Kirillov's Family Algebras and the Cayley-Hamilton Identity

Matthew Tai
University of Pennsylvania

October 2014

Harmonic Polynomials

Family Algebras

Known results

Other directions

Harmonic functions

$U=\mathbb{C}^{n}$, basis $x_{a}, g^{a b}$ metric, dual metric $g_{a b}$. $S(U)$ symmetric algebra on U, polynomials on U^{v}.

$$
\Delta=g_{a b} \frac{\partial^{2}}{\partial x_{a} \partial x_{b}}
$$

Harmonic polynomials

$$
\mathcal{H}(U)=\{f \in S(U) \mid \Delta f=0\}
$$

Useful in analysis, geometry, algebra, interesting rep theoretic, combinatorial behavior.

$\mathrm{SO}(\mathrm{n})$ action

$S O(n)$ acts on $U, S(U), \Delta$.
Δ is $S O(n)$-invariant
$\mathcal{H}(U)$ is $S O(n)$-invariant; can look at as $S O(n)$-module.
Define $I(U)=S(U)^{S O(n)} . I(U)=\mathbb{C}\left[x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}\right]$.

$$
S(U) \cong I(U) \otimes \mathcal{H}(U)
$$

$\mathcal{H}(U)$ encodes $S O(n)$-module behavior of $S(U)$.

Generalization

Group G, representation U. When is $S(U)$ a free module over $I(U)=S(U)^{G}$?
Theorem (Sheppard-Todd, Chevalley)
For G finite, $S(U)$ is a free module over $I(U)$ iff G is a pseudoreflection group acting on U by pseudoreflections.

Theorem (Kostant-Rallis)
$S(U)$ is a free-module over $I(U)$ if G is a simple Lie group and U a symmetric space representation of G. Includes usual notion of harmonic.

G-Harmonic Polynomials

Basis x_{a} of $U, g^{a b}$ a G-invariant bilinear form, dual $g_{a b}$ $\operatorname{Di}: S(U) \rightarrow \operatorname{Diff}(U), x_{a} \rightarrow g_{a b} \frac{\partial}{\partial x_{a}}$.
$D(U)=\operatorname{Di}(I(U)), D_{+}(U)=\{d \in D(U) \mid d c=0$ for c constant $\}$

$$
\mathcal{H}(G, U)=\left\{f \in S(U) \mid d f=0 \forall d \in D_{+}(U)\right\}
$$

$\mathcal{H}(G, U)$ called G-harmonic polynomials. When understood, G omitted.

$$
S(U) \cong I(U) \otimes \mathcal{H}(U)
$$

Graded multiplicity

$I(U) G$-invariant, again $\mathcal{H}(U)$ encodes G-module behavior of $S(U)$. Define graded multiplicitiy:

$$
m_{\mathscr{H}(U)}^{V}(q)=\sum_{k} \operatorname{dim} \operatorname{Hom}_{G}\left(V, \mathcal{H}^{k}(U)\right) q^{k}
$$

For G pseudoreflection group, degrees called fake degrees; fully known.
For G simple Lie group, $U=\mathfrak{g}$ corresponding Lie algebra, degrees called generalized exponents. $I(U)$ polynomial algebra in rank of U.

Generalized Exponents

For $V=\mathfrak{g}$, generalized exponents just regular exponents, e_{1}, \ldots, e_{r}. Algebraic generators of $I(\mathfrak{g})$ in degrees $e_{i}+1$.
Theorem (Hesselink)

$$
m_{\mathcal{H}(\mathfrak{g})}^{V}(q)=m_{V}^{0}(q)
$$

q-analogue of 0 -weight multiplicity in V.
Can use Kostant, Fruedenthal multiplicity formulas; unwieldy.

More Generalized Exponents

Partially known for $G=S L(n)$; called Kostka polynomials.
Theorem (Broer)
Let T maximal torus in G, \mathfrak{h} corresponding Cartan subalgebra, $W=N_{G}(T) / T$ Weyl group of G.
V^{T} admits W-action, define $\left\{U_{i}\right\}$ by $V^{T}=\oplus_{i} U_{i}$ as W-modules. If V small, i.e. $2 \lambda \notin W t(V)$ for all roots λ,

$$
m_{\mathcal{H}(G, \mathfrak{g})}^{V}(q)=\sum_{i} m_{\mathcal{H}(W, \mathfrak{h})}^{U_{i}}(q)
$$

Not many small representations.

Family Algebras

$\operatorname{Hom}_{G}(V, \mathcal{H}(\mathfrak{g}))$ vector space; no other structure.
Define classical family algebras

$$
C_{V}(\mathfrak{g})=\operatorname{Hom}_{G}(E n d(V), S(\mathfrak{g}))
$$

$\operatorname{End}(V)=V \otimes V^{\vee}=\oplus_{i} V_{i},\left\{V_{i}\right\}$ called children of V.

$$
\begin{aligned}
\operatorname{Hom}_{G}(E n d(V), S(\mathfrak{g})) & =\bigoplus_{i} \operatorname{Hom}_{G}\left(V_{i}, S(\mathfrak{g})\right) \\
& =\bigoplus_{i} \operatorname{Hom}_{G}\left(V_{i}, \mathcal{H}(\mathfrak{g})\right) \otimes I(\mathfrak{g})
\end{aligned}
$$

Homogeneous $I(\mathfrak{g})$-basis of $C_{V}(\mathfrak{g})$ gives homogeneous \mathbb{C}-basis of $\operatorname{Hom}_{G}\left(V_{i}, \mathcal{H}(\mathfrak{g})\right)$ gives generalized exponents.

Multiplication

$$
\operatorname{Hom}_{G}(E n d(V), S(\mathfrak{g})) \cong(E n d(V) \otimes S(\mathfrak{g}))^{G}
$$

Multiplicative structure. View $C_{V}(\mathfrak{g})$ as $I(\mathfrak{g})$-algebra. Idea: use multiplicative structure to describe $I(\mathfrak{g})$-module structure. Hopf structures of $\operatorname{End}(V), S(\mathfrak{g})$ don't carry over. Naive coproduct of $A \in(E n d(V) \otimes S(\mathfrak{g}))^{G}$ in

$$
((E n d(V) \otimes S(\mathfrak{g})) \otimes(E n d(V) \otimes S(\mathfrak{g})))^{G}
$$

not in

$$
(E n d(V) \otimes S(\mathfrak{g}))^{G} \otimes(E n d(V) \otimes S(\mathfrak{g}))^{G}
$$

Restriction

Injection Res: $C_{V}(\mathfrak{g}) \rightarrow B_{V}(\mathfrak{h})^{W}=\operatorname{Hom}_{W}\left(E n d(V)^{T}, S(\mathfrak{h})\right)$
Res isomorphism iff children of V small.

$$
\begin{gathered}
C_{V}(\mathfrak{g}) \otimes_{I(\mathfrak{g})} \operatorname{Frac}(I(\mathfrak{g})) \cong B_{V}(\mathfrak{h})^{W} \otimes_{I(\mathfrak{h})} \operatorname{Frac}(I(\mathfrak{g})) \\
C_{V}(\mathfrak{g}) \otimes_{I(\mathfrak{g})} \operatorname{Frac}(S(\mathfrak{h})) \cong \sum_{\lambda \in W t(V)} \operatorname{Mat}_{m_{V}^{\lambda}}(\operatorname{Frac}(S(\mathfrak{h})))
\end{gathered}
$$

Generation

For $P \in I(\mathfrak{g})$,

$$
M_{P}=\sum_{\alpha} \pi_{V}\left(X_{\alpha}\right) \otimes \frac{\partial}{\partial X_{\alpha}} P \in C_{V}(\mathfrak{g})
$$

For P_{2} quadratic Casimir element, write $M_{P_{2}}=M$.
V has simple spectrum if $m_{V}^{\lambda} \leq 1$ for all weights λ.
Theorem (Rozhkovskaia)
V has simple spectrum iff $C_{V}(\mathfrak{g}) \otimes_{I(\mathfrak{g})} \operatorname{Frac}(I(\mathfrak{g}))$ is generated by M as $\operatorname{Frac}(I(\mathfrak{g}))$-algebra iff $C_{V}(\mathfrak{g})$ is commutative.

Simple Spectrum

$C_{V}(\mathfrak{g})$ not necessarily generated by single element over $I(\mathfrak{g})$. $A_{r}, B_{r}, C_{r}, G_{2}$, defining rep, $C_{V}(\mathfrak{g})$ generated by M D_{r}, defining rep, $C_{V}(\mathfrak{g})$ generated by $M, M_{P f}$ E_{6}, E_{7}, defining rep, $C_{V}(\mathfrak{g})$ three generators.
B_{r}, D_{r}, spin rep, $C_{V}(\mathfrak{g})$ (roughly) $r / 2$ generators.

Example

D_{r}, defining $2 r$-dimensional rep: Generators M in degree $1, M_{P f}$ in degree $r-1$.
Relations: $M^{2 r}$ reduces, Cayley-Hamilton identity. $M M_{P f}=P f I_{2 r}$. $M_{P f}^{2}$ reduces, $M^{2 r-1}$ also reduces.
$I(\mathfrak{g})$-basis: $1, M^{n}$ for $1 \leq n \leq 2 r-2, M_{P f}$. Degrees
$0,1, \ldots, 2 r-2, r-1$.
$V_{\omega_{1}} \otimes V_{\omega_{1}}=V_{0} \oplus V_{\omega_{2}} \oplus V_{2 \omega_{1}}$

$$
\begin{gathered}
m_{0}^{0}(q)=1 \\
m_{\omega_{2}}^{0}(q)=q^{1}+q^{3}+\ldots+q^{2 r-3}+q^{r-1} \\
m_{2 \omega_{1}}^{0}(q)=q^{2}+q^{4}+\ldots+q^{2 r-2}
\end{gathered}
$$

$D_{r,} 2 r$-dimensional rep

$$
\begin{gathered}
M=\left[\begin{array}{ccccc}
0 & h_{1} & \ldots & 0 & 0 \\
-h_{1} & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 0 & h_{r} \\
0 & 0 & \ldots & -h_{r} & 0
\end{array}\right] \\
M_{P f}=\left[\begin{array}{ccccc}
0 & h_{2} h_{3} \cdots h_{r} & \ldots & 0 & 0 \\
-h_{2} h_{3} \cdots h_{r} & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & h_{1} h_{2} \cdots h_{r-1} \\
0 & 0 & \cdots & -h_{1} h_{2} \cdots h_{r-1} & 0
\end{array}\right]
\end{gathered}
$$

$V=$ Adjoint Rep

I(g)-basis of $C_{\text {adj }}(\mathfrak{g})$:

$$
\begin{aligned}
& M^{m} R_{n} \text { for } 0 \leq m \leq e_{r}+1,1 \leq n \leq r \\
& R_{m} S R_{n}+R_{n} S R_{m} \text { for } 1 \leq m \leq n<r \\
& R_{m} S R_{n}-R_{n} S R_{m} \text { for } 1 \leq m<n \leq r
\end{aligned}
$$

$$
\operatorname{deg}(M)=1, \operatorname{deg}(S)=2, \operatorname{deg}\left(R_{n}\right)=e_{n}-1
$$

Tensor powers of the adjoint rep

Trace invariant: given representation (M, π),

$$
T_{M}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{tr}_{M}\left(\pi\left(x_{1}\right) \pi\left(x_{2}\right) \cdots \pi\left(x_{n}\right)\right)
$$

Theorem
For a classical Lie group G, the invariant elements of $\otimes^{*} \mathfrak{g} \cong \otimes^{*} \mathfrak{g}^{\vee}$ are spanned by products of trace invariants.
For $V=\bigotimes^{k} \mathfrak{g}, C_{V}(\mathfrak{g})$ generated by elements based on trace invariants.

Symmetric Space Rep

U symmetric space rep

$$
\begin{gathered}
C_{V}(U)=\operatorname{Hom}_{G}(E n d(V), S(U)) \\
\operatorname{Hom}_{G}(E n d(V), S(U))=\bigoplus_{i} \operatorname{Hom}_{G}\left(V_{i}, \mathcal{H}(U)\right) \otimes I(U)
\end{gathered}
$$

Quantum Family Algebras

Let $U(\mathfrak{g})$ be the universal enveloping algebra of \mathfrak{g}.

$$
Q_{V}(\mathfrak{g})=\operatorname{Hom}_{G}(E n d(V), U(\mathfrak{g}))
$$

Theorem (Poincare-Birkhoff-Witt)

$$
S(\mathfrak{g}) \cong U(\mathfrak{g})
$$

as G-modules.
Define $Z(\mathfrak{g})=U(\mathfrak{g})^{G} . Z(\mathfrak{g}) \cong I(\mathfrak{g})$ by PBW. $Q_{V}(\mathfrak{g}) \cong C_{V}(\mathfrak{g})$

Cayley-Hamilton

Theorem (Kirillov)
For $A \in Q_{V}(\mathfrak{g}), \exists$ monic $P(x) \in Y(\mathfrak{g})[x], \operatorname{deg}(P)=n=\operatorname{dim} V$ s.t.

$$
P(A)=0
$$

$P(x)=p_{n}+p_{n-1} x^{n-1}+\ldots+p_{0}$
$\operatorname{tr}(A)=-p_{n-1}, \operatorname{det}(A)=(-1)^{n} p_{0}$.
Not polynomials in entries of A.

Example

$$
\begin{aligned}
& G=S L(2), V=\mathbb{C}^{2}, \Delta_{2}=\frac{H^{2}}{2}+E F+F E \\
& M=\left[\begin{array}{cc}
\frac{H}{2} & F \\
E & -\frac{H}{2}
\end{array}\right] \\
& M^{2}=\left[\begin{array}{cc}
\frac{H^{2}}{4}+F E & \frac{H}{2} F-F \frac{H}{2} \\
E \frac{H}{2}-\frac{H}{2} E & \frac{H^{2}}{4}+E F
\end{array}\right] \\
&=\left[\begin{array}{cc}
\frac{1}{2}\left(\frac{H^{2}}{2}+E F+F E\right)-\frac{H}{2} & -F \\
& =-M+\Delta_{2} I_{2}
\end{array}\right.
\end{aligned}
$$

