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In this talk we will introduce a construction called family algebras for the pur-
pose of computing G-harmonic polynomials.
We start with the construction of the usual harmonic polynomials.
For avector space U with an inner product g, on it, we have a Laplacian A that acts
on the polynomials on U. We can define the Laplacian just from the inner product,
and so the Laplacian is invariant under SO(U). As a result, the set of polynomials
HWU) ={f € S(U)|Af = 0} is also invariant under SO(U), and thus has a variety of
nice geometric, algebraic, and analytic interpretations, and is amenable to combi-
natorial and representation-theoretic methods.
We have the nice statement that

S(U) = Clgapx*x"1 @ H(U)

for a basis x% of U, so since gabx”xb isinvariant under SO(U), all of the SO(U) struc-
ture of S(U) is contained in H(U).
We can generalize this to other representations and other groups. Given a group G
and a representation U of G, we set S(U) to be the polynomials on UY. Set I(U) to
be S(U)%, and ask when S(U) is a free I(U)-module.
Not all groups have such representations; for instance, if G is finite, then by Cheval-
ley and Shepard-Todd we have that G must be a finite pseudoreflection group and
U must be the representation on which G acts by pseudoreflections.
For G a simple Lie group, we have by Kostant and Rallis that any symmetric space
representation U of G has S(U) a free module over I(U).
In these cases we can define a space of harmonic polynomials. We define Di as an
algebra map sends x? to %, where {x,} is the dual basis to g; this takes I(U) to a
space D(U) of G-invariant differential operators that generalize the Laplacian. We
restrict to D, (U), the elements of D(U) that vanish on constant polynomials, and
define a G-harmonic polynomial in S(U) to be a polynomial annihilated by all ele-
ments of D, (U). We write it as H (G, U), unless G is understood, in which case we
just write H(U).
In these cases,

SW) =I1U) e H(U)

as graded G-modules.
Given such a setup, we wish to find the decomposition of H(U) into irreducible com-
ponents. In particular, we define the graded multiplicity of a G-module V to be

m¥,(q) = ;dim Homg(V,1*U))q*



In the case of G a pseudoreflection group, the degrees in the graded multiplicities
are called fake degrees and are fully known for the irreducible representations of the
pseudoreflection groups by the work of Lusztig, Benson and Surowski.

For G a simple Lie group, U = g (the adjoint representation), the degrees in graded
multiplicity are called generalized exponents.

Here the harmonic polynomials have an interpretation as harmonic functions on G
and on the flag manifolds you get from quotients of G, so there’s a nice connection
to harmonic analysis on manifolds. For instance, if we let V' = g, we recover what
are called the exponents of G, thus the name generalized exponents. Note that the
exponents tell us the structure of I(g).

There’s no general closed form for the graded multiplicities in this case. Hesselink
showed that the graded multiplicities can be computed as a g-analogue of the 0-
weight multiplicity in V, which is computable via g-analogues of the Kostant or
Fruedenthal multiplicity formulas, but as unwieldy as these formulas can be in the
usual case, the g-analogues are even more difficult to deal with.

For the case of G = Sl(n), and thus U = sl(n), the graded multiplicities are the Kostka
polynomials, which show up in a number of combinatorial statements.

Another known thing is Broer’s theorem: for V a small representation,
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where VT = @ U; as W-modules, and § is the Cartan subalgebra. Unfortunately,
small here is very restrictive, in that we need V to have no weights equal to twice a
root of G. Thus Broer’s theorem only applies to a fairly short list of representations.
For example, it includes the adjoint representation, but that’s about as big as it can
get.

The main computational issue is that Homg(V,H(g)) doesn’t have much structure
in general. It’s a vector space but it doesn’t even have a module structure beyond
that, since we've already used the G-equivariance.

So we try to build something with more to it.

For arepresentation V of G, we define family algebras by

Cv(g) = Homg(End(V), S(g))
By Kostant, Cy (g) is a free I(g)-module, and so we can ask for a basis of Cy (g) over
I(g).
We can write End(V) = Vo VY = @; V;; we call the V; the children of V and VV.

Cv(g)

Homg(End(V),S(g) = @ Homg(V;, S(g)) (0.1)
i

P Home(V;, H(g) ® I(g) 0.2)
i

Hence the name family algebras.

So we get that a basis of the Homg(V;,H(g)) gives a basis for Cy(g) over I(g), and
vice-versa.

Moreover, Cy (g) is an algebra, in that Homg(End(V), S(g)) = (End(V) ® S(g))¢, so



we can use the multiplicative structures on End(V) and S(g). The hope is then that,
since we have this multiplicative structure, we can use that to determine an I(g)-
basis for Cy (g) of homogeneous elements, and from there get bases for Homg(V;, H*(g)).
Oddly enough, though, the Hopf structures don’t seem to play well with the G-invariance
condition. End(V) has a coproduct and S(g) has a coproduct, but for elements of
(End (V) ® S(g))%, the coproduct ends up in the G-invariant part of

(End(V)® S(g)) ® (End(V) ® S(g))
rather than in the much smaller subspace
(End(V)® S(g)° ® (End(V) ® S(g))°¢

So what is known here?
As one might expect, the Weyl group plays an important role.
We take the restriction map mentioned in Broer’s theorem and apply it to Cy (g). The
image ends up in
By()" = Homw (End(V)", S(h))

The restriction map is an injection of algebras here. Indeed, tensoring Cy(g) and
Bv(h)W with Frac(I(g)) £ Frac(I(h)) makes the restriction map into an isomor-
phism, but without that localization we only get an isomorphism if all of the chil-
dren of V are small.

If we tensor further with the fraction field of S() we get an isomorphism with

@ Mat,,(FracS®))
AW (V) v

So we can read By (h)" as a subalgebra of a sum of matrix algebras, and Cy (g) as a
subalgebra of By ()"
Given an element P of I(g), can define an element

Mp=) n(X )@ipec (9)
p — a 6Xa v

When P is the quadratic Casimir element given by the Killing form, we just write
Mp =M.

We say that a representation V has simple spectrum if each weight of V has mul-
tiplicity 1. Using the restriction map above, Rozhkovskaia shows that V' has simple
spectrum if and only if the Cy (g) is commutative, and indeed Cy (g) ® ) Frac(I(g))
generated over Frac(I(g)) by the element M. Unfortunately, having simple spec-
trum is even more restrictive than being small. For G not sl(2), even the adjoint
representation doesn’t have simple spectrum. F; and Eg have no representations
with simple spectrum at all; their minimal representations have 0-weight spaces of
dimension 2 and 8 respectively.

For representations with simple spectrum, while Cy (g) is generated over Frac(I(g))
by M, the same is not true if we only look at elements over I(g). For A;, B;, C, and
G, the defining representations have simple spectrum and the corresponding fam-
ily algebras are all generated over I(g) by M, but for the family algebra of the defining



representation of D, we need 2 generators, M and Mpr where P is the Pfaffian. For
the 27-dimensional representation of Eg and the 56-dimensional representation of
E;, the family algebras need 3 generators over I(g), and for the spin representations
of B, and D, we need roughly r/2 generators, all of which can be written as Mp for
various P € I(g).

For instance, for the 2r-dimensional representation of D,, restricting to the Cartan
subalgebra gives

0 hy - 0 0
-h; 0 .- 0 0
M=
0 0 0 A
0 0 -h, O
0 hohs---hy 0 0
—hohs--hy 0 0 0
Mpy = : : : : :
0 0 0 My hy_
0 0 o —hihyhy 0

We get relations in which M?"~3 decomposes into smaller-degree elements, as do
Mf, r and MMpy. So we get with 2r I(g)-linearly independent elements in degrees
0,1,...,2r=2,r—1.

Vi, ®Vy = Vo @V, ® Vg,

and we already know the graded multiplicities for Vp, the trivial representation, and
Vi, the adjoint representation. But we can also use projections from V,,, ® V,j| into
the various subspaces to get the graded multiplicities. We end up with

M@ = 1

Vo _ _
Myt (@) = G+ +...+q¢* 3 +q" !
mgi‘f;)(q) GF+qt+.. +q7

In comparison to the peculiarities of the small representations, the I(g)-bases for
Cy(g) where V is the adjoint representation obey a nice pattern depending only on
exponents of G:

M™R,for0O<sm=<e,+1,1<n<r
R SR, +R,SRy,forl<sm<n<r
Ry, SR, —R,SRyforl=sm<n<r

where M has degree 1, S has degree 2, and R, has degree e, — 1. The set of gener-
ators does depend on the group; A, Br,C, and G, all need only M, S and R, while
D, needs M, S, R, and R, and F4, Es, E; and Eg need M, S, R, and R3.

For the classical groups the elements of tensor algebras @™ g can be described in



terms of products of traces over various representations, and so the elements of the
family algebras for tensor powers of the adjoint representation can be similarly de-
scribed, giving spanning and generating sets. Similarly, for each classical series the
decomposition of tensor powers of the adjoint representation become stable in the
Church-Farb sense, so the projection operators are fairly uniform; thus the only re-
maining issue is turning the spanning set into a basis.

The exceptionals as always are a little more finicky in terms of the tensor algebra, as
the defining representations have higher-degree invariants, but at least in the case
of the tensor square of the adjoint representation they also admit a uniform-ish de-
composition.

There are also several not-well-explored directions.

For instance, as mentioned the theorem of Kostant and Rallis applies to all symmet-
ric space representations, so we could look at Cy (U) = (End(V) ® S(U))¢ and get
graded multiplicities for V; as components of S(U).

We can also look at behaviour in positive characteristic; Willembring and Wallach
showed that for good primes, the Kostant-Rallis theorem still applies.

Kirillov also defines a quantum family algebra Qv (g), using U(g) instead of S(g). By
the PBW theorem S(g) is isomorphic to I(g) as a G-module, with I(g) being isomor-
phic to Z(g) = U(g)®, so as I(g) = Y (g)-modules, Cy(g) and Qy (g) are isomorphic.
But the multiplication is different.

We get things like Qv (g) being commutative iff V' has simple spectrum, again by
Rozhkovskaia. We also get that for an element A of Qy (g), there is a degree dim(V)
polynomial P with coefficients in Z(g) such that P(A) = 0, but the coefficients for P
cannot be read off as polynomials of the elements of A the way they can for matrices
over commutative rings. So we get new variants on the trace and determinant. We
can write s/(2) as having three generators, H, E and F subject to

(H,E]=2E,[H,F]=-2F[E,F]=H

In this case I(g) and Y (g) are both generated by a single element that can be written

as
2

H
Ay = 7 +EF+FE
Then we can take the 2-dimensional representation and look at the matrix

H
2 FH
E -3

which we can read as either a matrix in Cy(g) or in Qy(g). Write it as M for the
matrix interpreted as an element of Cy (g), and write M for the matrix interpreted as
an element of Qv (g).

Squaring the matrix gives

2 2
Ii FE ZIZF FIZJ ] Pi EF[‘;Z:FE]‘ [EéF] ) [HZ,F] .
H_ H H ,H H: EF+FE )
E7 - 7E T +EF 5 T + I + 5



In Cy (g), the commutators vanish, leaving

2
I—i EF-;FE 0
H? | EF+FE

0 = + ===

M? = =—=1d
2

This gives us M?— % Id =0, and thus gives us a trace of 0 and a determinant of — &,
as we'd expect.
In Qv (g), however, the commutators do not vanish. Instead we get

H? | EF+FE _H
| TR % —F -+ 2214
_E H? | EF+FE | H 2
4 2 2

So we get M? + M - 521d =0, thus giving us a trace of —1.

In the classical Cayley-Hamilton construction, the trace can be computed as the
sum of the diagonal elements, which is not possible here. Nor can we compute the
trace from the trace of the corresponding element of Cy (g) using the isomorphisms
of I(g) to Y (g). The same is true of the determinant in general; while for this case the
determinant of M mirrors that of M, this is not true in general,



