5 and 7)

(b) 1will pay you if you apologize. (Forms 1, 3, and 5)

(¢) I¥'s necessary to give a baby nourishing food in order for it to grow up
healthy. (Forms 2, 6, and 8)

(5) Write each of the following biconditionals in the indicated forms from Table
2.4. Some answers might be difficult to express in sensible English, but do your best.
(2) A triangle is isosceles if and only if it has two equal angles. (Forms 2
and 3)
(b) I'll go for a hike today just in case I finish my paper this morning. (Forms
1 and 4)
(c) The Axiom of Choice is equivalent to Zorn's lemma. (Forms 1 and 5)

{d} Being rich is 2 necessary and sufficient condition to be allowed in that
country club. (Forms 4 and 5)

(6) Restate each of the following statements in the form of a conditional (with the
words “If ... then ... ™), a biconditional, or the negation of a conditional. If you think
there’s more than one reasonable interpretation for a statement, you may give more than
one answer.

(a)_Stop that right now or I'll call the police.

(b) If you clean your room, you can watch TV; otherwise you can’t.

(c} You can’t have your cake and eat it foo.

(d) Thanksgiving must fall on a Thursday.

{e) You can’t get what you want unless you ask for it.

*(f) This dog is fat but not lazy.

(g) An integer is odd or even, but not both.

(h) In order to become president, it’s necessary to have a good publicity firm.
(i) A person can become a professional tennis player only by hard work.,
(j) Iwon’t pay you if you don’t apologize.

{k) Math professors aren’t boring,

(7) " Give an example of each of the following if possible:
(a) A true (that is, necessarily true) conditional statement whose converse is
false (that is, nof necessarily true)
(b) A false conditional statement whose contrapositive is true
{c) A false conditional statement whose inverse is true
(d) A false conditional statement whose converse is false
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(8) Classify each of the following conditionals as necessarily true, necessarily false,
or sometimes true and sometimes false {(depending on which number or which person
is being referred to). Also, do‘the same for the converse of each statement. Explain.

(a) Ificeiscold,then2+2=3.
(b) If a number is divisible by 2, it’s divisible by 6.
(c) Ifaperson lives in Europe, then he or she lives in France.
#(d) If a person lives in Europe, then he or she lives in Brazil.
(e Ifx>0,thenx>0o0r2+2=3,
*(f) Ifx>0,thenx>0and2+2=3.

(9) Construct a truth table that you think best captures of the meaning of
«p upless Q.” There may be more than one reasonable way to do this. To help you, you
might want to consider a couple of specific examples, like “You can go swimming
tomorrow unless you have a temperature.” Do you think that the word “unless” usually
has the same meaning as the exclusive or?

(10) Prove Theorem 2.1, in the manner indicated in the text.
(11) Prove the converse of part (b) of the theorem in Proof Preview 1.

(12) Proof Preview 1 uses the definition that a number is odd iff it is of the form
2m + 1. Itis just as correct to say that a number is odd iff it is of the form 2m - 1, Prove
the same result, using this alternate definition. :

(13) Prove the following, in the manner of Proof Preview 1. Hint: You will need
to use four variables, not just two, in each of these proofs.
(a) The sum of two even numbers must be even.
(b) The sum of two odd numbers must be even.
(¢) The product.of two odd numbers must be odd.

(14) By experimentation, fill in each blank with a number that you believe yields a
- correct conjecture. Then prove the conjecture, in the manner of Proof Preview 1.

(@ Ifrnis or more than a multiple of 10, then #* is 1 less than a
multiple of 10.
(b) Ifnis , ,Or more than a multiple of 6, then there is no

number m such that m# is 1 more than a multiple of 6.
2.3 Propositional Consequence; Introduction to Proofs

In Section 2.1 we defined the concepts of tautology and propositional equivalence. Now
that we have discussed the various connectives individually, it’s time to examine these
concepts in more detail.

Why are these notions important? Recall that a tautology is a statement that is
always true because of the relationship or pattern of its connectives. Also recall that it’s
very easy to tell whether a given statement is a tautology; all that’s required is a truth
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table. In other words, tautologies are absolute truths that are easily identifiable. So there
is almost universal agreement that all tautologies can be considered axioms in
mathematical work.

As fat as propositional equivalence is concerned, we have mentioned that if two
statements are equivalent, they are essentially two different ways of saying the same
thing. If that’s so, we should expect equivalent statements to be interchangeable; and in
fact one simple but important tool in proofs is to replace one statement with another
equivalent one.

Table 2.5 shows some of the more common and useful tautologies. It is certainly
not a complete list. In fact there’s no such thing: there are an infinite number of
tautologies. At the same time, it’s important to realize that even Table 2.5 shows an
infinite set of tautologies, in a certain sense; remember that our propositional variables
can stand for any statement. So a single tautology like the law of the excluded middle
actually comprises an infinite number of statements, including purely symbolic ones like
(Q = ~R) V~(Q—~R), mathematical ones like “x +y=3 orx +y = 3,” and English
ones like “Either I’ll finish or T won’t.”

To what extent should you know this list? Well, if there were only thirty
tautologies in existence, it might be worthwhile to memorize them. But since there are
an infinite number of them, there’s not much reason to memorize some finite list. It
might be fruitful for you to go through Table 2.5 and try to see (without truth tables, as
much as possible) why all the statements in it are tautologies. This would be one way
to become familiar with these tautologies for future reference. Some of the statements
in Table 2.5, such as the law of the excluded middle and the law of double negation, are
very simple to understand. Others, like numbers 26 and 27, are somewhat more
complex, and it might take some thought to realize that they are tautologies.

Notice the groupings of the entries in Table 2.5, Most useful tautologies are either
implications or equivalences. Remember that an implication is a one-way street that says
that if the left side is true, the right side must also be. The usefulness of implications in
proofs is based on this fact. For example, tautology number 3 seems to indicaté that if
we havcﬁaroved a statement P A Q, we should then be allowed te assert the individual
statement P. We will see that this type of reasoning is certainly allowed in proofs. (By
the way, note that several of the tautologies in Table 2.5 are labeled “Basis for ... .”
These tantologies are used to justify specific proof methods discussed in Chapter 4.)

Equivalences are two-way streets asserting that if either side is true, the other must
be. So the standard way that equivalences are used in proofs is to replace either side
with the other. De Morgan’s laws are particularly useful. For example, if you want to
prove that a disjunction is false, tantology 18 says that you can do this by proving both
the disjuncts false. Also, tautology 19 provides the most useful way of proving that a
conditional statement is false. In general, knowing how to rewrite or simplify the
negation of a statement is a very important skill (see Exercise 2).

In Section 2.1 it was mentioned that it’s not necessary to have five connectives.
More precisely, there’s quite a bit of redundancy among the standard connectives. For
example, tautologies 20 and 22 provide ways of rewriting conditionals and
biconditionals in terms of the other three connectives. Also, more equivalences of this
sort can be obtained by negating both sides of tautologies 17 through 19. For example,
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Table 2.5 Home of the more useful tautologies

() PV~P Law of the excluded middle
@) ~PA~P) Law of noncontradiction

Some itnplications

3 PAQ—P Basis for simplification

@ PAQ—Q Basis for simplification
5) P~ (PVQ) Basis for addition
& Q> PVQ) Basis for addition

(HQ—FP—-Q

@ ~P—=®—Q) ,

9 PAR—Q]Q Basis for modus ponens
(10) ~ QAP Q)] ~P Basis for modus tollens
(1) [~PAPVQI—>Q
(12) P> [Q = (PAQ)]

(13) [P QQAQ R} (P—R) Transitivity of implication
(14) P—= Q= {(PVR)—~(QVR]]

15 @ QO IEAR P QAR) -

(16) [P = QDA@Q > R)] > (P <R) Transitivity of equivalence

Equivalences for rewriting negations

(17 ~(PAQ) & ~PV~Q De Morgan’s law
(18) ~PVQ) «~ ~PA~Q De Morgan’s law
(19) ~P—=Q) < PA~Q

Equivalences for replacing connectives

20 Q) « (~PVQ
Q) ReQ <« [ QAQP)]
22) Q) < [(PAQV(~PA~Q)]

Other equivalences
(23) ~~P < P _ . Law of double negation
(24) P2 Q) < (~Q—~P) Law of contraposition

@5) [P QA®P—R)] < [P (QAR)]

(26) [P R)A(Q—R)] « [(PVQ)—R] Basis for proof by cases
27) P2 (Q—=R)] > [FPAQ —R]

28) P2 (QA~Q)] <« ~P Basis for indirect proof
29 [PAQVR)] <« [PAQVPAR)] Distributive law

GO [PV(QAR)] « [PVQAPVR)] Distributive law
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from the first De Morgan’s law we can construct the related equivalence (PAQ) «
~(~PV ~ Q). In other words, any conjunction can be rewritten in terms of negation and
disjunction. In general, knowing when and how to rewrite a connective in terms of
specific other ones is a very valuable skill in mathematics. It is also often very useful to
rewrite the negation of a given statement; tautologies 1719 show how this is done.

Exercises 11 through 17 are concerned with rewriting connectives and reducing the
 number of connectives.

For the remainder of this book, references to “tautology number ... ” refer to Table
2.5. For convenient reference, Table 2.5 is repeated as Appendix 3 at the end of the
book.

To conclude this chapter, we discuss a method that can be used to analyze

everyday, nontechnical arguments for logical correctness. This method is really a simple

(but incomplete) framework for doing proofs, so studying it will provide a good preview
of Chapter 4.

Definitions: A statement Q is said to be a propositional comsequence of
statements P, P,, ... , P, iff the single statement (P, AP, A ... AP} ~* Q is a tautology.
(In this section, the word “propositional” may be dropped when discussing this notion.)

The assertion that a statement Q is a consequence of some list of statements is
called an argument. The statements in the list are called the premises or hypotheses
or givens of the argument, and Q is called the conclusion of the argument. If Q really
is a consequence of the list of statements, the argument is said to be valid.

Recall that if a conditional is a tantology, then whenever the hypothesis of that
conditional is true, the conclusion must also be true. So the significance of having a
valid argument is that whenever the premises are true, the conclusion must be too.

In the definition of propositional consequence, it is possible that #=1. S0 Qisa
propositional consequence of P if P — Q is a tautology. With this in mind, note that two
statements are equivalent if and only if each is a consequence of the other.

Example 1: Determine whether each of the following arguments is valid:
(a) Premises: P—Q

~R—+~Q
~R

Concluston: ~P

By the way, this sort of diagram is commonly used for logical arguments,
especially ones in which the statements involved are purely symbolic.

(b) Premises: If 'm right, you’re wrong. If you’re right, I'm wrong.
Conclusion: Therefore, at feast one of us is right.
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(¢} If Al shows up, Betty won’t. If Al and Cathy show up, then so will Dave.
Betty or Cathy {or both) will show up. But Al and Dave won 't both show up. Therefore,
Al won't show up.

Solution: (a) To determine whether this argument is valid, we just need to test
whether [(P —* Q) A (~R = ~ Q) A~R] — ~ P is a tautology. We leave it to you
(Exercise 3) to verify that it is, so the argument is valid.

(b) It's not absolutely required, but such arguments are usually easier to analyze
if they are translated into symbolic form. So let P stand for “I’m right” and Q stand for
“you’re right.” Let’s also make the reasonable interpretation that “wrong” means “not
right.” The argument then has the form

Premises: P—o~Q

Q-—~P

Conclusion: PV Q

The conditional [(P — ~ Q) A (Q = ~P)] = (P V Q) is not a tautology (Exercise 3), so
this argument is not valid.

By the way, this is an argument that 1 actually heard used in a real-fife situation.
Can you explain why the argument fails? The simplest explanation involves the
relationship between the two premises.

(c) As in part (b), let’s introduce propositional variables: A for “Al will show up”
and similarly B, C, and D, for Betty’s, Cathy’s and Dave’s showing up. It turns out that

[(A—~B)AAACHD)ABVC)A~(AAD) = ~A

is a tantology (Exercise 3), so this argument is valid.

Since this argument involves four propositional variables, the truth table required
to validate it contains sixteen lines, which makes it somewhat unwicldy and tedious to
construct. So we now infroduce a “nicer” method for validating such arguments:

Theorem 2.2: Suppose the statement R is a consequence of premises P, P, ...,

.» and another statement Q is a consequence of P, P,, ... , P, and R. Then Q is 2

consequence of justP,, P, ..., P,.

Proof: Let P be an abbreviation for (P, AP, A LLAP). So we are told that P — R

and (P A R) — Q are both tautologies. Now con51der what the truth table of P — Q nust

look like. In every row where P is true, R must be too, since P — R is always true. But

since (P A R) — Q is"also always true, this guarantees that in every row where P is true,

Q) must be true too. And remember that when P is false, P — Q is true by definition. In
other words, P — QQ must be a tantology; this is what we wanted to show. m
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The practical significance of this theorem is that you can use intermediate steps to
show an argument is valid. In other words, if you want to show a statement is a
consequence of'some premises, you don’t have to test whether the entire conditional is
a tautology. Instead, if you prefer, you can begin listing statements that are obvious
consequences of some or all of the premises. Each time you find such a statement you
can use it as a new premise to find more consequences. This method can lead easily to
the desired conclusion. (Unfortunately, it also can lead you nowhere, even if the
argurnent is valid.)

We now give alternate solutions to Examples 1(a) and 1(c), using this method of
intermediate steps. If you have any experience with formal proofs (from high school
geometry, for example), you will recognize the similarity. In fact, the derivations that
follow are perfectly good mathematical proofs, and except for the need to include
principles involving quantifiers, mathematical proofs could be based entirely on
propositional consequence.

Alternate Solution: Our solutions consist of a sequence of statements, numbered
for easy reference, beginning with the premises and ending with the desired conclusion.
Each statement in the derivation, after the premises, is a consequence of the previous
lines. Since constructing truth tables is so straightforward, there’s no need to explain or
justify the steps in these derivations any further. But to help you develop the habit of
good proof-writing, we explain each step.

Formal solution to Example 1(a):

(L P—Q Premise

2y ~R—+~Q Premise

3) ~R Premise

@H=~Q From steps 2 and 3, by tautology 9
(5) ~P From steps 1 and 4, by tautology 10

Format solution to Example 1(c):

(H A—»~B Premise

(2) (AAC)—>D Premise

3) BVC Premise

4y ~(AAD) Premise

5 ~B—>C From step 3, by tautology 20, essentiatly
(6) A= C From steps 1 and 5, by tautology 13
(A2 AANO From step 6

(8 A—D From steps 7 and 2, by tautology 13

Y A—-~D From step 4, by tautology 19, essentially

(10) A—»(DA~D) From steps 8 and 9, by tautology 25
(1) ~A From step 10, by tautology 28
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Which is the easier solution to this problem: the sixteen-line truth table or the
derivation just given? It’s hard to say, but there’s no doubt that the derivation is more
informative and better practice far learning how to do proofs.

On the other hand, neither a sixteen-line truth table nor an eleven-step formal proof
is particularly readable. One of the main themes of Chapter 4 is that formal proofs,
although having the advantage of encouraging thoroughness and correctness in
proofwriting, are cumbersome to write and to read. Mathematicians almost always
prefer to write less formal proofs that communicate an outline or synopsis of the full
formal proof. With that in mind, here is an informal solution to Example 1(c). Exercise
6 asks you to do the same for Example 1(a).

Informal Solution to Example 1(c): We are given that Al and Dave won’t both
show up. Therefore, if Al shows up, Dave won’t (using tautology 19).

Now, let’s assume Al shows up. Then we are told that Betty will not show up. But
we also know that Betty or Cathy will show up. Therefore, Cathy must show up. But
that means Al and Cathy show up, and we are told that if they both show up, then Dave
must show up. So we have shown that if Al shows up, then Dave shows up.

Putting both previous paragraphs together, we have shown that if Al shows up,
then Dave will show up and Dave won’t show up. That is, if Al shows up, something
impossible occurs. Thercfore, Al capnot show up (tautology 28).

We close this chapter with two more proof previews. These are also written in an
informal style but would not be difficult to turn into formal proofs. Each of them is
based on one or two key tautologies from Table 2.5.

Proof Preview 2 ‘

Theorem: Given sets 4, B, and C,if A < Band B < C, then 4 < C. [The symbol
c is read “is a subset of.” This notion is defined and discussed in Section 5.2, but we
need to use its definition here-to carry out this proof.]

Proof: [As in Proof Preview I at the end of Section 2.2, we are asked to prove a
conditional statement. So, once again, we begin our proof by making an assumption. In
the terminology of this section, we could say that A < B and B< C are the premises of
this proof.] Assume that 4 ¢ B and B < C. By the definition of ¢, this means that for any
object x, x € A implies x € B, and x € B impliesx € C. Therefore, x € A impliesx € C
[because, by tautology 13, this latter conditional statement is a consequence of the two
in the previous sentence]. And this is exactly what 4 ¢ ¢ means. ¥

As with Proof Preview 1, this proof glosses over some points involving quantifiers
(see Exercise 1 of Section 4.3).

Proof Preview 3

Theorem: For any real number x, |x| 2 x.

Proof: Let the propositional variables Q, R, and P stand for x > 0, x < 0, and
|x| = x, respectively. [Mathematicians would rarely introduce explicit propositional
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variables in this manner, but it can’t hurt to do so,] We know that x must be positive,

Zero, of negative; tIaat is, we know Q V R. If x > 0, we know that |x| = x (by definition
of absolute value), which implies |x| > x. In other words, Q implies P. On the other
hand, if x < 0, then |x| > 0 > x, so we still can conclude |x| = x. In other words, R
implies P. So we have shown that Q implies P, and R implies P. By tautology 26, we
can conclude the equivalent statement (Q or R} implies P. But since we also know
(Q or R), we obtain (by tautology 9) P; that is, |x| > x. =

The argument in Proof Preview 3 is a proof by cases, as we see in Section 4.2.

Exercises 2.3

(1) Replace each of the following statements by an equivalent statement that is as
short as possible (in number of symbols). In some cases, the answer may be the given
statement.

(a) PAP

® ~P—>~Q)

() QAQ—P)

d) P—~P

(&) PAQV(PAR)
) PYQVR

(& P2Q«Q—P)
(h) P (Q—~P)

(2) For each of the following statements, express its negation in as short and simple

a way as possible. You will probably want to use tautologies mumber 17 through 19 (and
possibly others) from Table 2.5.

(a) This function is continnous but not increasing,.

{b) Pigs are not blue or dogs are not green.

(c) Ifx?is positive, then x is positive.

(d) Pigs are blue if and only if dogs are not green.

(e) If set A is finite, then set B is finite and not empty.

(3} Construct the truth tables necessary to test the validity of the three arguments
in Example 1.

(4) Test each of the following arguments for validity, by directly applying the
definition of propositional consequence. In other words, construct just one truth table
for each argument. '

(2) Premises: P Q,P = ~R,Q +> R. Conclusion: ~P.

(b) Premises: PV Q +>~P AR, R — P. Conclusion: ~ (P V Q V R).

(c) Premises: PV Q,QV R« ~P. Conclusion: RV ~Q.

(d) If Alice is wrong, then Bill is wrong. If Bill is wrong, then Connie is
wrong. Connie is wrong. Therefore, Alice is wrong,
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(e) Ifturtles can sing, the;i artichokes can fly. If artichokes can fly, then turtles
can sing and dogs can’t play chess. Dogs can play chess if and only if turtles can sing.
Therefore, turtles can’t sing.

(5) Show that each of the following arguments is valid, using the method employed
in the alternate solutions given previously. Do not use any tautologies with more than
three propositional variables. Consult your instructor about whether to write formal or
informal solutions.

(a) Premises: Q+R,RVS—P,QVS. Conclusion: P.
*(b) Premises: P — (Q +>~R),PV~8,R—+8§,~Q —~R. Conclusion: ~R.
(c) Premises: Babies are illogical. A person who can manage a crocodile is not
despised. Illogical persons are not despised. Therefore, babies cannot manage
crocodiles. (This example was created by Lewis Carroll.)
' *(d) If I oversleep, I will miss the bus. If [ miss the bus, 'l be late for work
unless Sue gives me a ride. If Sue’s car is not working, she won’t give me aride. if I'm
late for work, I’1l lose my job unless the boss is away. Sue’s car is not working. The
boss is not away. Therefore, if T oversleep, I'll lose my job.

(6) Turn the formal alternate solution to Example 1(a) into an informal proof,
similar to that given for Example 1(c).

(7) Two sets 4 and B are defined to be equal if they have exactly the same
members, that is, if x € A is equivalent to x € B, for any object x. Prove that A = B if and
only if (4 = B and B < 4).You may want to refer to Proof Preview 2 in this section, as
well as Proof Preview 1 in Section 2.2, to review how biconditionals are normally
proved. But don’t make this proof harder than it needs to be; there really isn’t much to
it. ~—

(8) Prove that for any real number x, |x| = -x.

(9) Prove that if » is an integer, then n* + n must be even. Hint: You may assume
that an integer must be even or odd. Then use the technique used in Proof Preview 3.

(10) Prove that if  is an integer which is not a multiple of 3, then #* is 1 more than
a multiple of 3. Hint: To do this, you need to find a disjunction that is equivalent to the

condition that » is not a multiple of 3. Do not try to prove this equivalence; you may
assume it. '

Exercises 11 through 17 are rather technical and are concerned with material that has
not been directly discussed in the text.

*(11) A set of connectives is called complete if every truth function can be
represented by it; that is, given any truth function, there is a symbolic statement that uses
only conmnectives in the set and has that truth function.
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Show that the connectives A, V, and ~ together form a complete set of connectives,
Hint: First consider a truth function with exactly one T in its final output column, Show
that any such truth function can be represented by a conjunction of propositional
variables and their negations. Then, any truth function at all can be represented by a
disjunction of such conjunctions. The resulting statement is called the disjunctive
normal form of the given truth function. Don’t try to make this a very rigorous proof.

(12) Find the disjunctive normal form for each of the following statements:
(8 P Q
(®) ~PAQ)
© P<{Q—~R)
(d ~PAQ—R)

{13) Show that A and ~ together form a complete set of connectives.
(14) Show that V and ~ together form a complete set of connectives.
*(15) Show that — and ~ form a complete set of connectives.
*(16) Show that A, V, =, and +> do not form a complete set of connectives.
*(17) Define a connective |, called the Sheffer stroke, based on the words “not both.”

That is, P|Q is true except when both P and Q are true. Show that the single connective
| forms a complete set of connectives.

Suggestions for Further Reading: For a more thorough treatment of mathe-
matical logic at a level that is not much higher than the level of this text, see Copi and

Cohen (199%), Hamilton (1988), or Mendelson (1987). For a more advanced treatment,
see Enderton {1972) or Shoenfield (1967).



Chapter 3
Predicate Logic

3.1 The Language and Grammar of Mathematics

Propositional logic is important in mathematics, but it is much too limited to capture the
" full power of mathematical language or reasoning. For one thing, although propositional
logic deals with connectives and how they are used to build up statements, it does not
concern itself with the structure of atomic statements. Remember that we call a
statement atomyic if it is not built up from any shorter statements. The goal of this section
is to examine what atomic statements look like in mathematical language.

Example 1: One important category of atomic mathematical statements are
equations such as x ++ y = 3. As discussed in Section 2.1, a statement of this sort is called
a predicate, since its truth depends on the values of variables. It may also be called an
open statement. You can see that it contains no connectives. Quantifiers are words like
“all,” “every,” and “some” or symbols standing for those words; so our equation
contains none of those either. And that makes it atomic.

It’s important to see why neither x + y nory =3 can be considered a substatement
of x + y= 3. The expression x + y isn’t even a sentence; it has no verb. The expression
y =3 is a perfectly good sentence, but it makes no sense to say that the equation
x +y=3 is built up grammatically from the equationy = 3. So this equation, and in fact
any equation, is atomic. Jn many branches of mathematics, equations and inequalities
account for virtually all the atomic statements.

In the equation we’ve been using as an example, the letters x and y are, of course,
variables.

Definitions: A mathematical variable is a symbol (or combination of symbols

like x,) that stands for an unspecified number or other object.
o The collection of objects from which any particular variable can take its values is
_“called the domain or the universe of that variable. Variables with the same domain are

* said to be of the same sort. (It's generally assumed that the domain of a variable must
.. be nonempty.)

45
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You have undoubtedly been using variables to stand for numbers since junior high
school, and you have probably also encountered variables representing functions, sets,
points, vectors, and so on. These are all mathematical variables.

Example 2: If you saw the equation f(x) = 3, you would probably read this as “f
of x equals 3,” because you recognize this as an example of function notation. You
would probably also think of x as the only variable in this equation. But strictly
speaking, this equation contains two variables: x, presumably standing for a number, and
[ presumably standing for a function,

There is nothing that says what letters must be used to stand for what in
mathematics, but there are certain conventions or traditions that most people stick to
avoid unnecessary confusion. In algebra and calculus, for example, the letters x, y, and
z almost always stand for real numbers, whereas the letters fand g stand for functions,
The fact that almost everyone automatically interprets the equation f(x) = 3 in the same
way shows how strong a cue is associated with ceriain letters. On the other hand, if
someone wanted to let the letter O represent an arbitrary triangle, it would be best to
inform the reader of this unusual usage.

In Chapter 2 we introduced the idea of a propositional variable-—a letter used to
stand for a statement. Propositional variables are not normally used in mathematics.
They are used primarily in the study of logic.

BZ  The difference between propositional variables and mathematical variables
is very important, and you should be careful not to confuse them. A propositional
variable always stands for a statement—spoken, written, mathematical, English,
Swedish, or whatever—that could take on a valie of true or false. A mathematical
variable can stand for almost any type of quantity or object except a statement.

-

Not every letter that stands for something in mathematics is a variable.

Definition: A symbol (or a combination of symbols) that stands for a fixed number
or other object is called a constant symbol or simply a constant.

Example 3: The symbols 7 and e are constant symbols, not variables, since they
stand for specific numbers, not unknown numbers. Constant symbols need not be letters:
numerals like 2, 73, and 5.3 are also constants.

Starting with variables and constants, mathematicians use a variety of other
symbols to build up mathematical expressions and statements. It is possible to describe
the structure of mathematical language in great detail. Rather than do that, let’s just
make one vital point. We’ve already mentioned that equations and inequalities are two
very commeon types of mathematical statements. Expressions like x + y and cos 3z, on
the other hand, are not statemnents at all because they take on numerical values, not truth
values, when we substitute numbers for the mathematical variables in them. We call this
kind of mathematical expression, which represents a mathematical value or object, 2
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term. (Throughout this book, our use of the word “term” is more general than its usual
meaning in high school algebg:a.) The simplest kind of term is a single variable or
constant.

The distinction between statements and terms can be made more clear by drawing
an analogy to English grammar. One of the first things taught in grammar is that a
sentence must have a verb. This is just as true in mathematics as it is in English. The
word “equals” is a verb, and the word group “is less than” ineludes the verb “is” and
functions as a verb. So if we say that one quantity equals another or is less than another,
we have a complete sentence or statement. Therefore, = and < should be regarded as
mathematical verbs that can be used to create symbolic statements. The technical name
for such verb symbols is predicate symbols. In contrast, the word “plus” is not a verb
and so cannot be used to form a statement. Since x + y stands for an object (specifically,
a2 number), it’s essentially a mathematical noun. It’s no more a complete statement than
the phrase “frogs and toads” is a complete English sentence. The technical name for
mathematical symbols like +, -, and v, which are used to form terms that denote
objects, is function symbels or operator symbols.

Example 4: Let’s consider what could be the elements of a symbolic language for
high school algebra. There would have to be at least two sorts of variables: real
variables, that is, variables whose domain is the set of all real numbers, and function
variables, that is, variables whose domain is the set of all real-valued functions. It might
alse bé corivenient to have variables whose domain is the set of all integers. In addition,
it is normal to have an infinite number of constant symbols (including numerals)
representing particular real numbers.

The most basic operator symbols of algebra are the symbols +, -, %, and /. The
minus sign can be used syntactically in two different ways: it can be put in front of a
single term to make a new term, or it can be put between two terms to make a new term.
Technically, there should be two different symbols for these two different operations,
but it is standard to use the $ame one. Some other important operator symbols of algebra
are the absolute value and radical symbols.

Exponentiation represents a rather special case in the grammar of algebra. An
expression like x* is certainly a term, built up from two simpler terms. But instead of -
using a symbol to show exponentiation, we show it by writing the second term to the
upper right of the first term. It would perhaps be better to have a specific symbol for
exponentiation, but traditionally there isn’t one. However, note that most calculators and
computer languages do have a specific key or symbol for exponentiation.

For more advanced work, one might want many other operator symbols, for things
like logarithms, function inverses and compositions, trigonometric functions, and so on.

It is much easier to list all the predicate symbols of algebra than all the operator
symbols. The only atomic predicate symbols are =, <, and > . There are two other
standard inequality symbols, < and >, but they are not atomic (their meaning includes
an “or”). Also since x >y means the same thing as y <x, it is necessary to have only two
atomic predicate symbols.

We have just described the sorts of variables and the constant symbols, operator
symbols, and predicate symbols required for a symbolic language in which high school
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algebra can be done, These are the basic ingredients of what is called a first-order
language. %

Example 5: Now let’s describe a first-order language for the subject of plane
geometry. In the traditional Euclidean approach to this subject, there are three basic,
-undefined types of objects: points, lines, and “magnitudes” (positive real numbers). So
there should be at least these three sorts of variables.

Since some use of arithmetic and algebra is necessary to study geometry, this
language should contain numerals and most of the operator and predicate symbols
mentioned in the previous example. There should also be a few more operator symbols.
Typically, AB denotes the line segment between points 4 and B (and then | 4B | means
the length of that line segment). The symbol £ represents the angle formed by any three
distinct points. Two other notions for which there is no standard operator symbol but for
which symbols might be useful are the (two-directional) line formed by two points, and
the {one-directional) ray from one point through another point.

In addition, geometry requires one more predicate symbol, used to mean that a
certain point is on a certain line. There is no standard symbol for this, and it’s not
particularly important what symbol is used. We could just as well use the symbol “On.”
That is, the notation On(4, L) would mean that point 4 is on line L. This single predicate
symbol is all that’s needed to talk about parallel lines, triangles, rectangles, and so on
(see Exercise 8 of Section 3.4).

Note that operator symbols and even predicate symbols can mix sorts. For
example, the angle symbol uses threc terms representing points to fortm a ierm
representing a number. The On symbol uses one term for a point and another term for
a line to form an atomic sentence.

By the way, have you ever heard it said that mathematics is a language? If you
never thought. about this before, now would be a good time to do so. Mathematics
definitely includes its own language with its own grammar. When studying
mathematical logic or almost any part of higher mathematics, it’s essential to understand
‘and respect this grammar!

3.2 Quantifiers

Section 3.1 discussed some of the specifics of how symbolic mathematical language is
structured. Now it’s time to go one more step beyond propositional logic by infroducing
the concept of quantifiers. The study of quantifiers, together with connectives and the
concepts discussed in the previous section, is called predicate logic, quantifier legic,
first-order logic, or the predicate calculus.

Notation: Two symbols, called quantifiers, stand for the following words:

. Y for “for all”.or “for every” or “for any”

. 3 for “there exists” or “there is” or “for some”
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v is called the universal quantifier; J is called the existential quantifier,

The quantifiers are used i symbolic mathematical language as follows: if P is any
statement, and x is any mathematical variable (not necessarily a real number variable),
then ¥x P and Zx P are also statements.

Example 1: Quantifiers are used in ordinary life as well as in mathematics. For
example, consider the argument: “Susan has to show up at the station some day this
week at noon to get the key. So if T go there every day at noon, I'm bound to meet her.”
The logical reasoning involved in this conclusion is simple enough, but it has nothing
to do with connectives. Rather, it is an example of a deduction based on quantifier Jogic '
(see Exercise 3 of Section 4.3).

When using these symbols, it’s important to stick to the rule given previously for
how they are used. Note that a quantifier must be followed immediately by a
mathematical variable, which in turn must be followed by a statement.

Example 2: Quantifiers often occur in sequence, and this is both legitimate and
useful. For instance, consider the statement, “For any numbers x and y, there’s a number
z that, when added to x, gives a sum equal to y.” This would be written symbolically as
Vx Vy Iz (x + z=y). This is a perfectly well-formed symbolic statement, because each
quantifier is followed by a mathematical variable, ‘which is in turn followed by a
statement. Note that the word “and” in the English statement is misleading; there’s
really no conjunction in it. A symbolic statement may never begin “Vx A ..” or
“Ix A ....” (By the way, if all the variables have the set of real numbers as their domain,
can you tell whether this statement is true or false?)

Notation: When a statement contains a sequence of two or more quantifters of the
same type (V or 3), it’s permissible to write the quantifier just once and then separate
the variables by commas. So the above statement Vx ¥y 3z (...) can also be written
Vx,y 3z (...). This should be viewed as merely an abbreviation for the complete form.

Just as in propositional logic, parentheses are often needed in quantifier logic to
make if clear what the scope of a quantifier is. For example, Vx (P A Q) has a different
meaning from (vx P} A Q. If parentheses are omitted, the usual convention is that a
quantifier has higher priority than any connective. So Vx P A Q would be interpreted as
("xP)AQ.

The most common English words for both quantifiers have already been given.
When you read a quantified statement in English it is usually necessary to follow each
instance of the existential quantifier with the words “such that” For example,
dx ¥y (y + x = y) should be read “There is an x such that, for every y, y +x=»." It
doesn’t make sense to read it “There is an x for every y, ¥y + x = y.” To the
nonmathematician, the words “such that” sound awkward. But there’s no adequate
substitute for them in many cases.
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Definitions: A mathematical variable cccurring in a symbolic statement is called
free if it is unquantified and bound if it is quantified. If a statement has no free variables
it’s called closed. Otherwise it’s called a predicate, an open sentence, an open
statement, or a propositional function.

Example 3: In the statement Vx (x* > 0), the variable x is bound, so the statement
is closed. In the statement Vx 3y (x ~ y = 2z), x and y are bound whereas z is free. So this
statement is open; it is a propositional function of z.

- Example 4: Strictly speaking, it's “legal” for the same variable to occur both
bound and free in the same statement, Consider x =y V Jx (2x = z). Then x is free in the
first disjunct and bound in the second. But most people consider it very awkward and
confusing to have the same variable bound and free in a single statement. Furthermore,
this awkwardness can always be avoided, because a bound variable can be replaced by
any new variable of the same sort, without changing the meaning of the statement. In
the abave example, the rewritten statement x = y V 3u (2u = z) would be more readable

and would have the same meaning as the original, as long as u and x have the same
domain.

Convention: This text follows the convention that the same variable should not
oceur both bound and free in the same statement. You should, too.

%" Itis important to develop an understanding of the difference between free
and bound variables. A free variable represents a genuine unknown quantity—one
whose value you probably need to know to tell whether the statement is true or faise,
For example, given a simple statement like “5 +x = 3,” you can’t determine whether it’s
true or false until you know the value of the free variable x. But a bound variable is
quantified; this means that the statement is not talking about a single value of that
variable:If you are asked whether the statement “Jx (5 + x = 3)” is true, it wouldn’t
make sense to ask what the value of x is; instead, it would make sense to ask what the
domain of x is. (If the domain were all real numbers, the statement would be true; but
if it were just the set of all positive numbers, the statement would be false.) In this way,
a bound varjable is similar to a dummy variable, like the variable inside a definite
integral: it doesn’t represent a particular unknown value.

Notation: If P is any propositional variable, it is permissible and often helpful to
the reader to show some or all of its free (unquantified) mathematical variables in
parentheses. So the notation P(x) (read “P of x”") would imply that the variable x is free
in P, whereas the notation P(x, y) would imply that both x and y are free in P. Some
mathematicians follow the convention that all the free variables of a statement must be
- shown in parentheses in this manner, but we don’t. So, for example, when we write P(x),
there could be other free variables besides x in P.

You may notice that this notation strongly resembles function notation f(x). The
resemblance is deliberate. An open sentence does define a function of its free variables,
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namely -2 truth-valued func__ltionw. This is why open sentences are also called
“propositional functions.” (On’the other hand, it’s important to distinguish between an
open sentence and a mathematical function; the latter is a mathematical object, nor a
statement.)

Another way that this new notation is similar to ordinary function notation involves
substituting or “plugging in” for free variables. Suppose we introduce the notation P(x)
for some statement. If we then write P(y) or P(2) or P(sin 3u), this means that the term
in parentheses is substituted for the free variable x throughout the statement P,

Enough technicalities for now. It’s time to talk about the meaning of the quantifiers
and then look at some examples of how to use quantifier logic to represent English
words and statements symbolically.

Definition: A statement of the form ¥x P(x) is defined to be true provided P(x) is
true for each particular value of x from its domain. Similarly, 3x P(x) is defined to be
true provided P(x) is true for af Jeast one value of x from that domain.

Perhaps you object to these definitions on the grounds that they are circular or just
don’t say anything very useful. In a sense, this objection is valid, but there is no simpler
method (such as truth tables) to define or determine the truth of quantified statements.

Note that this definition of the existential quantifier gives it the meaning of “there
is at least one.” There are also situations in which you want to say things like “There is
exactly one real number such that ... .” It would be possible to introduce a third
quantifier corresponding to these words, but it’s not needed. Section 3.4 explains why.

Also note that our interpretation of 3 is analogous to our interpretation of V as the
inclusive or, since that connective means at least one disjunct is true, rather than exactly
one disjunct is true. It is réasonable and often helpful to think of the existential and
universal quantifiers as being closely related to disjunction and conjunction,
respectively. .

Section 2.1 ended with a few examples of how to translate English statements into
symbolic statements of propositional logic. When quantifiers are involved, these
translations can be somewhat tricky to do correctly, but every mathematician needs to
learn this skill. As in the earlier examples, the first step in these translations is to
determine the atomic substatements of the given statement and then to assign a
propositional variable to each of them. But when quantifiers are involved, it also
becomes very important to identify and show the free mathematical variables present.

This process is much easier if you remember some of the grammatical issues we’ve
talked about: propositional variables stand for whole statements, each of which must
contain a verb, The free mathematical variables of a given propositional variable should
correspond to nouns or pronouns that appear in that statement. For instance, if you
wanted to symbolize a statement that talked about people liking each other, it would be
. reasonable to use a propositional variable L{x, y) to stand for the sentence “x likes y,”
where it is understood that x and y represent people. The verb “likes” involves two
nouns, so there are two free variables. '
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= The following rule of thumb is also helpful: The symbolic translation of a
statement ﬁgust have the same free variables as the original statement.

Example 5: For each of the following, write a completely symbolic statement of

predicate logic that captures its meaning.

(a) All gorillas are mammals.

(b) Some lawyers are reasonable.

(¢) No artichokes are blue.

(d) Bverybody has a father and a mother.

(¢) Some teachers are never satisfied.

(f) (The number) x has a cube root.

(g) For any integer greater than 1, there’s a prime number strictly between it
and its double.

Solution: (a) Certainly, the word “all” indicates a universal quantifier. But if you
have never done such problems before, it might not be clear to you how to proceed. The
key is to realize that what this proposition says is that if something is a gorilla, it must
be a mammal. So within the universal quantifier, what we have is an implication. The
logical structure of the staterent is therefore

Vx (x is a gorilla —* x is a mammal)

Of course, this is not a completely symbolic rendition of the original statement. If
we want to make it completely symbolic, we have to introduce propositional variables
for the atomic substatements. Let G(x) mean “x is a gorilla” and let M(x) mean “x is a
mammal.” Then the original statement can be represented symbolically as
Wx {(G{x) = M({x)). ‘

We have not specified the domain of the variable x in this solution. This 1s because
we don’t want any particular limitations on it. Since the implication inside the quantifier
Jimits things to gorillas anyway, we might as well assume x can stand for any thing
whatsoever, or perhaps any animal. It's not uncommon to use a variable whose domain
might as well be unlimited.

Note that the given English statement has no free variables, and therefore neither
does its symbolic translation. This is true for all the parts of this example except part (£).

Perhaps you see a shorter way of translating the given statement into symbols. Why
not specify that the variable x stands for any gorilla, as opposed to a larger set like all
animals? Then it appears that the given statement can be represented as

¥x (xis amammal) or Vx M(x)
There is nothing wrong with this approach to the problem, and it does yield a shorter,

simpler-looking answer. However, it’s not necessarily helpful in mathematics to
introduce variables with any old domain that’s considered convenient at the time.
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Therefore, you should know the long way of doing this problem and especially that this
type of wording translates intd an implication.

(b) This time, because of the word “some,” the solution requires an existential
quantifier. Notice that, except for replacing the word “all” by the word “some,” the
structure of this statement seems the same as the structure of the previous statement. So
you might automatically think that an implication is involved here too. But if you give
it some thought, you’ll realize that this statement says that there is a person who is a
lawyer and is reasonable. So it’s a conjunction, not an implication. With propositional
variables L(x) and R(x) standing for “x is a lawyer” and “x is reasonable,” the correct
symbolic translation is 3x (L(x) A R(x)). The same shortcut that was mentioned in part
(a)—using a more specific variable—could also be applied to this problem.

IZ"  Pay close attention to the contrast between parts (a) and (b). Again, the
deceptive thing is that the words seem to indicate that the only logical difference
between the two is the quantifier. Yet the “hidden connective” turns out to be different
too. In general, the words “All ...s are ...s” always represent an implication, whereas
“Some ...s are ...s” always translates to a conjunction.

(¢) Here we encounter the word “no,” which would seem to indicate a negation,
perhaps combined with a quantifier. At first thought, it might seem that “No artichokes
are blue” is the negation of “All artichokes are blue.” But remember that the negation
of a statement means that the statement is not true. And “No artichokes are blue” surely
does not mean “It’s not true that ail artichokes are blue.” Rather, it means “It’s not true
- that some artichokes are blue.” So one way to symbolize this statement is to first
symbolize “Some artichokes are blue,” as in part (b), and then to stick ~ in front of it.
Another correct approach, perhaps less obvious, is to realize that the given statement
means the same thing as “All artichokes are nonblue” and to go from there. The details
are left for Exercise 2.

This example illustrates some of the subtleties and ambiguities of English. “No
artichokes are blue” definitely has a different meaning from “Not all artichokes are
blue.” How about “All artichokes are not blue™? Do you think the meaning of this is
clear, or is it ambiguous?

(d) We can see that “cverybody” means “every person.” So the symbolic form of
this statement should begin with a universal quantifier, and it is convenient to use a
variable whose domain is the set of all people. If we then write M(x) and F(x) to
Tepresent, respectively, “x has a mother” and “x has a father,” we can translate the given
statement as

Vx (M(x) A F(x))

This solution isn’t wrong, but it can be criticized as incomplete. A statement like
“x has a mother” should not be considered atomic, because it contains a hidden




54 Chapter 3 Predicate Logic

quantifier. That i, it really means “There is somebody who is x’s mother.” So a better
representation of the statement is obtained as follows: Let M(x, y) mean “y is x’s
mother” and F(x, y) mean “y is x’s father.” Then the statement can be symbolized as

Vx 3y M(x, v) A Jz Flx, 2))

where x, y, and z are people variables. Note that there is a variable for each person under
consideration—person x, mother y, and father z. But they are all bound variables.

(¢) As before, let x be a variable whose domain is the set of all people. Recall from
part (b) that “Some teachers are ...” should be thought of as “There exists someone who
is a teacher and who is ... .” But how do we say someong is never satisfied? This means
that there is no time at which the person is satisfied. So we also need a variable  whose
domain is the set of all possible times. Let’s define T{x) to mean “x is a teacher” and
S(x, f) to mean “x is satisfied at time ¢.” With this notation, the given statement can be
represented as

Hx (T@x) A~ 3t 8{x, 1)

(f) Inpart (c) we saw that words like “has a cube root” include a hidden quantifier.
To say that a number has a cube root is to say that there is a number whose cube is the
given number. So what we want is

3
3y ryy=x) or Fy(y'=x) or Iy (y= V)
Note that, in all of these solutions as well as in the original, x is free whereas y is not.

(2) Letm and n be variables whose domain is the set of all natural numbers (the
positive integers 1, 2, 3, and so on). Then if we write P(n) for “n is a pritne number,” we
can translate the given statement as

¥m [m > 1 3n (m <n<2mN\Pn))]

If you wanted to be technical, you could point out that an extended inequality is not
really atomic, and so the solution should have m <n A n < 2m instead of m <n < 2m.
A more substantial objection would be that the sentence “z is a prime number” is not
atomtic; it can be written symbolically with quantifiers and connectives (see Exercise
3(d)).

By the way, this statement is true. It is a famous result of number theory, known
as Bertrand’s postulate. See Section 8.2 for additional discussion.

Exercises 3.2

(1) For each of the following, determine whether it is a grammatically correct
symbolic statement. (As usual, P, Q, and R are propositional variables, and x, y, and z
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are mathematical variables.) For cach one that’s not grammatically correct, explain
priefly why not. For each one that is grammatically correct, list its free and bound
mathematical variables.

(a) VxP(x,z)+> 3z Q(y, z)

B ZEAYE>0AY<0)

{¢) ¥YxP(x) - 3x

(dy ~Vx~Vy~Vz(2+2=u)

(e} Vx [P(x) 3z (Qz) — ¥y Rix, »))]

(2) Write out both of the symbolic answers described in the solution to Example
5(c).

(3) Translate each of the following into purely symbolic form. For the sake of
uniformity, use the variables x, y, and z to stand for real numbers, and m, n, and k for
integers. Initially, you may use only equations and inequalities as atomic statements. For -
instance, to express “n is a multiple of 10” symbotically, you could write
“TJm (n=10m).” Then you can introduce new propositional variables as abbreviations
for statements that you have written in symbolic form. For example, affer you do part
(d), you can define a propositional variable, perhaps P(n), to stand for your answer to
part (d) whenyoudoparts (and (. =

(a) 1 is the smallest positive integer.
(b) There is no largest integer.
(¢) m is an odd number.
*{d) n isaprime number.
(e) Every prime number except 2 is odd. :
(f) There are an infinite number of prime numbers. Hirt: There’s no simple
way to express this literally. Instead, say that there’s no largest prime nmumber.

*(g) For any nonwholereal mumber x, there’s an integer strictly between x and
x+ 1. Hint: The difficult part of this problem is that you may not use a variable whose
domain is precisely the set of nonwhole real numbers. How can you express
symbolically that x is not a whole number?

(h} Between any two (different) real numbers there’s another one.

(4) (a) Which of the statements in Exercise 3 are closed?
(b) Name at least three of these closed statements that are true.

(5) As before, in the following statements, x, y, and z denote real numbers, and m,

n, and & denote integers. For each statement, first identify its free variable(s); then find
one set of values for its free variable(s) that makes the statement true and one set that
makes the statement false. (Example: the statement 3n (m = n?) has only m as a free
variable. The statement is true for m = 9, and false for m = 7.) Justify your answers.

(@) Imn>5Am*+k*=n?%

(b) Vx,y(x<y<rxz>yz)

(¢) Vxdyxz=yAyz=xA(x#=0—y=x))]

(d) Vx(x*-x2>m)
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(6) The following symbolic statements are true in the real number system. Rewrite
each of them ifi reasonable-sounding English.
(a) Vx[xz0—=3y(p*=x)
(b) Vx[x < 0-r~3y(y=logx)]
(c) =xVy (y=y)
(d) VYa,bfa+0—3x(ax+5b=0)]

(7) Represent each of the following statements symbolically, starting with only the
following atomic statements: P{x, y) for “x is a parent of v,” W(x) for “x is female,” and
x =y (meaning x and y are the same person). All your variables should have the set of
all people as their domain. As in Exercise 3, you may introduce new propositional
variables for statements that you have already written symbolically. Remember that it
is OK to substitute for the free variables of a statement. For example, W(z) would mean
that z is female.

(a) xismale.

(b) xisy’s father.

(c) xisy’s grandmother.

(d) xisy’s sibling. {This means that x and y have the same mother and father,
but they are not the same person.)

(e) xis an only child. {That is, x has no siblings).

(f) xisy’s first cousin.

(g) x hasno uncles.

(h) Some people have brothers but no sisters.

(8) For each of the following statements, introduce a propositional variable (with
free variables indicated) for each of its atomic substatements, and then write a totally
symbolic translation of the given statement. You can define variables with any domain
you want. For instance, for part (a), you might let one of your propositional variables
be S(x), meaning “x likes spinach” (where x can be any person).

(2) Not everyone likes spinach, and no one likes asparagus.

(b) All crows are black, but not all black things are crows.

(c) If someone kisses the frog, everyone will benefit.

(d) There are people who like all vegetables.

(e) It's possible to fool all of the people some of the time and some of the
people all of the time, but not all of the people all of the time.

(f) If everybody bothers me, I can't help anybody.

{g) Anybody who bothers me won’t be helped by me.

(h) Every problem in this section is harder than every problem in Chapter 2.

(i) No one is happy all the time.

() Everybody loves somebody sometime. _

(k) It's not true in all cases that if one person likes another, the second likes the

() There are days when everyone in my dorm cuis at least one class.
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3.3 Working with Quantifiers

In this section we examine some of the methods that mathematicians use to understand
and simplify quantified statements. It was mentioned in Section 3.2 that quantifiers ofien
occur in sequence. Usually, quantifiers of the same type (all 3s or all ¥s) occurring in
sequence are not difficult to understand or to work with, but alfernations of quantifiers
between 3 and V' (in either order) can make statements confusing. In more advanced
studies of the foundations of mathematics, the complexity of statements is measured by
how many alternations of quantifiers they contain. (One well-known mathematical
logician has expressed the opinion that three or four is the maximum number of
alternations of quantifiers that the human brain can deal with.) Let’s begin this section
by looking at sequences of quantificrs, paying particular attention to statements with a
single alternation.

Example 1: Let’s assume that x and y are real variables and consider a simple
atomic statement like x + y = 0. One simple way to quantify this, with no alternations,
is 3x Jdy (x + y = 0). What does this quantified statement say, and is it true or false?
Technically, the statement says that there is a value of x for which Jy (x + y = 0) is true.
But there’s no need to split up the quantifiers in this way. In Section 3.2 it was
mentioned that this statement can be written as Jx,y (x + y = 0), which would be read
“There exist x and y such that x + y = 0.” The point is that the statement simply says that
there is some choice of values for the two variables that makes the equation x +y = 0
hold. Clearly, this is true; for example, we could take x =3 and y = -3. A consequence
of this analysis is that there is no difference in meaning between 3 x, y{x+y=0)and
Ty, x (x +y=0).

Example 2: Similarly; consider the statement vx Vy (x + y = 0). Again, this can
be rewritten as Vx,y (x + y = 0), with the practical consequence that the two quarttifiers
can be considered together. So this statement says that for all choices of values for x and
¥, x +y = 0. This is blatantly false; for example, it fails when x = ¥y =129, As in the
previous paragraph, there is no difference in meaning between Y, y{x+y=0)and
¥y, x (x + y=0). This is a general fact: the order of the variables in a sequence of like
‘quantifiers is unimportant.

Example 3: Now let’s look at the more interesting cases with alternations of
quantifiers. First, consider Vx 3y (x + y = 0). This says that for every value of x, the
statement 3y (x + y = 0) holds. That is, for every choice of a value for x, there must be
a value for y that makes the equation hold. You can see that this is always so. When
x=17, ywould be -7; when x = -2.68, y would be 2.68, and so on. Clearly, the corréct
choice of y can be described in terms of x by the simple formula y = —x, This example
also illustrates a general situation: for a statement of the form Vx Jy P(x, 3)to be true,
- it must be possible to choose y in terms of x (that is, as a Junction of x) so that the inner

~ statement holds for all values of x when y is chosen according to that function,
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Example4: Now let’s reverse the quantifiers and consider -y Vx {(x +y=0). This
says that there i§ a value for y that makes the statement Vx (x +y = 0) hold. That is, there
would have to exist a single value of y, chosen independently of x, that makes the inner
equation work for all values of x. In this situation, it’s not enough to define y in terms
of x. You can see that there is no such value of y, and so the whole statement is false.

These examples illustrate several poinis. For one, they show that the order of
quantifiers does matter when they are of opposite types. Also, in general, a statement
of the form Ty Vx P(x, y)is harder to satisfy (that is, less likely to be true) than the
corresponding statement Vx 3y P(x, y). Additionally, the previous paragraph clarifies
why the words “such that” are usually needed after an existential quantifier. If the
statement Jy Vx (x + y = 0) were read “There is a y for every x ... ,” it would seem to
have the same meaning as “For every x there isa y ... ,” which it doesn’t. The wording
“There is a y such that, for every x, ...” helps reinforce the difference in meaning.

The next theorem generalizes the previous examples of how to decipher statemens
with alternating quantificrs. We omit the proof, since it is quite technical (but see
Exercise 11).

Theorem 3.1: Suppose a statement begins with a sequence of quantifiers,
followed by some inner stafement with no quantifiers. Then the statement is true
provided each existentially quantified variable is definable as a function of some or all
of the universally quantified variables to the left of it, in a way that makes the inner
statement always true. (A function of no variables means a single, constant value. The
words “as a function of” in this theorem could be replaced by “in terms of.”)

‘We just saw how this theorem applies to statements of the form ¥x Jy P(x, y) and
Jy Vx P(x, y). It can also help decipher statements with more alternations of quantifiers.

Example 5: Suppose we had to work with a monster like 3u Vv Iw Vx,y Jz (o)
Our rule says that, to satisfy this, there must be a single value of », a function defining
win terms of v, and a function defining z in terms of v, x, and y that guarantee that the
inner statement is true. Knowing this probably won’t make the problem simple, but it
ought to help.

Proof Preview 4

Theorem: For any two real numbers, there is a real number greater than both of
them.

Proof: In symbols, what we want to prove is ¥x,y 3z (z >x A z> y). By Theorem
3.1, to prove this is true, we must appropriately define z in terms of x and y. One concise
way to do this is to let z = {x| + |y| + 1. We must then show that this makes the
conjunction in parentheses true. [The rest of the proof uses numerous results from high
school algebra, including basic properties of the absolute-value function. Most of these
are proved in Appendix 2.] We know that |x| > x and |y| > 0. Therefore |x| + [y] >
x+0=x,and so [x| + [y] + 1 >x. Similarly, |x| + |y| +1>y. [Mathematicians usually
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omit paft of a proof that is ﬁearly identical to a previous part and instead make a
comment like the previous sentence.] This completes the proof. = ‘

Now let’s apply these ideas to determine the truth or falsity of various statements
in various number systems.

Example 6: For each statement, determine whether it’s true in each of these
pumber systems: the set of all natural numbers (positive integers) IN, the set of all
integers Z., the set of all real numbers R, and the set of all complex numbers C.

() Vx,ydz(x+z=y)
() 3IxVy (x <)
(c) IxVydz{x=yVyz=1)

Solution: (2) For this statement to be true, it must be possible to define z as a
function of x and y so that the equation inside the quantifiers is always true. To
accomplish this, let’s solve the equation x + z = y for z: it becomes z = y + (-x), or
simply z = y - x. Now, in the system of natural numbers, subiraction does not
necessarily vield an answer in that system, so the statement is false. But in the other
three fiimber sysiems; subtraction is always possible, so the statement is true.

(b) This statement begins with 3, so we want to know if there’s a single value
of x that makes the inequality true, whatever y is. The statement says that there is an x
that is less than every y, which at first glance might scem to be saying that there is a
smallest number in the domain. So we might expect this statement to be true in IN, with
x = 1. But let’s be careful! If x = 1, then the statement Vy (x < y) is still false in IV,
because if y = 1, the inequality 1 <1 is false. What the statement reaily says is that there
is a value of x that is less than every possible value of y, including whatever value x has.
And this is false in all standard number systems, because a number is never less than
itself. The lesson here is that two different variables are allowed to have the same value.
So if we want a symbolic statement to say that there is a smallest number, we can’t have
it say that there is an x that is smaller than every y. Rather, it should say that there is an
x that is smaller than every other y. This could be symbolized as Ix vy (y # x > x <y)
or, more simply, as 3x ¥y (x < y). This modified statement is true in IN but false in R.
Inequalities between complex numbers are not even defined, so it is best to say that this
statement (either version) is meaningless in C.

(¢) This statement has two alternations of quantifiers, which makes it more
complex than the previous examples. To make it true, we’d have to find a single value
of x, plus a function defining z in terms of y, so that the inner statement must be true. It’s
probably easiest to consider the relationship of z to y before considering the value of x.
The inner statement is a disjunction, one of whose disjuncts is yz = 1. This equation is
equivalent to z = 1/y, so it looks like that’s how z should be defined from y, Butin IN
and 7., most numbers don’t have reciprocals. Even in R and C, not all numbers have
reciprocals; zero doesn’t. Where does this leave us?
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Well, let’s consider the role of x. The statement says that there’s some particular
value of x such’that every value of y either equals x or has a rec1proca1 It should be clear
that we want to take x = 0. Then, if y = 0, the inner statement is automatically true (so
we can pick any value for z that we want). On the other hand, if y # 0, the inner
statement is true provided z = 1/y. Therefore, the given statement is true in R and in C,
where every nonzero number has a reciprocal. The given statement is false in N and in
Z., however, for whatever value is chosen for x, every other value of y would have to
have a reciprocal. This just isn’t true in these two number systems.

By the way, this statement has a name. It’s the multiplicative inverse property,
although not in its most common form. It is generally included as an axiom for the real
number system.

Definitions: A law of logic is a symbolic statement that is true for all possible
interpretations of the variables, constants, predicate symbols, and operator symbols:
occurring in it, That is, it must be true no matter what domains are chosen for its bound
variables, no matter what values are chosen for its constants and free variables, and so
on. (Only the connectives, the quantifiers, and the equal sign are not subject to
reinterpretation.)

A statemnent Q is said to be a legical consequence of a finite list of statements
P, P, ..., P, iff the single statement (P, AP, A ... AP)) = Qs a law of logic.

Two symbolic statements are cailed logically equivalent provided that each of
thern is a logical consequence of the other.

“These definitions are direct parallels to the definitions of the terms “law of
propositional logic,” “propositional consequence,” and “propositionally equivalent” in
Chapter 2. It follows directly from the definitions that every tautology is a law of logic
(but not the other way around). To distinguish them from tautologies, laws of logic are
sometimes referred to as laws of predicate logic. In the rest of this chapter, “equivalent”
always means “logically equivalent.”

Although the preceding definitions are analogous to concepts defined in Chapter
2, there is a vast practical difference. Although it is always straightforward (using truth
- tables) to test for tautologies, contradictions, propositional equivalence and propositional
consequence, there is absolutely no simple or computational way to decide whether a
staterment with quantifiers is a law of logic, whether two statements are equivalent, and
SO On.

Incidentally, all mathematical statements can be represented in predicate logic (but
not in propositional logic). So, in effect, what’s being said here is that there’s no way
to write a computer program that will correctly answer all mathematical questions, Of
course, if there were such a computer program, the life of a mathematician would be
greatly simplified—maybe even downright boring!

Example 7: Determine which of the following statements are laws of logic and
explain why.
(a) 2+2=4
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) Yxdy (y>x) i

(c) Ux<yandy<z thenx<z.
(d) fx=yandy=zthenx=z.
(e) Vx P(x) implies Jx P(x).

Solution: (a) This example was used in Chapter 2, where we said it was not a
tauntology. Neither is it a law of logic. It’s a true statement of ordinary arithmetic, only
because of the particular interpretation given to the symbols 2, +, and 4, not because of
its logical structure.

(b) This says that for every number, it’s possible to find a bigger one. This is
certainly true in most common number systems, including the real numbers; for
example, we could take y = x + 1. But it’s not a law of logic. For one thing, it depends
on the interpretation of the symbol >. And even if this symbol is given its usual
meaning, the statement is false in a domain with a largest number, like the set of
negative integers. '

(c) Even this isn’t a law of logic; it still depends on how the symbol < is
interpreted! '

- (d) The definition says that the symbol = must be given its standard interpretation.
Therefore, this statement is a law of logic: if x and y have the same value, and so do y
and z, then clearly x and z must also. This statement is called the transitive property
of equality and is usually taken as an axiom of mathematics. By the way, this statement
is not a tautology.

(e) This statement says that if a certain condition is true for all objects in a certain
domiain, it’s true for at least-one. Clearly, such an implication must always be true (see
Exercise 1). So this is a law of logic (but not a tautology).

In Chapter 4, with an axiom system at our disposal, we are able to solve more
complex problems of this type. In the meantime, you are welcome to peck ahead at
Table 4.2, which lists some of the more useful laws of logic.

Negations of Statements with Quantifiers

We have just discussed at some length what has to happen in order for a quantified
statement to be true. We have not tatked about what has to happen for a quantified
statement to be false. It may not seem that this should require a separate treatment, but
it does. Suppose that P is a statement that begins with a sequence of quantifiers. We’ve
said that P is true provided that certain functions and/or constants (corresponding to the
existential quantifiers of P) exist. So we could say that P is false provided that not all

- these functions and/or constants exist. However, often this view of the situation doesn’t
help to figure out whether the statement is false.
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To say that P is false is of course to say that ~ P is true. The statement ~ P begins
with a negationisign, followed by a sequence of quantifiers. It turns out to be useful to
be able to move the negation sign from outside the quantifiers (that is, in front of them)
to inside the quantifiers. The key to doing this is the following theorem, for which we
just provide an informal, commonsense proof.

Theorem 3.2: For any statement P(x):
(@) ~ Vx P(x) is logically equivalent to =x ~ P(x).
(b) ~3x P(x) is logically equivalent to ¥x ~ P(x).

Proof: (a) The statement ~ Vx P(x) says that it’s not true that P(x) holds for every
value of x in its domain. But this means that P(x) is false for at least one value of x,
which is precisely what Jx ~ P(x) says.

(b) This argument is similar and is left for Exercise 2. ®

Theorem 3.2 can be thought of as a direct parallel to De Morgan’s laws. Recall that
those tautologies say that you can distribute a negation into (or factor a negation out of)
a conjunction or disjunction, but in doing so you have to change the inner connective
from A to V, or vice versa. Similarly, Theorem 3.2 says you can move a negation across
a quantifier, in either direction, provided you reverse the quantifier from V to 3, or vice
versa. I like to call these quantifier equivalences De Morgan’s laws for quantifiers.

Example 8: Simplify each of the following statements by- moving negation signs
inward as nmch as possible.
(@) ~Jx,yVz~JuVwP
(b) ~IxVe[e>0—Id(d>0AVu(x-ul<d—|fx) - f)i<e)l -

Solution: (a) By applying Theorem 3.2 three times to the outer negation sign, we
get the logically equivalent statement ¥x,y Jz ~ ~ Ju Vw P. But we know from Chapter
2 that ~ ~ Q is always equivalent to Q, and therefore the given statement is logically
equivalent to the shorter one Vx,y 3z,u Vw P. We could also have achieved this answer
by moving the inner negation sign outward.

(b) This is a much more complex example than the previous one, and simplifying
it requires both Theorem 3.2 and a couple of tautologies. Here are the steps required (but
not the result of each step; see Exercise 4): : _

(1) Use Theorem 3.2 to move the negation sign through the outer pair of
quantifiers.

(2) Now the statement inside the outer two quantifiers has the form ~ (P — Q).
So we car use tautology 19 to change this to the equivalent form P A~ Q.

(3) Now the negation sign can be moved inside the quantifier 3d, using
Theorem 3.2 again.

(4) Now the negation sign is in front of a conjunction, Apply the appropriate
De Morgan’s Iaw to it. :
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(5) Use Theorem 3.2 for the last time to move the negation sign inside the last
quantifier.
(6) Finally, use the same propositional equivalence as in step 2 to move the
negation sign inside the innermost implication.
Exercise 4 asks you to write out the results of each step of this transformation. For
now, here is the final form after step 6:

v Je[e>0AVd (~d>0V Tu (x - ] <d A~ |f(X) - f@)] < e))]

This simplified statement is no shorter than the original, but having the negation
symbols inside the quantifiers is an important advantage for most purposes. The two
remaining negation symbols in the rewritten statement can be eliminated. First, use
tautology 20 to rewrite the disjunction~d>0V ... as d>0— ... And if we are also
permitted to use basic facts about the real number system, the statement
~f(x) - f(u)| < ecanbe shortened to |f(x) - f(u)| > e. With this last change, we get a
statement that is strictly speaking not logically equivalent to the original but is
equivalent to it for ail practical purposes. :

Incidentally, this example is not some random concoctior. With the beginning
symbols ~ Zx dropped, the given statement is precisely the definition of what it means
for the function fto be continuous at the number x. So the statenient says that fisnot
continuous at any point. Believe it or not, such functions do exist. A standard example
is given in Section 9.3.

Example 9: Consider the statement “Everybody has a friend who is always
honest.” T

(a) Write a symbolic translation of this statement.

(b) Write the negation of this symbolic statement and then simplify it as in the
previous examples.
(c) Translate your answer to part (b) back into reasonable-sounding English.

Solution: (a) Since the word “a” in this statement means “at least one,” our
symbolic translation has to contain three quantifiers based on the words “Everybody,”
“3” and “always.” Two of these involve people, and one involves time; so we need
variables for both. Let’s use x and y as people variables and ¢ as a time variable. Let’s
write F(x, y) as a propositional variable standing for “xis a friend of y.” It’s tempting to
introduce a propositional variable that stands for “x is honest,” but note that the given
statement indicates that a person’s honesty may vary over time. S0 we write H{x, ) to
stand for “x is honest at time £.” With this notation, the given statement can be
represented as Vx Jy (F(y, x) AVt H(y, ).

{b) If we start with the negation of the solution to part (a) and apply Theorem
32 repeatedly and then tautology 19, we finally arrive at the statement
Ax vy (F(y, x) = 3t~ HE, 9).

(¢) It’s not easy to put the solution to part (b) into smooth-sounding English,
but the best try might be, “There are some people, all of whose friends are sometimes
dishonest.” Perhaps you can do better than this. Of course, the original statement can
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easily be negated in words as “Not everybody has a friend who is always honest.” But
that’s not what the problem asks us to do.

Proof Preview 5

Theorem: There is no smallest positive real number.

Proof: For convenience, let x and y be variables whose domain consists of all
positive real numbers. [This is perfectly legitimate![ In symbols, the statement that there
is a smallest positive real number would be 3x ¥y (x < »). So what we want to prove is
~ 3x Vy (x < ¥). Now, by applying Theorem 3.2 to this, we can change it to
Wx 3y ~ (x < y), or more simply, ¥x Ty (v <x). To verify that this last statement is true, we
recall Theorem 3.1: we must define y as a function of x in such a way that the inequality
y < x must be true. [Before reading further, can you see how to do this?] Lety = x/2, Since
x is positive, so is x/2. And since x is positive and 1/2 < 1, we can multiply both sides of
this inequality by x to obtain x/2 < x. This completes the proof. &

Some Abbreviations for Restricted Quantifiers

We conclude this section with a few useful abbreviations, or shorthand notations,
involving quantifiers; Recall from the previous section that a sentence of the form “All
.5 are ...s” is an implication, whereas “Some ...s are ...s” generally represents a
conjunction. So, for example, “Every nonnegative number has a square root” becomes,
in predicate logic, ¥x (x = 0 — Jy (3 = x)). Statements like this, in which the scope of
a quantified real variable is restricted by an inequality, are so common that it’s worth
having shorter ways of writing them.

Notation: Let P be any statement, x any variable whose domain has an ordering
(for example, real numbers, integers, and so on), and t any term denoting a member of
that domain. (So x has to be a single letter, but t could be a single letter, a constant like
-4, or a more complicated expression like 3y + 7.) Then

. Vx<tP isan abbreviation for Vx{(x<t—P).

. dx<tP is anabbreviation for Ix (x <t AP).

Similar abbreviations are used with the symbol < replaced by any of the three
symbols >, <, or 2.

Even though sets are not discussed in detail until Chapter 5, let’s introduce some
abbreviations for a variable that is restricted to a set, since this notation is very similar
to the notation just introduced.

Notation: Let P be any staternent, x any mathematical variable, and t any term that
denotes a set. (So t could be a single letter standing for a set, or a more complicated
expression like 4 U B.) Then
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. VxetP isan abbreviation for Vx (x €t P).

. JxetP is‘an abbreviation for Jx (xetAP)

Example 10: Writc the following statements in symbolic form, using the
abbreviations that have just been defined:
(a) Every positive number has a positive cube root, and every negative number
has a negative cube root.
(b) For every ncnnegative number x, there’s an element of set B strictly
between x and x + L.

Solution: (a) vx>03y>0 ()’ =x) AVx<0Iy<0(’ =x)
(b) Vx203dyeB{x<y<x-+1)

Here are some useful equivalences that are similar to Theorem 3.2 but adapted to
restricted-quantifier notation. Their proofs are left for Exercise 3.

Theorem 3.3: {(a) ~Jdx<t P islogically equivalent to Vx<t~P.
(b) ~V¥x<tP is logically equivalent to Ix <t ~P.
~ Furthermore, both of these equivalences still hold with the symbol < replaced by
>, %, 2,0 €. :

Exercises 3.3

(1) What assumption must be made about the domain of the variable x for Example
7(e) to be correct? Has this assumption about domains been made in this chapter?

(2) Prove Theorem 3.2(b).

(3) Prove Theorem 3.3. Instead of doing this by mimicking the proof of Theorem
3.2, use the result of that thecrem, the definitions of restricted quantifiers, and some
tautologies to provide a more rigorous proof.

(4} Write out each step of the transformation described in Example 8(b).

(5) Determine whether each of the following statements is frue or false if all
variables have the set of real numbers as their domain. Explain briefly.
(@ vx3y(F=y)
() Vydx (=)
{c) dxyx+5=y)
@ YxWyIzVu(x+z=y+u)
(&) VxVy 3z +y*=2)
(£) Fx[vy o’ =y) A~Vy (x=Y)]
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(6) Repeat Exercise 5 with all variables having the set of nonnegative integers as
their domain. %

*(7) Determine whether the following statements are laws of logic. Explain.
(a) JxP(x)— vxP(x)
(b) [FxVyP(x,»)] — [Vy Jx P(x, y)]
(¢) [¥y3xPx, )] — [Hx Vy Plx, y)]
(@) [Fx @)V Q)]+ [3x P(x) V Ix Q(x)]
(&) [Fx @PE)AQX)] < [FxP(x) A Fx Q(x)]
) VYx,v,z,ulx=yAz=u— (P(x,z) < P(y, u))]

(8) Simplify each of the following statements by moving negation signs inward as
much as possible.

(a) ~Vx,ydz(PV~VuQ)
() ~(~IxP=Vy~Q)
€} ~Vx~Iy~Vz(PA~Q)

(9) Write each of the following statements in symbolic form, using the restricted
quantifier notation introduced in this section.
(a) Every number in set 4 has a positive square root.

(b) Given any real mumber, there are integers bigger than it and integers
smaller than it

(c} Every member of amemberofdisa member of A.
{d) No positive number equals any negative number,

(10} Prove the following. Your proofs can be based on the proof previews in this
section.
(a)-For any real number x, there’s a number that is larger than both x and x*.
(b) Given any two unequal real numbers, there’s a number between them.
{c) There is no largest real number.
(d) There is no largest negative real number.

*(11) Prove Theorem 3.1 for the special case of statements with only one existential
quantifier. Since we haven’t studied functions yet, don’t expect to do this very
rigorously. Just try to give a commonsense argumert.

3.4 The Equality Relation; Uniqueness

In Section 3.1, the idea of predicate symbols was introduced. Recall that these are
symbols that act as mathematical verbs and are used to form atomic statements in
predicate logic. Of course, different branches of mathematics require different predicate
symbols. However, whatever differences may exist in the languages of different
branches of mathematics, there is one predicate symbol common to all of them, and that
is the equal sign. In other words, every branch of mathematics (as well as all of science
and many other subjects) makes use of equations. Furthermore, the rules for working
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with equations do not change between different areas of mathematics and science.
Because of this universality of'the use of equations, the principles involved are usually
included in the study of predicate logic.

You are familiar with equatioris and how to use them, and there will be no new
tricks unleashed on you regarding them. In the next chapter, we begin using the axiom
system contained in Appendix 1. But it won’t hurt to take a look now at the standard
axioms pertaining to equations, which are group III of the axioms. You can see that
there are only four of them, and they are all very straightforward. The first one,
reflexivity, says that anything equals itself. The second, symmetry, says that equations
are reversible. (Symmetry is normally stated as a conditional, but it can be thought of
as a biconditional. You might want to think about why this must be so.) The third,
transitivity, says that “two things equal to a third thing are equal to each other.” It is this
axiom that allows you to write a long sequence of equations and then conclude that the
first expression in the whole sequence equals the last one. The last axiom, substitution
of equals, is a bit more involved. What it says is that if two things are equal, then they
are completely interchangeable. It is this axiom that also implies that it’s OK to change
poth sides of an equation, as long as the same thing is done to both sides. A more
thorough discussion of these axioms and how to use them appears in Section 4.4.

Uniqueness

Recall that the existential quantifier has the meaning “there is at least one,” which
makes it analogous to the “inclusive-or” meaning of the disjunction connective. In
mathematics we often want to say that there is exactly one number (or other object)
satisfying a certain condition. In mathematics, the word “unique” is used to mean
“gxactly one.” Should we introduce a third quantifier with this meaning? There is
nothing wrong with doingso, but it’s important to realize that this meaning can be
captured with the symbols already defined, just as the exclusive or can be defined or
written in terms of the other connectives.

There are several different-looking but equivalent ways to say that there’s a unique
object satisfying a certain condition. All these versions use the equality symbol; in fact,
the desired meaning cannot be captured without it. For example, one way to express
uniqueness is to say “There’s an object that satisfies the condition and that equals every
object that satisfies the same condition.” Another way is “There’s an object that satisfies
the condition, and there are not two different ones satisfying it.” A third way, closely
related to the previous one, is “There’s an object that satisfies the condition, and if any
two objects satisfy it, they must be equal.” Finally, a very concise way is “There’s an
object such that satisfying the condition is equivalent to.being that object.” Let’s state
the content of this paragraph more formally.

Theorem 3.4: The following four statements are equivalent, for any statement
P(x) and any mathematical variables x and y.
(@) 3x (PeYAVY (P() 2 x=y))
®) IxPE)A~Txy (PE)APOP) Ax #y)
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(c) Ax P(x) A Vx,y (P(x) A P(y) —+x=y)
(d) IxWPQ) > y=x)

Proof: We give a relatively informal proof of this theorem that is still rigorous
enough to illustrate several of the proof methods that are introduced in the next chapter.
To prove that three or more statements are equivalent, the most common procedure is
to prove a cycle of implications. So we show that statement (a) implies statement (b),
then that (b) implies (c), that (c) implies (d), and finally that (d) implies (a).

(a) implies (b): Assume that statement (a) is true. Since there exists an x satisfying
the statement after the first quantifier, let’s say (for “definitencss™) that % is an object
satisfying it. Then P(%) is true; this implies that the first conjunct of statement (b) holds.
Also, for any x and y, if P(x) and P(y) both hold, then we know that x = % and ¥=k By
transitivity, this implies x = y. So there cannot be two different objects satisfying P, and
that is what the second conjunct of (b) says.

(b) implies (c): See Exercise 1.

(c) tmplies (d): Assume statement (c} is true. Since Jx P(x) holds, let’s say that &
is an object satisfying P(k). We are done if we can show that, for this &, Yy (P(y) +
y=k). Consider any y. If y = k, then P(y) holds, since we know P(%). Conversely, if P(y)
holds, then we have both P(k) and P(), and so by the second part of statement (c), y = £.
So we have established that P(y) <= y = &, and since this is for any y, we are done.

(d) implies (a): See Exercise 1. ®

Notation: For any statement P and any mathematical variable x, we write Jlx P,
read “There is a unique x such that P,” to stand for any one of the equivalent statements
of Theorem 3.4,

It is important to keep in mind that this notation, like the restricted-quantifier
notation defined in Section 3.3, is just an abbreviation for a longer form. In particular,
when you want to prove that there is a unique object satisfying some condition, you
must prove one of the forms listed in Theorem 3.4. Form (c) tends to be the easiest to
work with.

Proof Preview 6

Theorem: If a and b are real numbers with & = 0, then the equation ax + b =0 has
a unique solution.

Proof: Assume that g and b are real numbers and a = (0, We must show that the
equation ax + b = 0 has a unique solution. /We work with form (c) as given in Theorem
3.4. Think of P(x) as the equation ax + b = 0.] First we must prove existence—ithat there
is at least one solution. Let x = -b/a. [Note that we do need the condition that a # 0. ]
A little elementary algebra makes it clear that this value satisfies the equation. Now we
must prove uniqueness—that if there are two solutions, they must be equal. So assume
that x and y are both solutions. Butif ax + b=0and ay + 5 =0, then ax + b = ay+b,
by the transitive property of equality. Subtracting b from both sides yields ax = ay, and
then dividing both sides by a gives x = y. This completes the proof. B
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Uniqueness plays an important role with respect to definitions in mathematics.
Normally, it makes no sense to defihe something in a permanent way unless we know
the object being defined is unique.

Example 1: To illustrate this, suppose we know that for every real number x, there

is a larger nurmber. It would be silly to write a definition that says, “Given x, let v be the

* number that is larger than x,” becausc there are many such numbers. It would make

more sense to say “Givenx, let y be some number that is larger than x.” This is fine as

a temporary definition within a proof; in Chapter 4 we call this type of naming
existential specification. But it’s not appropriate as a permanent definition.

On the other hand, suppose we know that for every real number x, there is a unique
pumber y such thatx +y=0. (Theorem A-3 in Appendix 2 proves this.) Then it makes
sense to have a permanent definition saying “Given x, let —x be the number such that
x+ (~x) = 0.” Note that having the variable x appear in the notation —x conveys the fact
that this number depends on x.

Exercises 3.4

(1) (a) Prove the (b) impties {c) part of Theorem 34,
(b) Prove the (d) implies (a) part of Theorem 3.4.

(2) Write symbolic statements that say:
(a) There are at least two objects such that P(x).
(b) There are at least three objects such that P(x).

*(c) There are at least n objects such that P(x). Here, # is any unspecified
positive integer. Since you don’t know its value, you need to use at least one “.in
your answer.

(3) Write symbolic statements that say:
(a) There are exactly two objects such that P(x).
(b) There are exactly three objects such that P(x).
*(¢) There are exactly n objects such that P(x) (see the comments for Exercise

2{c)).

*(4) Using the method of Exercise 2, do you think it’s possible to write a single
symbolic statement that says that there are an infinite number of objects such that P(x)?

(5) Redo Exercise 5 of Section 3.3 replacing every 3 with 21!
(6) Redo Exercise 6 of Section 3.3 replacing every 3 with 3!
(7) Translate each of the following into symbolic form, using the instructions for

Exercise 7 of Section 3.2. You can use the abbreviation 3!; in fact you should use this

quantifier (as opposed to J) whenever you think it’s the intended meaning of the
staternent.
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(2) Everybody has a father and a mother.
(b) :Not everybody has a sister.
{c) Nobody has more than two grandmothers.
(d) Some people are only children.
(e} Some people have only one uncle.
*(f) Two people can have a common cousin without being cousins,

(8) This exercise relates to Example 5 of Section 3.1. Translate each of the
following into symbolic form, following the instructions of Exercise 7. You need to
make frequent use the predicate symbol On. For uniformity, use the variables 4, B, and
C to represent points and L, M, and N to represent lines.

(a) Lines L and M are parallel (that is, they have no point in comimen).

(b) Any two distinct lines meet in at most one point.

(c) Given any two distinct points, there’s a unique line that they’re both on,

(d) Iflines L and M are parallel, then any line that is paralle] to L (except for
M) is also parallel to M.

{e) Pythagoras’s theorem (use the symbols for angle and distance referred to
in Section 3.1).

(f) Given any line and any point not on that line, there’s a unique line through
that point that is parallel to the given line. (This is one version of the famous Paralle]
Postulate of plane geometry.)

(g) Points 4, B, and C are collinear, and B is between 4 and C.

(h) C'is the midpoint of the line segment 4B.

(9) (2) Which of the equality axioms remain truc if the symbol = is replaced
throughout with the symbol < (and all variables are assumed to represent real numbers)?
(b) Repeat part (a) using the symbol <.

(10) Which of the equality axioms remain true if all the variables are assumed to
represent triangles, and the symbol = is replaced by the words “is similar to.” Recall that
two triangles are called similar if they have the same angles.

(11) Prove:
(2) Ifx and y are real numbers, there is a unique number z such that z — x =
Y-z
*(b) Ifxand y are unequal real numbers, there is a unique number z such that
2~ x| = |z -y,
*(¢) Ifm and n are unequal odd integers, there is a unique integer & such that
|k~ m|=|k-nl|.
In parts (b) and (c), proving uniqueness requires extra care because of the absolute
value signs. A picture might help you to see what’s going on.

(12) Prove the following. You need to use some standard results from first-year

calculus. You also need to analyze the quantifier structure of the statement you are
proving.
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N mglazmm\fry graph of the form y =ax’ + bx + ¢, witha > 0, has a unique
(b) Every graph of the formy = ax’ + bx’ + ex + d, wi i
- I iy c , with @ # 0, has a unique

Suggestions for Further Reading: The same references tha
y t w
the end of Chapter 2 apply to this chapter as well. ere suggested at




