# Kirillov's Family Algebras and the Cayley-Hamilton Identity

Matthew Tai University of Pennsylvania

October 2014

Harmonic Polynomials

Family Algebras

Known results

Other directions

#### Harmonic functions

 $U = \mathbb{C}^n$ , basis  $x_a$ ,  $g^{ab}$  metric, dual metric  $g_{ab}$ . S(U) symmetric algebra on U, polynomials on  $U^{\vee}$ .

$$\Delta = g_{ab} \frac{\partial^2}{\partial x_a \partial x_b}$$

Harmonic polynomials

$$\mathcal{H}(U) = \{ f \in S(U) | \Delta f = 0 \}$$

Useful in analysis, geometry, algebra, interesting rep theoretic, combinatorial behavior.

# SO(n) action

SO(n) acts on U, S(U),  $\Delta$ .  $\Delta$  is SO(n)-invariant  $\mathcal{H}(U)$  is SO(n)-invariant; can look at as SO(n)-module. Define  $I(U) = S(U)^{SO(n)}$ .  $I(U) = \mathbb{C}[x_1^2 + x_2^2 + \ldots + x_n^2]$ .  $S(U) \cong I(U) \otimes \mathcal{H}(U)$ 

 $\mathcal{H}(U)$  encodes SO(n)-module behavior of S(U).

#### Generalization

Group G, representation U. When is S(U) a free module over  $I(U) = S(U)^G$ ?

Theorem (Sheppard-Todd, Chevalley)

For G finite, S(U) is a free module over I(U) iff G is a pseudoreflection group acting on U by pseudoreflections.

## Theorem (Kostant-Rallis)

S(U) is a free-module over I(U) if G is a simple Lie group and U a symmetric space representation of G. Includes usual notion of harmonic.

## G-Harmonic Polynomials

Basis  $x_a$  of U,  $g^{ab}$  a G-invariant bilinear form, dual  $g_{ab}$   $Di: S(U) \rightarrow Diff(U)$ ,  $x_a \rightarrow g_{ab} \frac{\partial}{\partial x_a}$ . D(U) = Di(I(U)),  $D_+(U) = \{d \in D(U) | dc = 0 \text{ for } c \text{ constant}\}$   $\mathcal{H}(G, U) = \{f \in S(U) | df = 0 \ \forall d \in D_+(U)\}$ 

 $\mathcal{H}(G,U)$  called *G*-harmonic polynomials. When understood, *G* omitted.

$$S(U) \cong I(U) \otimes \mathcal{H}(U)$$



## Graded multiplicity

I(U) *G*-invariant, again  $\mathcal{H}(U)$  encodes *G*-module behavior of S(U). Define graded multiplicitiy:

$$m_{\mathcal{H}(U)}^{V}(q) = \sum_{k} \dim Hom_{G}(V, \mathcal{H}^{k}(U))q^{k}$$

For G pseudoreflection group, degrees called fake degrees; fully known.

For G simple Lie group,  $U = \mathfrak{g}$  corresponding Lie algebra, degrees called generalized exponents.

I(U) polynomial algebra in rank of U.

## Generalized Exponents

For  $V = \mathfrak{g}$ , generalized exponents just regular exponents,  $e_1, ..., e_r$ . Algebraic generators of  $I(\mathfrak{g})$  in degrees  $e_i + 1$ .

Theorem (Hesselink)

$$m_{\mathcal{H}(\mathfrak{g})}^V(q)=m_V^0(q)$$

q-analogue of 0-weight multiplicity in V.

Can use Kostant, Fruedenthal multiplicity formulas; unwieldy.

## More Generalized Exponents

Partially known for G = SL(n); called Kostka polynomials.

#### Theorem (Broer)

Let T maximal torus in G,  $\mathfrak{h}$  corresponding Cartan subalgebra,  $W = N_G(T)/T$  Weyl group of G.  $V^T$  admits W-action, define  $\{U_i\}$  by  $V^T = \bigoplus_i U_i$  as W-modules.

If V small, i.e.  $2\lambda \notin Wt(V)$  for all roots  $\lambda$ ,

$$m_{\mathcal{H}(G,\mathfrak{g})}^{V}(q) = \sum_{i} m_{\mathcal{H}(W,\mathfrak{h})}^{U_{i}}(q)$$

Not many small representations.



## Family Algebras

 $Hom_G(V, \mathcal{H}(\mathfrak{g}))$  vector space; no other structure. Define classical family algebras

$$C_V(\mathfrak{g}) = Hom_G(End(V), S(\mathfrak{g}))$$

 $End(V) = V \otimes V^{\vee} = \bigoplus_{i} V_{i}, \{V_{i}\}\$ called children of V.

$$Hom_{G}(End(V), S(\mathfrak{g})) = \bigoplus_{i} Hom_{G}(V_{i}, S(\mathfrak{g}))$$
$$= \bigoplus_{i} Hom_{G}(V_{i}, \mathcal{H}(\mathfrak{g})) \otimes I(\mathfrak{g})$$

Homogeneous  $I(\mathfrak{g})$ -basis of  $C_V(\mathfrak{g})$  gives homogeneous  $\mathbb{C}$ -basis of  $Hom_G(V_i,\mathcal{H}(\mathfrak{g}))$  gives generalized exponents.



## Multiplication

$$Hom_G(End(V), S(\mathfrak{g})) \cong (End(V) \otimes S(\mathfrak{g}))^G$$

Multiplicative structure. View  $C_V(\mathfrak{g})$  as  $I(\mathfrak{g})$ -algebra. Idea: use multiplicative structure to describe  $I(\mathfrak{g})$ -module structure. Hopf structures of End(V),  $S(\mathfrak{g})$  don't carry over. Naive coproduct of  $A \in (End(V) \otimes S(\mathfrak{g}))^G$  in

$$((End(V) \otimes S(\mathfrak{g})) \otimes (End(V) \otimes S(\mathfrak{g})))^G$$

not in

$$(End(V) \otimes S(\mathfrak{g}))^G \otimes (End(V) \otimes S(\mathfrak{g}))^G$$



#### Restriction

Injection Res:  $C_V(\mathfrak{g}) \to B_V(\mathfrak{h})^W = Hom_W(End(V)^T, S(\mathfrak{h}))$ Res isomorphism iff children of V small.

$$C_{V}(\mathfrak{g}) \otimes_{I(\mathfrak{g})} Frac(I(\mathfrak{g})) \cong B_{V}(\mathfrak{h})^{W} \otimes_{I(\mathfrak{h})} Frac(I(\mathfrak{g}))$$

$$C_{V}(\mathfrak{g}) \otimes_{I(\mathfrak{g})} Frac(S(\mathfrak{h})) \cong \sum_{\lambda \in Wt(V)} Mat_{m_{V}^{\lambda}}(Frac(S(\mathfrak{h})))$$

#### Generation

For  $P \in I(\mathfrak{g})$ ,

$$M_P = \sum_{\alpha} \pi_V(X_{\alpha}) \otimes \frac{\partial}{\partial X_{\alpha}} P \in C_V(\mathfrak{g})$$

For  $P_2$  quadratic Casimir element, write  $M_{P_2} = M$ . V has simple spectrum if  $m_V^{\lambda} \le 1$  for all weights  $\lambda$ .

#### Theorem (Rozhkovskaia)

V has simple spectrum iff  $C_V(\mathfrak{g}) \otimes_{I(\mathfrak{g})} Frac(I(\mathfrak{g}))$  is generated by M as  $Frac(I(\mathfrak{g}))$ -algebra iff  $C_V(\mathfrak{g})$  is commutative.

## Simple Spectrum

```
C_V(\mathfrak{g}) not necessarily generated by single element over I(\mathfrak{g}). A_r, B_r, C_r, G_2, defining rep, C_V(\mathfrak{g}) generated by M D_r, defining rep, C_V(\mathfrak{g}) generated by M, M_{Pf} E_6, E_7, defining rep, C_V(\mathfrak{g}) three generators. B_r, D_r, spin rep, C_V(\mathfrak{g}) (roughly) r/2 generators.
```

## Example

 $D_r$ , defining 2r-dimensional rep: Generators M in degree 1,  $M_{Pf}$  in degree r-1. Relations:  $M^{2r}$  reduces, Cayley-Hamilton identity.  $MM_{Pf} = Pf \ I_{2r}$ .  $M_{Pf}^2$  reduces,  $M^{2r-1}$  also reduces.

 $I(\mathfrak{g})$ -basis:  $1, M^n$  for  $1 \le n \le 2r - 2$ ,  $M_{Pf}$ . Degrees  $0, 1, \dots, 2r - 2, r - 1$ .

 $V_{\omega_1} \otimes V_{\omega_1} = V_0 \oplus V_{\omega_2} \oplus V_{2\omega_1}$ 

$$m_0^0(q) = 1$$

$$m_{\omega_2}^0(q) = q^1 + q^3 + \dots + q^{2r-3} + q^{r-1}$$

$$m_{2\omega_1}^0(q) = q^2 + q^4 + \dots + q^{2r-2}$$

# $D_r$ , 2r-dimensional rep

$$M = \begin{bmatrix} 0 & h_1 & \dots & 0 & 0 \\ -h_1 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & h_r \\ 0 & 0 & \dots & -h_r & 0 \end{bmatrix}$$

$$M_{Pf} = \begin{bmatrix} 0 & h_2h_3\cdots h_r & \dots & 0 & 0 \\ -h_2h_3\cdots h_r & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & h_1h_2\cdots h_{r-1} \\ 0 & 0 & \dots & -h_1h_2\cdots h_{r-1} & 0 \end{bmatrix}$$

# V = Adjoint Rep

$$I(\mathfrak{g})$$
-basis of  $C_{adj}(\mathfrak{g})$ : 
$$M^mR_n \text{ for } 0 \leq m \leq e_r + 1, 1 \leq n \leq r$$
 
$$R_mSR_n + R_nSR_m \text{ for } 1 \leq m \leq n < r$$
 
$$R_mSR_n - R_nSR_m \text{ for } 1 \leq m < n \leq r$$
 
$$deg(M) = 1, \ deg(S) = 2, \ deg(R_n) = e_n - 1.$$

## Tensor powers of the adjoint rep

Trace invariant: given representation  $(M, \pi)$ ,

$$T_M(x_1,\ldots,x_n)=tr_M(\pi(x_1)\pi(x_2)\cdots\pi(x_n))$$

#### **Theorem**

For a classical Lie group G, the invariant elements of  $\otimes^* \mathfrak{g} \cong \otimes^* \mathfrak{g}^\vee$  are spanned by products of trace invariants.

For  $V = \bigotimes^k \mathfrak{g}$ ,  $C_V(\mathfrak{g})$  generated by elements based on trace invariants.

## Symmetric Space Rep

U symmetric space rep

$$C_V(U) = Hom_G(End(V), S(U))$$

$$Hom_G(End(V), S(U)) = \bigoplus_i Hom_G(V_i, \mathcal{H}(U)) \otimes I(U)$$

# Quantum Family Algebras

Let  $U(\mathfrak{g})$  be the universal enveloping algebra of  $\mathfrak{g}$ .

$$Q_V(\mathfrak{g}) = Hom_G(End(V), U(\mathfrak{g}))$$

Theorem (Poincare-Birkhoff-Witt)

$$S(\mathfrak{g})\cong U(\mathfrak{g})$$

as G-modules.

Define 
$$Z(\mathfrak{g}) = U(\mathfrak{g})^G$$
.  $Z(\mathfrak{g}) \cong I(\mathfrak{g})$  by PBW.  $Q_V(\mathfrak{g}) \cong C_V(\mathfrak{g})$ 



# Cayley-Hamilton

### Theorem (Kirillov)

For  $A \in Q_V(\mathfrak{g})$ ,  $\exists$  monic  $P(x) \in Y(\mathfrak{g})[x]$ ,  $deg(P) = n = \dim V$  s.t.

$$P(A) = 0$$

$$P(x) = p_n + p_{n-1}x^{n-1} + \dots + p_0$$
  

$$tr(A) = -p_{n-1}, \ det(A) = (-1)^n p_0.$$
  
Not polynomials in entries of  $A$ .

## Example

$$G = SL(2), \ V = \mathbb{C}^2, \ \Delta_2 = \frac{H^2}{2} + EF + FE$$
 
$$M = \begin{bmatrix} \frac{H}{2} & F \\ E & -\frac{H}{2} \end{bmatrix}$$

$$M^{2} = \begin{bmatrix} \frac{H^{2}}{4} + FE & \frac{H}{2}F - F\frac{H}{2} \\ E\frac{H}{2} - \frac{H}{2}E & \frac{H^{2}}{4} + EF \end{bmatrix}$$
$$= \begin{bmatrix} \frac{1}{2}(\frac{H^{2}}{2} + EF + FE) - \frac{H}{2} & -F \\ -E & \frac{1}{2}(\frac{H^{2}}{2} + EF + FE) + \frac{H}{2} \end{bmatrix}$$
$$= -M + \Delta_{2}I_{2}$$