7.1

T/F
4. F

7.2

T/F
2. F. $W\left[\mathbf{x}_{2}, \mathbf{x}_{1}\right](t)=-W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t)$.
4. F. The Wronskian only needs to be nonzero at a single point in I.

Problems

4.

$$
W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t)=\left|\begin{array}{cc}
t & |t| \\
t & t
\end{array}\right|=t(t-|t|)
$$

The Wronskian is nonzero at e.g. $t=-1$ since $(-1)(-1-|-1|)=2$. This tells us that \mathbf{x}_{1} and \mathbf{x}_{2} are linearly independent on $(-\infty, \infty)$. However, when $t \geq 0$ we get $|t|=t$ so $W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t)=t(t-t)=0$. Indeed, when $|t|=t$,

$$
\mathbf{x}_{2}(t)=\left[\begin{array}{c}
|t| \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]=\mathbf{x}_{1}(t)
$$

so \mathbf{x}_{1} and \mathbf{x}_{2} are manifestly dependent on any interval contained in $[0, \infty)$.

7.4

T/F
2. T
6. F. $\lim _{t \rightarrow \infty} \mathbf{x}(t)=0$ if and only if $\mathbf{x}(0)$ is parallel to the eigenvector \mathbf{v}_{1} that corresponds to λ_{1}.

Problems

2. Find the eigenvalue/eigenvector pairs of

$$
A=\left[\begin{array}{cc}
0 & -4 \\
4 & 0
\end{array}\right]
$$

If

$$
0=\left|\begin{array}{cc}
-\lambda & -4 \\
4 & -\lambda
\end{array}\right|=\lambda^{2}+16
$$

then $\lambda= \pm 4 i$. The eigenvectors corresponding to $\lambda=4 i$ are the null space of $A-4 i I_{2}$. The row-echelon form of this matrix is

$$
\left[\begin{array}{cc}
1 & -i \\
0 & 0
\end{array}\right]
$$

so the eigenvector is $(i, 1)$.
This eigenvalue/eigenvector pair gives the complex solution

$$
\mathbf{x}(t)=\left[\begin{array}{c}
i e^{4 i t} \\
e^{4 i t}
\end{array}\right]=\left[\begin{array}{l}
i \cos 4 t-\sin 4 t \\
\cos 4 t+i \sin 4 t
\end{array}\right]
$$

Two linearly independent real solutions are given by the real and imaginary parts of this complex solution:

$$
\mathbf{x}_{1}(t)=\left[\begin{array}{c}
-\sin 4 t \\
\cos 4 t
\end{array}\right] \quad \text { and } \quad \mathbf{x}_{2}(t)=\left[\begin{array}{c}
\cos 4 t \\
\sin 4 t
\end{array}\right] .
$$

Thus, the general solution is

$$
\mathbf{x}(t)=c_{1}\left[\begin{array}{c}
-\sin 4 t \\
\cos 4 t
\end{array}\right]+c_{2}\left[\begin{array}{c}
\cos 4 t \\
\sin 4 t
\end{array}\right]=\left[\begin{array}{c}
-c_{1} \sin 4 t+c_{2} \cos 4 t \\
c_{1} \cos 4 t+c_{2} \sin 4 t
\end{array}\right]
$$

for real numbers c_{1} and c_{2}.
10.

$$
A=\left[\begin{array}{ccc}
0 & -3 & 1 \\
-2 & -1 & 1 \\
0 & 0 & 2
\end{array}\right]
$$

The eigenvalues of A are 2 and -3 . Two linearly independent eigenvectors corresponding to 2 are $(1,0,2)$ and $(0,1,3)$ and an eigenvector for -3 is $(1,1,0)$. Each eigenvector turns into a solution to $\mathrm{x}^{\prime}=A \mathrm{x}$:

$$
\mathbf{x}_{1}(t)=e^{2 t}\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right], \mathbf{x}_{2}(t)=e^{2 t}\left[\begin{array}{l}
0 \\
1 \\
3
\end{array}\right], \text { and } \mathbf{x}_{3}(t)=e^{-3 t}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] .
$$

Because the eigenvectors are linearly independent, these three solutions are also linearly independent. So the general solution is

$$
\mathbf{x}(t)=c_{1} e^{2 t}\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]+c_{2} e^{2 t}\left[\begin{array}{l}
0 \\
1 \\
3
\end{array}\right]+c_{3} e^{-3 t}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
c_{1} e^{2 t}+c_{3} e^{-3 t} \\
c_{2} e^{2 t}+c_{3} e^{-3 t} \\
\left(2 c_{1}+3 c_{2}\right) e^{2 t}
\end{array}\right] .
$$

22. Since A is 2×2 and nondefective, it has two linearly independent eigenvectors \mathbf{v}_{1} and \mathbf{v}_{2} corresponding to complex eigenvalues $\lambda_{1}=u_{1}+i v_{1}$ and $\lambda_{2}=u_{2}+i v_{2}$. (The two eigenvalues may be equal.) We assume that u_{1} and u_{2} are negative. Since we know the eigenvalues and eigenvectors of A, we can form the general solution to $\mathbf{x}^{\prime}=A \mathbf{x}$ which is

$$
\begin{aligned}
\mathbf{x}(t) & =c_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{v}_{2} \\
& =c_{1} e^{u_{1} t}\left(\cos v_{1} t+i \sin v_{1} t\right) \mathbf{v}_{1}+c_{2} e^{u_{2} t}\left(\cos v_{2} t+i \sin v_{2} t\right) \mathbf{v}_{2}
\end{aligned}
$$

Now sin and cos take values between -1 and 1 , so

$$
\left|\cos v_{1} t+i \sin v_{1} t\right| \leq 2 \text { and }\left|\cos v_{2} t+i \sin v_{2} t\right| \leq 2 .
$$

Since u_{1} and u_{2} are negative, $e^{u_{1} t}$ and $e^{u_{2} t}$ go to 0 as t goes to infinity, so we have

$$
\lim _{t \rightarrow \infty} c_{1} e^{u_{1} t}\left(\cos v_{1} t+i \sin v_{1} t\right)=0 \text { and } \lim _{t \rightarrow \infty} c_{2} e^{u_{2} t}\left(\cos v_{2} t+i \sin v_{2} t\right)=0
$$

and hence

$$
\lim _{t \rightarrow \infty} \mathbf{x}(t)=0 .
$$

7.5

T/F

4. F. The generalized eigenvector \mathbf{v}_{1} gives rise to the solution $\mathbf{x}(t)=e^{\lambda t} \mathbf{v}_{1}+t e^{\lambda t} \mathbf{v}_{0}$.

Problems

2. The matrix

$$
A=\left[\begin{array}{cc}
-3 & -2 \\
2 & 1
\end{array}\right]
$$

has a single eigenvalue $\lambda=-1$. This eigenvalue has a single eigenvector $\mathbf{v}_{0}=(1,-1)$. This eigenvector gives us the solution

$$
\mathbf{x}_{0}(t)=\left[\begin{array}{c}
e^{-t} \\
-e^{-t}
\end{array}\right] .
$$

In order to find another linearly independent solution we need to find a generalized eigenvector for the eigenvalue -1 . Do this by solving the linear system $\left(A-\lambda I_{2}\right) \mathbf{v}_{1}=\mathbf{v}_{0}$ for \mathbf{v}_{1} using the value we found for \mathbf{v}_{0} and its corresponding eigenvalue $\lambda=-1$. Explicitly, the linear system is

$$
\left[\begin{array}{cc}
-2 & -2 \\
2 & 2
\end{array}\right] \mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

and one solution is $\mathbf{v}_{1}=\left(-\frac{3}{2}, 1\right)$. Now we get another solution

$$
\mathbf{x}_{1}(t)=e^{-t} \mathbf{v}_{1}+t e^{-t} \mathbf{v}_{0}=e^{-t}\left[\begin{array}{c}
-\frac{3}{2}+t \\
1-t
\end{array}\right]
$$

The general solution we end up with is

$$
\mathbf{x}(t)=c_{1} e^{-t}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+c_{2} e^{-t}\left[\begin{array}{c}
-\frac{3}{2}+t \\
1-t
\end{array}\right]=\left[\begin{array}{l}
\left(c_{1}-\frac{3}{2} c_{2}\right) e^{-t}+c_{2} t e^{-t} \\
\left(-c_{1}+c_{2}\right) e^{-t}-c_{2} t e^{-t}
\end{array}\right] .
$$

4.

$$
\operatorname{det}\left(A-\lambda I_{3}\right)=\lambda^{2}(2-\lambda)
$$

so the eigenvalues of A are 0 and 2 . For $\lambda=2$ we get the eigenvalue ($3,2,4$) and, since the multiplicity is 1 , there are no generalized eigenvalues. Looking at $\lambda=0$, we get a single eigenvector $\mathbf{v}_{0}=(1,0,2)$. Since 0 has multiplicity 2 , we know we can find a generalized eigenvector. Solving $A \mathbf{v}_{1}=\mathbf{v}_{0}$ gives us $\mathbf{v}_{1}=\left(-\frac{1}{2}, 1,0\right)$. Now we have three linearly independent solutions

$$
\mathbf{x}_{0}(t)=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right], \mathbf{x}_{1}(t)=\left[\begin{array}{c}
-\frac{1}{2}+t \\
1 \\
2 t
\end{array}\right], \text { and } \mathbf{x}_{2}(t)=e^{2 t}\left[\begin{array}{l}
3 \\
2 \\
4
\end{array}\right]
$$

Thus, the general solution is

$$
\mathbf{x}(t)=\left[\begin{array}{c}
c_{1}+\left(t-\frac{1}{2}\right) c_{2}+3 c_{3} e^{2 t} \\
c_{2}+2 c_{3} e^{2 t} \\
2 c_{1}+2 c_{2} t+4 c_{3} e^{2 t}
\end{array}\right]
$$

14. First, find the general solution to $\mathbf{x}^{\prime}=A \mathbf{x}$. This matrix has a single eigenvalue which is $\lambda=-3$ corresponding to the eigenvector $\mathbf{v}_{0}=(1,1)$. Then solve $\left(A+3 I_{2}\right) \mathbf{v}_{1}=\mathbf{v}_{0}$ to get the generalized eigenvector $\mathbf{v}_{1}=(2,1)$. The general solution is

$$
\mathbf{x}(t)=e^{-3 t}\left[\begin{array}{l}
c_{1}+c_{2}(2+t) \\
c_{1}+c_{2}(1+2)
\end{array}\right] .
$$

To finish solving the initial value problem, set $\mathbf{x}(0)$ equal to the given vector \mathbf{x}_{0}. Set $t=0$ to get

$$
\mathbf{x}(0)=\left[\begin{array}{c}
c_{1}+2 c_{2} \\
c_{1}+c_{2}
\end{array}\right]
$$

and thus we want to solve the linear system

$$
\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1
\end{array}\right] .
$$

The solution to the system is $c_{1}=-2$ and $c_{2}=1$, so the solution to the initial value problem is

$$
\mathbf{x}(t)=e^{-3 t}\left[\begin{array}{c}
t \\
t-1
\end{array}\right]
$$

