Constant-Coefficient Linear Differential Equations

Math 240 - Calculus III

Summer 2013, Session II

Monday, August 5, 2013

ConstantCoefficient Linear Differential
Equations
Math 240

1. Homogeneous constant-coefficient linear differential equations
2. Nonhomogeneous constant-coefficient linear differential equations

Last week we found solutions to the linear differential equation

$$
y^{\prime \prime}+y^{\prime}-6 y=0
$$

of the form $y(x)=e^{r x}$. In fact, we found all solutions.
This technique will often work. If $y(x)=e^{r x}$ then

$$
y^{\prime}(x)=r e^{r x}, \quad y^{\prime \prime}(x)=r^{2} e^{r x}, \quad \ldots, \quad y^{(n)}(x)=r^{n} e^{r x}
$$

So if $r^{n}+a_{1} r^{n-1}+\cdots+a_{n-1} r+a_{n}=0$ then $y(x)=e^{r x}$ is a solution to the linear differential equation

$$
y^{(n)}+a_{1} y^{(n-1)}+\cdots+a_{n-1} y^{\prime}+a_{n} y=0
$$

Today we'll develop this approach more rigorously.

Example

The equation $y^{\prime \prime}+y^{\prime}-6 y=0$ has auxiliary polynomial

$$
P(r)=r^{2}+r-6
$$

Examples

Give the auxiliary polynomials for the following equations.

$$
\begin{array}{ll}
\text { 1. } y^{\prime \prime}+2 y^{\prime}-3 y=0 & r^{2}+2 r-3 \\
\text { 2. }\left(D^{2}-7 D+24\right) y=0 & r^{2}-7 r+24 \\
\text { 3. } y^{\prime \prime \prime}-2 y^{\prime \prime}-4 y^{\prime}+8 y=0 & r^{3}-2 r^{2}-4 r+8
\end{array}
$$

The roots of the auxiliary polynomial will determine the solutions to the differential equation. corresponding differential equation.

Proof.

For our purposes, it will suffice to consider the case where P and Q are linear. $\mathcal{Q} . \mathcal{E} . \mathcal{D}$.

Commuting polynomial differential operators will allow us to
turn a root of the auxiliary polynomial into a solution to the
Commuting polynomial differential operators will allow us to
turn a root of the auxiliary polynomial into a solution to the
The key fact that will allow us to solve constant-coefficient linear differential equations is that polynomial differential operators commute.

Theorem

If $P(D)$ and $Q(D)$ are polynomial differential operators, then

$$
P(D) Q(D)=Q(D) P(D)
$$

$$
0-1010-10-10
$$

ConstantCoefficient
respectively.

Theorem

The general solution to the linear differential equation

$$
y^{\prime}-a y=0
$$

is $y(x)=c e^{a x}$.

ConstantCoefficient

$$
\begin{gather*}
P(D) Q(D) y_{2}=P(D)\left(Q(D) y_{2}\right)=P(D) 0=0 \\
P(D) Q(D) y_{1}=Q(D) P(D) y_{1} \\
=Q(D)\left(P(D) y_{1}\right)=Q(D) 0=0
\end{gather*}
$$

Example

The theorem implies that, since

$$
(D-2) y_{1}=0 \quad \text { and } \quad(D+3) y_{2}=0,
$$

the functions $y_{1}(x)=e^{2 x}$ and $y_{2}(x)=e^{-3 x}$ are solutions to

$$
y^{\prime \prime}+y^{\prime}-6 y=\left(D^{2}+D-6\right) y=(D-2)(D+3) y=0 .
$$

ConstantCoefficient Linear Differential Equations

Math 240

Furthermore, solutions produced from different roots of the auxiliary polynomial are independent.

Example

If $y_{1}(x)=e^{2 x}$ and $y_{2}(x)=e^{-3 x}$, then

$$
\begin{aligned}
W\left[y_{1}, y_{2}\right](x) & =\left|\begin{array}{cc}
e^{2 x} & e^{-3 x} \\
2 e^{2 x} & -3 e^{-3 x}
\end{array}\right| \\
& =e^{-x}\left|\begin{array}{cc}
1 & 1 \\
2 & -3
\end{array}\right|=-5 e^{-x} \neq 0
\end{aligned}
$$

Therefore, y_{1} and y_{2} are solutions to the original equation. Since we have 2 solutions to a $2^{\text {nd }}$ degree equation, they constitute a fundamental set of solutions; the general solution is

$$
y(x)=c_{1} e^{2 x}+c_{2} e^{-x}
$$

Multiple roots

What can go wrong with this process? The auxiliary polynomial could have a multiple root. In this case, we would get one solution from that root, but not enough to form the general solution. Fortunately, there are more.

Theorem
The differential equation $(D-r)^{m} y=0$ has the following m linearly independent solutions:

$$
e^{r x}, x e^{r x}, x^{2} e^{r x}, \ldots, x^{m-1} e^{r x}
$$

Proof.
Check it.

ConstantCoefficient

Example

Determine the general solution to $y^{\prime \prime}+4 y^{\prime}+4 y=0$.

1. The auxiliary polynomial is $r^{2}+4 r+4$.
2. It has the multiple root $r=-2$.
3. Therefore, two linearly independent solutions are

$$
y_{1}(x)=e^{-2 x} \quad \text { and } \quad y_{2}(x)=x e^{-2 x}
$$

4. The general solution is

$$
y(x)=e^{-2 x}\left(c_{1}+c_{2} x\right)
$$

for $k=0,1, \ldots, m-1$.

Complex roots

Example

Determine the general solution to $y^{\prime \prime}+6 y^{\prime}+25 y=0$.

1. The auxiliary polynomial is $r^{2}+6 r+25$.
2. Its has roots $r=-3 \pm 4 i$.
3. Two independent real-valued solutions are

$$
y_{1}(x)=e^{-3 x} \cos 4 x \quad \text { and } \quad y_{2}(x)=e^{-3 x} \sin 4 x
$$

4. The general solution is

$$
y(x)=e^{-3 x}\left(c_{1} \cos 4 x+c_{2} \sin 4 x\right)
$$

We have now learned how to solve homogeneous linear differential equations

$$
P(D) y=0
$$

when $P(D)$ is a polynomial differential operator. Now we will try to solve nonhomogeneous equations

$$
P(D) y=F(x)
$$

Recall that the solutions to a nonhomogeneous equation are of the form

$$
y(x)=y_{c}(x)+y_{p}(x),
$$

where y_{c} is the general solution to the associated homogeneous equation and y_{p} is a particular solution.

The technique proceeds from the observation that, if we know a polynomial differential operator $A(D)$ so that

$$
A(D) F=0
$$

then applying $A(D)$ to the nonhomogeneous equation

$$
\begin{equation*}
P(D) y=F \tag{1}
\end{equation*}
$$

yields the homogeneous equation

$$
\begin{equation*}
A(D) P(D) y=0 \tag{2}
\end{equation*}
$$

A particular solution to (1) will be a solution to (2) that is not a solution to the associated homogeneous equation $P(D) y=0$.

Example

Determine the general solution to

$$
(D+1)(D-1) y=16 e^{3 x}
$$

1. The associated homogeneous equation is $(D+1)(D-1) y=0$. It has the general solution $y_{c}(x)=c_{1} e^{x}+c_{2} e^{-x}$.
2. Recognize the nonhomogeneous term $F(x)=16 e^{3 x}$ as a solution to the equation $(D-3) y=0$.
3. The differential equation

$$
(D-3)(D+1)(D-1) y=0
$$

has the general solution $y(x)=c_{1} e^{x}+c_{2} e^{-x}+c_{3} e^{3 x}$.
4. Pick the trial solution $y_{p}(x)=c_{3} e^{3 x}$. Substituting it into the original equation forces us to choose $c_{3}=2$.
5. Thus, the general solution is

$$
y(x)=y_{c}(x)+y_{p}(x)=c_{1} e^{x}+c_{2} e^{-x}+2 e^{3 x} .
$$

Constant-

Annihilators and the method of undetermined coefficients

This method for obtaining a particular solution to a nonhomogeneous equation is called the method of undetermined coefficients because we pick a trial solution with an unknown coefficient. It can be applied when

1. the differential equation is of the form

$$
P(D) y=F(x)
$$

where $P(D)$ is a polynomial differential operator,
2. there is another polynomial differential operator $A(D)$ such that

$$
A(D) F=0 .
$$

A polynomial differential operator $A(D)$ that satisfies $A(D) F=0$ is called an annihilator of F.

Finding annihilators

Functions that can be annihilated by polynomial differential operators are exactly those that can arise as solutions to constant-coefficient homogeneous linear differential equations.
We have seen that these functions are

1. $F(x)=c x^{k} e^{a x}$,
2. $F(x)=c x^{k} e^{a x} \sin b x$,
3. $F(x)=c x^{k} e^{a x} \cos b x$,
4. linear combinations of 1-3.

If the nonhomogeneous term is one of $1-3$, then it can be annihilated by something of the form $A(D)=(D-r)^{k+1}$, with $r=a$ in 1 and $r=a+b i$ in 2 and 3. Otherwise, annihilators can be found by taking successive derivatives of F and looking for linear dependencies.

Example

Determine the general solution to

$$
(D-4)(D+1) y=16 x e^{3 x} .
$$

1. The general solution to the associated homogeneous equation $(D-4)(D+1) y=0$ is $y_{c}(x)=c_{1} e^{4 x}+c_{2} e^{-x}$.
2. An annihilator for $16 x e^{3 x}$ is $A(D)=(D-3)^{2}$.
3. The general solution to $(D-3)^{2}(D-4)(D+1) y=0$ includes y_{c} and the terms $c_{3} e^{3 x}$ and $c_{4} x e^{3 x}$.
4. Using the trial solution $y_{p}(x)=c_{3} e^{3 x}+c_{4} x e^{3 x}$, we find the values $c_{3}=-3$ and $c_{4}=-4$.
5. The general solution is

$$
y(x)=y_{c}(x)+y_{p}(x)=c_{1} e^{4 x}+c_{2} e^{-x}-3 e^{3 x}-4 x e^{3 x}
$$

Example

Determine the general solution to

$$
(D-2) y=3 \cos x+4 \sin x
$$

1. The associated homogeneous equation, $(D-2) y=0$, has the general solution $y_{c}(x)=c_{1} e^{2 x}$.
2. Look for linear dependencies among derivatives of $F(x)=3 \cos x+4 \sin x$. Discover the annihilator $A(D)=D^{2}+1$.
3. The general solution to $\left(D^{2}+1\right)(D-2) y=0$ includes y_{c} and the additional terms $c_{2} \cos x+c_{3} \sin x$.
4. Using the trial solution $y_{p}(x)=c_{2} \cos x+c_{3} \sin x$, we obtain values $c_{2}=-2$ and $c_{3}=-1$.
5. The general solution is

$$
y(x)=c_{1} e^{2 x}-2 \cos x-\sin x
$$

