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Introduction

Last week we found solutions to the linear differential equation

y′′ + y′ − 6y = 0

of the form y(x) = erx. In fact, we found all solutions.
This technique will often work. If y(x) = erx then

y′(x) = rerx, y′′(x) = r2erx, . . . , y(n)(x) = rnerx.

So if rn + a1r
n−1 + · · ·+ an−1r + an = 0 then y(x) = erx is a

solution to the linear differential equation

y(n) + a1y
(n−1) + · · ·+ an−1y

′ + any = 0.

Today we’ll develop this approach more rigorously.
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The auxiliary polynomial

Consider the homogeneous linear differential equation

y(n) + a1y
(n−1) + · · ·+ an−1y

′ + any = 0

with constant coefficients ai. Expressed as a linear differential
operator, the equation is P (D)y = 0, where

P (D) = Dn + a1D
n−1 + · · ·+ an−1D + an.

Definition
A linear differential operator with constant coefficients, such as
P (D), is called a polynomial differential operator. The
polynomial

P (r) = rn + a1r
n−1 + · · ·+ an−1r + an

is called the auxiliary polynomial, and the equation P (r) = 0
the auxiliary equation.
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The auxiliary polynomial

Example

The equation y′′ + y′ − 6y = 0 has auxiliary polynomial

P (r) = r2 + r − 6.

Examples

Give the auxiliary polynomials for the following equations.

1. y′′ + 2y′ − 3y = 0

2. (D2 − 7D + 24)y = 0

3. y′′′ − 2y′′ − 4y′ + 8y = 0

r2 + 2r − 3

r2 − 7r + 24

r3 − 2r2 − 4r + 8

The roots of the auxiliary polynomial will determine the
solutions to the differential equation.
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Polynomial differential operators commute

The key fact that will allow us to solve constant-coefficient
linear differential equations is that polynomial differential
operators commute.

Theorem
If P (D) and Q(D) are polynomial differential operators, then

P (D)Q(D) = Q(D)P (D).

Proof.
For our purposes, it will suffice to consider the case where P
and Q are linear. Q.E .D.

Commuting polynomial differential operators will allow us to
turn a root of the auxiliary polynomial into a solution to the
corresponding differential equation.
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Linear polynomial differential operators

In our example,
y′′ + y′ − 6y = 0,

with auxiliary polynomial

P (r) = r2 + r − 6,

the roots of P (r) are r = 2 and r = −3. An equivalent
statement is that r − 2 and r + 3 are linear factors of P (r).

The functions y1(x) = e2x and y2(x) = e−3x are solutions to

y′1 − 2y1 = 0 and y′2 + 3y2 = 0,

respectively.

Theorem
The general solution to the linear differential equation

y′ − ay = 0

is y(x) = ceax.
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Theorem
Suppose P (D) and Q(D) are polynomial differential operators

P (D)y1 = 0 = Q(D)y2.

If L = P (D)Q(D), then

Ly1 = 0 = Ly2.

Proof.

P (D)Q(D)y2 = P (D)
(
Q(D)y2

)
= P (D)0 = 0

P (D)Q(D)y1 = Q(D)P (D)y1

= Q(D)
(
P (D)y1

)
= Q(D)0 = 0 Q.E .D.

Example

The theorem implies that, since

(D − 2)y1 = 0 and (D + 3)y2 = 0,

the functions y1(x) = e2x and y2(x) = e−3x are solutions to

y′′ + y′ − 6y = (D2 +D − 6)y = (D − 2)(D + 3)y = 0.
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Linear polynomial differential operators

Furthermore, solutions produced from different roots of the
auxiliary polynomial are independent.

Example

If y1(x) = e2x and y2(x) = e−3x, then

W [y1, y2](x) =

∣∣∣∣ e2x e−3x

2e2x −3e−3x
∣∣∣∣

= e−x
∣∣∣∣1 1
2 −3

∣∣∣∣ = −5e−x 6= 0.
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Distinct linear factors

If we can factor the auxiliary polynomial into distinct linear
factors, then the solutions from each linear factor will combine
to form a fundamental set of solutions.

Example

Determine the general solution to y′′ − y′ − 2y = 0.

The auxiliary polynomial is

P (r) = r2 − r − 2 = (r − 2)(r + 1).

Its roots are r1 = 2 and r2 = −1. The functions y1(x) = e2x

and y2(x) = e−x satisfy

(D − 2)y1 = 0 = (D + 1)y2.

Therefore, y1 and y2 are solutions to the original equation.
Since we have 2 solutions to a 2nd degree equation, they
constitute a fundamental set of solutions; the general solution is

y(x) = c1e
2x + c2e

−x.
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Multiple roots

What can go wrong with this process? The auxiliary
polynomial could have a multiple root. In this case, we would
get one solution from that root, but not enough to form the
general solution. Fortunately, there are more.

Theorem
The differential equation (D − r)my = 0 has the following m
linearly independent solutions:

erx, xerx, x2erx, . . . , xm−1erx.

Proof.
Check it. Q.E .D.
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Multiple roots

Example

Determine the general solution to y′′ + 4y′ + 4y = 0.

1. The auxiliary polynomial is r2 + 4r + 4.

2. It has the multiple root r = −2.

3. Therefore, two linearly independent solutions are

y1(x) = e−2x and y2(x) = xe−2x.

4. The general solution is

y(x) = e−2x(c1 + c2x).
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Complex roots

What happens if the auxiliary polynomial has complex roots?
Can we recover real solutions? Yes!

Theorem
If P (D)y = 0 is a linear differential equation with real constant
coefficients and (D − r)m is a factor of P (D) with r = a+ bi
and b 6= 0, then

1. P (D) must also have the factor (D − r)m,

2. this factor contributes the complex solutions

e(a±bi)x, xe(a±bi)x, . . . , xm−1e(a±bi)x,

3. the real and imaginary parts of the complex solutions are
linearly independent real solutions

xkeax cos bx and xkeax sin bx

for k = 0, 1, . . . ,m− 1.
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Complex roots

Example

Determine the general solution to y′′ + 6y′ + 25y = 0.

1. The auxiliary polynomial is r2 + 6r + 25.

2. Its has roots r = −3± 4i.

3. Two independent real-valued solutions are

y1(x) = e−3x cos 4x and y2(x) = e−3x sin 4x.

4. The general solution is

y(x) = e−3x(c1 cos 4x+ c2 sin 4x).
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Segue

We have now learned how to solve homogeneous linear
differential equations

P (D)y = 0

when P (D) is a polynomial differential operator. Now we will
try to solve nonhomogeneous equations

P (D)y = F (x).

Recall that the solutions to a nonhomogeneous equation are of
the form

y(x) = yc(x) + yp(x),

where yc is the general solution to the associated homogeneous
equation and yp is a particular solution.



Constant-
Coefficient

Linear
Differential
Equations

Math 240

Homogeneous
equations

Nonhomog.
equations

Overview

The technique proceeds from the observation that, if we know
a polynomial differential operator A(D) so that

A(D)F = 0,

then applying A(D) to the nonhomogeneous equation

P (D)y = F (1)

yields the homogeneous equation

A(D)P (D)y = 0. (2)

A particular solution to (1) will be a solution to (2) that is not
a solution to the associated homogeneous equation P (D)y = 0.
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Example

Determine the general solution to

(D + 1)(D − 1)y = 16e3x.

1. The associated homogeneous equation is
(D + 1)(D − 1)y = 0. It has the general solution
yc(x) = c1e

x + c2e
−x.

2. Recognize the nonhomogeneous term F (x) = 16e3x as a
solution to the equation (D − 3)y = 0.

3. The differential equation

(D − 3)(D + 1)(D − 1)y = 0

has the general solution y(x) = c1e
x + c2e

−x + c3e
3x.

4. Pick the trial solution yp(x) = c3e
3x. Substituting it into

the original equation forces us to choose c3 = 2.

5. Thus, the general solution is

y(x) = yc(x) + yp(x) = c1e
x + c2e

−x + 2e3x.
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Annihilators and the method of undetermined
coefficients

This method for obtaining a particular solution to a
nonhomogeneous equation is called the method of
undetermined coefficients because we pick a trial solution
with an unknown coefficient. It can be applied when

1. the differential equation is of the form

P (D)y = F (x),

where P (D) is a polynomial differential operator,

2. there is another polynomial differential operator A(D)
such that

A(D)F = 0.

A polynomial differential operator A(D) that satisfies
A(D)F = 0 is called an annihilator of F .
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Finding annihilators

Functions that can be annihilated by polynomial differential
operators are exactly those that can arise as solutions to
constant-coefficient homogeneous linear differential equations.
We have seen that these functions are

1. F (x) = cxkeax,

2. F (x) = cxkeax sin bx,

3. F (x) = cxkeax cos bx,

4. linear combinations of 1–3.

If the nonhomogeneous term is one of 1–3, then it can be
annihilated by something of the form A(D) = (D− r)k+1, with
r = a in 1 and r = a+ bi in 2 and 3. Otherwise, annihilators
can be found by taking successive derivatives of F and looking
for linear dependencies.
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Example

Determine the general solution to

(D − 4)(D + 1)y = 16xe3x.

1. The general solution to the associated homogeneous
equation (D − 4)(D + 1)y = 0 is yc(x) = c1e

4x + c2e
−x.

2. An annihilator for 16xe3x is A(D) = (D − 3)2.

3. The general solution to (D − 3)2(D − 4)(D + 1)y = 0
includes yc and the terms c3e

3x and c4xe
3x.

4. Using the trial solution yp(x) = c3e
3x + c4xe

3x, we find
the values c3 = −3 and c4 = −4.

5. The general solution is

y(x) = yc(x) + yp(x) = c1e
4x + c2e

−x − 3e3x − 4xe3x.
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Example

Determine the general solution to

(D − 2)y = 3 cosx+ 4 sinx.

1. The associated homogeneous equation, (D − 2)y = 0, has
the general solution yc(x) = c1e

2x.

2. Look for linear dependencies among derivatives of
F (x) = 3 cosx+ 4 sinx. Discover the annihilator
A(D) = D2 + 1.

3. The general solution to (D2 + 1)(D − 2)y = 0 includes yc
and the additional terms c2 cosx+ c3 sinx.

4. Using the trial solution yp(x) = c2 cosx+ c3 sinx, we
obtain values c2 = −2 and c3 = −1.

5. The general solution is

y(x) = c1e
2x − 2 cosx− sinx.
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