
Solutions – Homework 1 Math 240, Fall 2012

6.1

4. If the curve is x(t) = (cos 4t, sin 4t, 3t) then its derivative is x′(t) = (−4 sin 4t, 4 cos 4t,
3). The arclength differential is

ds = ‖x′(t)‖ dt

=

√
(−4 sin 4t)2 + (4 cos 4t)2 + 32 dt

=
√

16 sin2 4t+ 16 cos2 4t+ 9 dt

=
√

16 + 9 dt =
√

25 dt = 5 dt.

Now we can integrate∫
x

f ds =

∫ 2π

0

(
3 (cos 4t) + (cos 4t) (sin 4t) + (3t)3

)
5 dt

= 15

∫ 2π

0

cos 4t dt+ 5

∫ 2π

0

sin 4t cos 4t dt+ 135

∫ 2π

0

t3 dt.

Use the substitution u = 4t to integrate∫ 2π

0

cos 4t dt = 1
4

sin 4t
∣∣∣2π
0

= 0

and use u = sin 4t to integrate∫ 2π

0

sin 4t cos 4t dt = 1
8

sin2 4t
∣∣∣2π
0

= 0.

Then all that’s left is ∫
x

f ds = 135

∫ 2π

0

t3 dt = 135
4
t4
∣∣∣2π
0

= 540π4.

6. The given path is

x(t) =


(2t, 0, 0) if 0 ≤ t ≤ 1,

(2, 3t− 3, 0) if 1 ≤ t ≤ 2,

(2, 3, 2t− 4) if 2 ≤ t ≤ 3.

Its derivative is

x′(t) =


(2, 0, 0) if 0 < t < 1,

(0, 3, 0) if 1 < t < 2,

(0, 0, 2) if 2 < t < 3.



Note that x′(t) is undefined when t is 0, 1, 2, or 3. To integrate along x, split it up
into differentiable pieces:∫

x

f ds =

∫ t=1

t=0

f ds+

∫ t=2

t=1

f ds+

∫ t=3

t=2

f ds.

In each case, x′(t) has only one nonzero component, so the arclength differential is easy
to calculate:

‖x′(t)‖ =


2 if 0 < t < 1,

3 if 1 < t < 2,

2 if 2 < t < 3.

Now we can put everything in terms of t and integrate:∫
x

f ds =

∫ 1

0

(2t+ 0 + 0) 2 dt+

∫ 2

1

(2 + 3t− 3 + 0) 3 dt+

∫ 3

2

(2 + 3 + 2t− 4) 2 dt

= 2

∫ 1

0

2t dt+ 3

∫ 2

1

3t− 1 dt+ 2

∫ 3

2

2t+ 1 dt

= 2t2
∣∣1
0

+ 3
(
3
2
t2 − t

)∣∣2
1

+ 2
(
t2 + t

)∣∣3
2

= 2 + 21
2

+ 12 = 49
2
.

22. Recall that you can calculate the work done by a force field on a moving particle by
integrating the force field over the path that the particle traverses. So we need to find
the value of ∫

x

F · ds =

∫
x

x2y dx+ z dy + (2x− y) dz

where x is the straight line from (1, 1, 1) to (2, −3, 3). It has the parameterization
x(t) = (1 + t, 1− 4t, 1 + 2t) where t goes from 0 to 1, and taking the derivative gives
x′(t) = (1, −4, 2) . To finish up, substitute and integrate:∫

x

F · ds =

∫ 1

0

(1 + t)2 (1− 4t) dt+ (1 + 2t) (−4) dt+ (2 (1 + t)− (1− 4t)) 2 dt

=

∫ 1

0

(
−4t3 − 7t2 − 2t+ 1

)
+ (−8t− 4) + (12t+ 2) dt

=

∫ 1

0

−4t3 − 7t2 + 2t− 1 dt

= −t4 − 7
3
t3 + t2 − t

∣∣1
0

= −10
3
.

34. The area of one side of the fence is given by∫
x

h ds.

We can parameterize the quarter circle by x(t) = (5 cos t, 5 sin t) where t goes from
0 to π

2
. It has derivative x′(t) = (−5 sin t, 5 cos t) . To do the integral, first find the



arclength differential

ds = ‖x′(t)‖ dt

=

√
(−5 sin t)2 + (5 cos t)2 dt

=
√

25 sin2 t+ 25 cos2 t dt

=
√

25 dt = 5 dt.

The value of the integral is∫
x

h ds =

∫ π/2

0

(10− 5 cos t− 5 sin t) 5 dt

= 25

∫ π/2

0

2− cos t− sin t dt

= 25 (2t− sin t+ cos t)
∣∣π/2
0

= 25π − 50.

38. Let’s take the book’s hint and take the derivative of the equation for the sphere (using
the chain rule).

x2 + y2 + z2 = c2

d

dt

(
x2 + y2 + z2

)
=

d

dt
c2

2x
dx

dt
+ 2y

dy

dt
+ 2z

dz

dt
= 0

If x(t), y(t), and z(t) are the coordinate functions of our path, x(t), then what this
tells us is that

2x(t)x′(t) + 2y(t)y′(t) + 2z(t)z′(t) = 0

for any t. Now if we try to integrate F we get∫
x

F · ds =

∫
x

x dx+ y dy + z dz

=

∫
x(t)x′(t) dt+ y(t)y′(t) dt+ z(t)z′(t) dt.

If 2x(t)x′(t) + 2y(t)y′(t) + 2z(t)z′(t) = 0 then we can certainly divide by two to see
that x(t)x′(t) + y(t)y′(t) + z(t)z′(t) = 0. As the integrand in the integral above is 0, we
can conclude that

∫
x
F · ds = 0.

6.2

6. First, let’s calculate the line integral part of Green’s theorem. We can use our usual
parameterization for a circle: x(t) = (r cos t, r sin t) where r is the radius of the circle
and t goes from 0 to 2π. The derivative is x′(t) = (−r sin t, r cos t). Since we want to
traverse the boundary of D with the region on the left, we need to go counterclock-
wise around the outer circle and clockwise around the inner. Recall that integrating



clockwise over a curve gives you minus the value of the counterclockwise integral, so
we want to find ∮

C3

F · ds−
∮
C2

F · ds,

where Cr is the circle with radius r, oriented counterclockwise. We integrate∮
C3

F · ds =

∮
C3

(
x2y + x

)
dx+

(
y3 − xy2

)
dy

=

∫ 2π

0

(
−81 sin2 t cos2 t− 9 sin t cos t

)
dt+

(
81 sin3 t cos t− 81 sin2 t cos2 t

)
dt

= −162

∫ 2π

0

sin2 t cos2 t dt− 9

∫ 2π

0

sin t cos t dt+ 81

∫ 2π

0

sin3 t cos t dt

= −81
2

∫ 2π

0

sin2 2t dt− 9 sin2 t
∣∣2π
0

+ 81 sin4 t
∣∣2π
0

= −81
4

∫ 2π

0

1− cos 4t dt− 9 sin2 t
∣∣2π
0

+ 81 sin4 t
∣∣2π
0

= −81
4

(
t− 1

4
sin 4t

)∣∣2π
0
− 9 sin2 t

∣∣2π
0

+ 81 sin4 t
∣∣2π
0

= −81
2
π

and similarly∮
C2

F · ds =

∫ 2π

0

(
−16 sin2 t cos2 t− 4 sin t cos t

)
dt+

(
16 sin3 t cos t− 16 sin2 t cos2 t

)
dt

= −32

∫ 2π

0

sin2 t cos2 t dt− 4

∫ 2π

0

sin t cos t dt+ 16

∫ 2π

0

sin3 t cos t dt

= −4

∫ 2π

0

1− cos 4t dt− 4

∫ 2π

0

sin t cos t dt+ 16

∫ 2π

0

sin3 t cos t dt

= −4
(
t− 1

4
sin 4t

)
− 4 sin2 t+ 16 sin4 t

∣∣2π
0

= −8π.

So the value of the entire integral is −81
2
π − (−8π) = −65

2
π.

Now for the double integral. We want to calculate∫∫
D

(
∂

∂x

(
y3 − xy2

)
− ∂

∂y

(
x2y + x

))
dA =

∫∫
D

(
−y2 − x2

)
dA.

Polar coordinates help a lot with this one because a) it’s a circular region and b) the
integrand turns out to be very simple in polar coordinates. The limits of integration
will be 0 ≤ θ ≤ 2π and 2 ≤ r ≤ 3. Remember that in polar coordinates dA = r dr dθ.

−
∫∫

D

x2 + y2 dA = −
∫ 2π

0

∫ 3

2

r2 r dr dθ

= −2π
(
1
4
r4
)∣∣3

2

= −2π
(
81
4
− 16

4

)
= −65

2
π



16. As you will see in problem 17, it is a consequence of Green’s theorem that you can find
the area of a plane region using either of the integrals

Area of D =

∮
∂D

x dy = −
∮
∂D

y dx.

Let’s use the first one. Similar to the previous problem, we need to integrate∮
C

x dy −
∮
E

x dy,

where C is the circle and E is the ellipse. We’ll use the usual parameterization for the
circle with radius 5: x(t) = (5 cos t, 5 sin t) and x′(t) = (−5 sin t, 5 cos t) where t goes
from 0 to 2π. An ellipse is similar to a circle except that the coefficients of sin and cos
are different: y(t) = (3 cos t, 2 sin t) so y′(t) = (−3 sin t, 2 cos t) and again t goes from
0 to 2π. Integrating over the circle gives us∮

C

x dy =

∫ 2π

0

(5 cos t)( 5 cos t) dt

= 25

∫ 2π

0

cos2 t dt

= 25
2

∫ 2π

0

1 + cos 2t dt

= 25
2

(
t+ 1

2
sin 2t

)∣∣2π
0

= 25π

and over the ellipse is ∮
E

x dy =

∫ 2π

0

(3 cos t)( 2 cos t) dt

= 6

∫ 2π

0

cos2 t dt

= 3
(
t+ 1

2
sin 2t

)∣∣2π
0

= 6π.

So the area of the region is 25π − 6π = 19π.

6.3

6. Since the domain of F is all of R2, we can check whether it is conservative by seeing if
∇× F = 0. As F is a two-dimensional vector field, its curl is

∇× F =

(
∂

∂x

(
x2y

1 + x2

)
− ∂

∂y

(
xy2

(1 + x2)2

))
k

=

(
2xy(1 + x2)− 2x3y

(1 + x2)2
− 2xy

(1 + x2)2

)
k

=
2xy + 2x3y − 2x3y − 2xy

(1 + x2)2
k = 0.



The curl of F is 0, which means that it is a conservative vector field. If f is a scalar
potential function for F then we will need

∂f

∂x
=

xy2

(1 + x2)2
and

∂f

∂y
=

x2y

1 + x2
.

Let’s integrate ∂f
∂y

with respect to y, since it looks easier than integrating ∂f
∂x

with
respect to x.

f(x, y) =

∫
∂f

∂y
dy =

∫
x2y

1 + x2
dy

=
x2

1 + x2

∫
y dy

=
x2

1 + x2
(
1
2
y2 + g(x)

)
,

where g is some function depending on x but not on y. Now differentiate our expression
for f(x, y) with respect to x:

∂f

∂x
=

2x(1 + x2)− 2x3

(1 + x2)2
(
1
2
y2 + g(x)

)
+

x2

1 + x2
g′(x)

=
2x

(1 + x2)2
(
1
2
y2 + g(x)

)
+

x2

1 + x2
g′(x)

=
xy2

(1 + x2)2
+

x

1 + x2

(
2

1 + x2
g(x) + xg′(x)

)
.

We want ∂f
∂x

to be equal to the first coordinate function of F, which is xy2

(1+x2)2
. Thus,

we need to choose g so that

2

1 + x2
g(x) + xg′(x) = 0.

An obvious choice is g(x) = 0. This makes our potential function

f(x, y) =
x2

1 + x2
(
1
2
y2
)

=
x2y2

2(1 + x2)
.

20. The vector field F will be conservative if ∇× F = 0. We can calculate the curl of F:

∇× F =

(
(sin y + y sinx)− ∂M

∂y

)
k,

so F will have curl 0 if
∂M

∂y
= sin y + y sinx.



Find M by integrating this expression with respect to y.

M(x, y) =

∫
∂M

∂y
dy =

∫
sin y + y sinx dy

= − cos y + 1
2
y2 sinx+ f(x),

where f is any (C1) function depending on x but not y.

26. The integral will be path independent if the integrand is a conservative vector field.
Our vector field is F(x, y) = (3x− 5y)i + (7y − 5x)j and its curl is

∇× F =

(
∂

∂x
(7y − 5x)− ∂

∂y
(3x− 5y)

)
k = (−5− (−5))k = 0,

so the integral is indeed path independent. We can evaluate it directly by parameteriz-
ing the path as x(t) = (1 + 4t)i+ (3− t)j where t goes from 0 to 1. Then x′(t) = 4i− j,
and we can integrate∫

x

F · ds =

∫ 1

0

(3(1 + 4t)− 5(3− t)) 4 dt+ (7(3− t)− 5(1 + 4t)) (−1) dt

=

∫ 1

0

95t− 64 dt = 95
2
t2 − 64t

∣∣1
0

= −33
2
.

The other way we can evaluate the integral is by computing f(5, 2)− f(1, 3), where f
is a scalar potential function for F. We want to have

∂f

∂x
= 3x− 5y and

∂f

∂y
= 7y − 5x.

Integrating ∂f
∂x

with respect to x gives

f(x, y) =

∫
∂f

∂x
dx =

∫
3x− 5y dx = 3

2
x2 − 5xy + g(y),

for a C1 function g. Now let’s check ∂f
∂y

.

7y − 5x =
∂f

∂y
= −5x+ g′(y)

We need g′(y) = 7y, so let’s set g(y) = 7
2
y2. Our potential function turns out to be

f(x, y) = 3
2
x2 − 5xy + 7

2
y2.

Finally, we can calculate∫
x

F · ds = f(5, 2)− f(1, 3)

= 3
2
(25)− 5(10) + 7

2
(4)−

(
3
2
− 5(3) + 7

2
(9)
)

= −33
2
.



7.1

4. (a) Our parameterized surface is X(s, t) = (s2 cos t, s2 sin t, s). Its partial derivatives
are

∂X

∂s
= (2s cos t, 2s sin t, 1) and

∂X

∂t
=
(
−s2 sin t, s2 cos t, 0

)
.

We can find a normal vector to the surface by taking the cross product of its
tangent vectors.

N(−1, 0) =
∂X

∂s

∣∣∣
(−1,0)

× ∂X

∂t

∣∣∣
(−1,0)

= (−2 cos 0, −2 sin 0, 1)× (−(−1)2 sin 0, (−1)2 cos 0, 0)

= (−2, 0, 1)× (0, 1, 0) = (−1, 0, −2).

(b) The tangent plane at (−1, 0) consists of points x for which

N(−1, 0) · (x−X(−1, 0)) = 0.

First, calculate X(−1, 0) = (1, 0, −1). Now, if x = (x, y, z) then our equation is

0 = (−1, 0, −2) · (x− 1, y, z + 1)

= −(x− 1)− 2(z + 1)

= −x− 2z − 1.

(c) Here we’ll use x, y, and z for the coordinate functions of our surface:

x(t) = s2 cos t,

y(t) = s2 sin t, and

z(t) = s.

To get rid of t, recall that sin2 t+ cos2 = 1, so we can do

[x(t)]2 + [y(t)]2 = sin4 cos2 t+ s4 sin2 t = s4.

But the right hand side is just [z(t)]4, so the equation that defines this surface is

x2 + y2 = z4.

30. (a) To sketch this surface, it helps to translate it into cylindrical coordinates. This
results in z = 1

r
, so this surface is what we get by revolving z = 1

x
, for x ≥ 1,

around the z-axis. It looks like this (z is on the vertical axis):



(b) As you can see from the graph, the region bounded by the surface and the plane
z = 1 is the part with r ≤ 1. An improper integral is needed to calculate this
volume because z goes to infinity as r goes to 0. The volume is∫ 2π

0

∫ 1

0

(
1

r
− 1

)
r dr dθ = lim

ε→0

∫ 2π

0

∫ 1

ε

(
1

r
− 1

)
r dr dθ

= 2π lim
ε→0

∫ 1

ε

1− r dr

= 2π lim
ε→0

r − 1
2
r2
∣∣1
ε

= 2π lim
ε→0

1− 1
2
−
(
ε− 1

2
ε2
)

= 2π lim
ε→0

1
2
− ε− ε2

2
= 2π

(
1
2
− 0− 0

2

)
= π.

(c) If we parameterize the surface by

X(r, θ) = (r cos θ, r sin θ, 1
r
)

then the two tangent vectors are

Tr(r, θ) = (cos θ, sin θ, −r−2) and

Tθ(r, θ) = (−r sin θ, r cos θ, 0),

so a normal vector is

N(r, θ) = Tr(r, θ)×Tθ(r, θ) =
(
1
r

cos θ, 1
r

sin θ, r
)



and its magnitude is

‖N(r, θ)‖ =

√(
1
r

cos θ
)2

+
(
1
r

sin θ
)2

+ r2 =

√
1

r2
+ r2.

Now this might look a little scary to integrate, but we can simplify things a little
first. Since r2 is positive, √

1

r2
+ r2 ≥

√
1

r2
=

1

r
.

The inequality extends to the integral, so the surface area is∫ 2π

0

∫ 1

0

√
1

r2
+ r2 dr dθ ≥

∫ 2π

0

∫ 1

0

1

r
dr dθ

= lim
ε→0

∫ 2π

0

∫ 1

ε

1

r
dr dθ

= 2π lim
ε→0

∫ 1

ε

1

r
dr

= 2π lim
ε→0

log r
∣∣1
ε

= 2π lim
ε→0

log 1− log ε =∞.

This last limit is ∞ because log ε goes to −∞ as ε goes to 0. Since the surface
area is greater than an infinite quantity, it too is infinite.

Another way to think about this part would be to use the description of the
surface we gave earlier—it is what you get by revolving the part of z = 1

x
with

x > 0 around the z-axis. The area of this surface of revolution is
∫

2πx ds, where

ds is the arclength differential ds =
√

1 +
(
dz
dx

)2
dx. This actually results in the

same calculation since dz
dx

= −x−2 and∫
2πx

√
1 + (−x−2)2 dx = 2π

∫ √
x2 + x−2 dx.


