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1 Functions
A function can be visualized as a machine that takes in an input x and returns an output f (x). The collection

of all possible inputs is called the domain, and the collection of all possible outputs is called the range.

This course deals with functions whose domains and ranges are R or subsets of R (this is the notation for the

real numbers).

1.1 Examples

Example

1. Polynomials, e.g. f (x) = x3 − 5x2 + x + 9. Give the domain and range of f . (See Answer 1)

2. Trigonometric functions, e.g. sin, cos, tan. Give the domain and range for each of these. (See

Answer 2)

3. The exponential function, ex . Give the domain and range for the exponential. (See Answer 3)

4. The natural logarithm function, ln x . Recall that this is the inverse of the exponential function. Give

the domain and range for ln x . (See Answer 4)

5. Is sin−1 a function? If so, why? If not, is there a way to make it into a function? (See Answer 5)

1.2 Operations on Functions

Composition

The composition of two functions, f and g, is defined to be the function that takes as its input x and returns

as its output g(x) fed into f .

f ◦ g(x) = f (g(x))

Example √
1− x2

can be thought of as the composition of two functions, f and g. If g = 1− x2, f would be the function that

takes an input g(x) and returns its square root.
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Example

Compute the composition f ◦ f , i.e. the composition of f with itself, where f (x) =
1

x + 1
. (See Answer 6)

Inverse

The inverse is the function that undoes f . If you plug f (x) into f −1, you will get x . Notice that this function

works both ways. If you plug f −1(x) into f (x), you will get back x again.

f −1(f (x)) = x

f (f −1(x)) = x

NOTE: f −1 denotes the inverse, not the reciprocal. f −1(x) 6= 1
f (x) .

Example

Let’s consider f (x) = x3. Its inverse is f −1(x) = x
1
3 .

f −1(f (x)) = (x3)
1
3 = x

f (f −1(x)) = (x
1
3 )3 = x

1.3 Classes of Functions

Polynomials

A polynomial P (x) is a function of the form

P (x) = c0 + c1x + c2x
2 + · · ·+ cnx

n

The top power n is called the degree of the polynomial. We can also write a polynomial using a summation

notation.

P (x) =

n∑
k=0

ckx
k

Rational functions

Rational functions are functions of the form
P (x)

Q(x)
where each is a polynomial.

Example

3x − 1

x2 + x − 6

is a rational function. You have to be careful of the denominator. When the denominator takes a value of

zero, the function may not be well-defined.
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Powers

Power functions are functions of the form cxn, where c and n are constant real numbers.

Other powers besides those of positive integers are useful.

Example

• What is x0 ? (See Answer 7)

• What is x−
1
2 ? (See Answer 8)

• What is x
22
7 ? (See Answer 9)

• What is xπ ? We are not yet equipped to handle this, but we will come back to it later.

Trigonometrics

You should be familiar with the basic trigonometric functions sin, cos. One fact to keep in mind is cos2 θ+sin2 θ =

1 for any θ. This is known as a Pythagorean identity, which is so named because of one of the ways to prove it:

By looking at a right triangle with hypotenuse 1 and angle θ, and labeling the adjacent and opposite sides

accordingly, one finds by using Pythagoras’ Theorem that cos2 θ + sin2 θ = 1.

Another way to think about it is to embed the above triangle into a diagram for the unit circle where we see

that cos θ and sin θ returns the x and y coordinates, respectively, of a point on the unit circle with angle θ to

the x-axis:
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That explains the nature of the formula cos2 θ + sin2 θ = 1. It comes from the equation of the unit circle

x2 + y2 = 1.

Other trigonometric functions:

• tan =
sin

cos

• cot =
cos

sin
, the reciprocal of tan

• sec =
1

cos
, the reciprocal of cos

• csc =
1

sin
, the reciprocal of sin

All four of these have vertical asymptotes at the points where the denominator goes to zero.

Inverse Trigonometrics

We often write sin−1 to denote the inverse, but this can cause confusion. Be careful that sin−1 6=
1

sin
. To avoid

the confusion, the terminology arcsin is recommended for the inverse of the sin function.

The arcsin function takes on values
[
−
π

2
,
π

2

]
and has a restricted domain [−1, 1].

The arccos function likewise has a restricted domain [−1, 1], but it takes values [0, π].

The arctan function has an unbounded domain, it is well defined for all inputs. But it has a restricted range(
−
π

2
,
π

2

)
.

Exponentials

Exponential functions are of the form cx , where c is some positive constant. The most common such function,

referred to as the exponential, is ex . This is the most common because of its nice integral and differential

properties (below).

Algebraic properties of the exponential function:

exey = ex+y

(ex)y = exy

Differential/integral properties:
d

dx
ex = ex∫

exdx = ex + C

Recall the graph of ex , plotted here alongside its inverse, ln x :
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Note that the graphs are symmetric about the line y = x (as is true of the graphs of a function and its inverse).

Before continuing, one might ask, what is e? There are several ways to define e, which will be revealed soon.

For now, it is an irrational number which is approximately 2.718281828.

1.4 Euler’s Formula

To close this lesson, we give a wonderful formula, which for now we will just take as a fact:

Euler’s Formula

e ix = cos x + i sin x

The i in the exponent is the imaginary number
√
−1. It has the properties i2 = −1. i is not a real number.

That doesn’t mean that it doesn’t exist. It just means it is not on a real number line.

Euler’s formula concerns the exponentiation of an imaginary variable. What exactly does that mean? How is

this related to trigonometric functions? This will be covered in our next lesson.

1.5 Additional Examples

Example

Find the domain of

f (x) =
1√

x2 − 3x + 2
.

(See Answer 10)
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Example

Find the domain of

f (x) = ln(x3 − 6x2 + 8x).

(See Answer 11)

1.6 Answers to Selected Examples

1. The domain is R, because we can plug in any real number into a polynomial. The range is R, which we

see by noting that this is a cubic function, so as x → −∞, f (x)→ −∞, and as x →∞, f (x)→∞.

(Return)

2. For sin and cos: domain is R; range is [−1, 1].

For tan, the domain is {x ∈ R : x 6= π
2 + kπ}; range is R.

(Return)

3. Domain is R; range is (0,∞).

(Return)

4. Domain is (0,∞); range is R. Notice how the domain and range of the exponential relate to the domain

and range of the natural logarithm.

(Return)

5. sin−1 is not a function, because one input has many outputs. For example, sin−1(0) = 0, π, 2π, . . .. By

restricting the range of sin−1 to
[
−
π

2
,
π

2

]
, one gets the function arcsin.

(Return)

6. We find that

f ◦ f (x) = f (f (x))

= f

(
1

x + 1

)
=

1

1/ (x + 1) + 1

=
x + 1

1 + x + 1

=
x + 1

x + 2
.

(Return)

7. x0 = 1

(Return)

8. Recall a fractional power denotes root. For example, x
1
2 =
√
x . The negative sign in the exponent means

that we take the reciprocal. So, x−
1
2 = 1√

x
.

(Return)
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9. One can rewrite this as
(
x22
)1/7

. That means we take x to the 22nd power and then take the 7th root

of the result. x
22
7 =

7
√
x22

(Return)

10. Note that the square root is only defined when its input is non-negative. Also, the denominator in a

rational function cannot be 0. So we find that this function is well-defined if and only if x2 − 3x + 2 > 0.

Factoring gives

(x − 2)(x − 1) > 0.

By plotting the points x = 1 and x = 2 (where the denominator equals 0) and testing points between

them, one finds that x2 − 3x + 2 > 0 when x < 1 or x > 2:

So the domain of f is x < 1 or 2 < x . In interval notation, this is (−∞, 1) ∪ (2,∞).

(Return)

11. Since ln is only defined on the positive real numbers, we must have x3 − 6x2 + 8x > 0. Factoring gives

x(x2 − 6x + 8) = x(x − 2)(x − 4) > 0

As in the above example, plotting the points where this equals 0 and then testing points, we find that the

domain is 0 < x < 2 and 4 < x . In interval notation, this is (0, 2) ∪ (4,∞).

(Return)
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2 The Exponential

This module deals with a very important function: the exponential. The first question one might ask is: what

is the exponential function ex? We know certain values of the function such as e0 = 1, but what about an

irrational input such as eπ, or an imaginary input e i? Is it possible to make sense of these values?

The following definition answers these questions.

The Exponential ex

ex = 1 + x +
x2

2!
+
x3

3!
+
x4

4!
+ · · ·

=

∞∑
k=0

xk

k!
,

where

k! = k(k − 1)(k − 2) · · · 3 · 2 · 1,

and 0! = 1.

One can now plug values for x into the above sum to compute ex . When x = 0, for instance, one finds that

e0 = 1, (since all the terms with x disappear) as expected. By plugging in x = 1, the true value of e is found

to be e = 1 + 1 + 1
2! + 1

3! + · · · .

2.1 A long polynomial

There are technical concerns when trying to add up an infinite number of things. These issues will be dealt with

later in the modules on series. For now, treat the infinite sum above as a long polynomial (the actual term is

the Taylor series about x = 0, which will be more formally dealt with in the next module). Polynomials are nice

because they are easy to integrate and differentiate. Recall the power rule for differentiating and integrating a

monomial xk , where k is a constant:

d

dx
xk = kxk−1∫

xk dx =
1

k + 1
xk+1 + C (k 6= −1)
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2.2 Properties of ex

Recall the following properties of the exponential function:

1. ex+y = exey

2. ex ·y = (ex)y = (ey )x

3. d
dx e

x = ex

4.
∫
exdx = ex + C.

Consider the last two properties in terms of the long polynomial.Taking the derivative of the long polynomial

for ex gives

d

dx
(1 + x +

x2

2!
+
x3

3!
+
x4

4!
+ · · · ) = 0 + 1 +

2x

2!
+

3x2

3!
+

4x3

4!
+ · · ·

= 1 + x +
x2

2!
+
x3

3!
+ · · · ,

which is the original long polynomial. Integrating also gives (up to the constant of integration) the original long

polynomial. This agrees with facts about the derivative and integral of ex . Thus, the long polynomial for ex

captures two of the key features of ex ; namely, ex is its own derivative and its own integral.

2.3 Euler’s formula

Recall that the imaginary number i is defined by i =
√
−1. So i2 = −1, i3 = −i , i4 = 1, and this continues

cyclically (for a review of complex/imaginary numbers, see wikipedia). Assume the following fact, known as

Euler’s formula, mentioned in the last module.

Euler’s formula

e ix = cos x + i sin x.

Consider what happens when ix is plugged into the long polynomial for ex . By simplifying the powers of i , and

grouping the result into its real and imaginary parts, one finds

e ix = 1 + ix +
(ix)2

2!
+

(ix)3

3!
+ · · ·

= 1 + ix +
i2x2

2!
+
i3x3

3!
+ · · ·

= 1 + ix −
x2

2!
− i

x3

3!
+
x4

4!
+ i

x5

5!
+ · · ·

=

(
1−

x2

2!
+
x4

4!
− · · ·

)
+ i

(
x −

x3

3!
+
x5

5!
− · · ·

)
.

If this is supposed to equal cos x + i sin x , then the real part must be cos x , and the imaginary part must be

sin x . It follows that

cos x = 1−
x2

2!
+
x4

4!
−
x6

6!
+ · · · =

∞∑
k=0

(−1)k
x2k

(2k)!

sin x = x −
x3

3!
+
x5

5!
−
x7

7!
+ · · · =

∞∑
k=0

(−1)k
x2k+1

(2k + 1)!
.
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These formulas should be memorized, both in their long polynomial form and their more concise summation

notation form.

Example

Use Euler’s formula to show that e iπ = −1. (See Answer 1)

Example

Compute 1− π2

2! + π4

4! − · · · . (See Answer 2)

Example

Check that taking the derivative of the long polynomial for sin x gives the long polynomial for cos x (hence,

verify that d
dx sin x = cos x). (See Answer 3)

Example

Show that the long polynomial for ex satisfies the first property above, namely ex+y = exey . Hint: start

with the long polynomials for ex and ey and multiply these together, and carefully collect like terms to show

it equals the long polynomial for ex+y . (See Answer 4)

2.4 More on the long polynomial

The idea of a long polynomial is reasonable, because it actually comes from taking a sequence of polynomials

with higher and higher degree:

f0(x) = 1

f1(x) = 1 + x

f2(x) = 1 + x +
x2

2

f3(x) = 1 + x +
x2

2
+
x3

6
....

Each polynomial in the sequence is, in a sense, the best approximation possible of that degree. Put another way,

taking the first several terms of the long polynomial gives a good polynomial approximation of the function. The

more terms included, the better the approximation. This is how calculators compute the exponential function

(without having to add up infinitely many things).
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2.5 EXERCISES

• So, how good of an approximation is a polynomial truncation of ex? Use a calculator to compare how

close e is to the linear, quadratic, cubic, quartic, and quintic approximations. How many digits of accuracy

do you seem to be gaining with each additional term in the series?

• Now, do the same thing with 1/e by plugging in x = −1 into the series. Do you have the same results?

Are you surprised?

• Use the first three terms of the series for ex to approximate 10
√
e and e10. How accurate do you think

these approximations are?

• Calculate the following sum using what you know:

∞∑
n=0

(−1)n
(ln 3)n

n!

• Write out the first four terms of the following series

∞∑
n=0

(−1)n
π2n

2nn!

• Write out the following series using summation notation:

1−
2

3!
+

4

5!
−

8

7!
+ · · ·

• Estimate sin(1/2) to three digits of accuracy. How many terms in the series did this take?

• We’ve seen that i = e iπ/2 via Euler’s formula. Using this and some algebra, tell me what is i i . Isn’t that

nice? Now, tell me, what is (i i)i? Are you surprised? That’s like, unreal!

• Practice your summation notation by rewriting the sum

∞∑
n=2

(−1)n
xn−2

n3

as a sum over an index that goes from zero to infinity.
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• Use the first two nonzero terms of the Taylor series for cos(x) to approximate cos( 110).

• Use Euler’s formula to derive the double angle formulas cos(2θ) = cos2(θ) − sin2(θ) and sin(2θ) =

2 sin(θ) cos(θ).

2.6 Answers to Selected Examples

1. Setting x = π in Euler’s formula gives e iπ = cosπ + i sinπ = −1.

(Return)

2. Note that this is the long polynomial for cos x , evaluated at x = π. So the value is cosπ = −1.

(Return)

3. Computing the derivative term by term gives

d

dx
sin(x) =

d

dx

(
x −

x3

3!
+
x5

5!
− . . .

)
= 1− 3

x2

3!
+ 5

x4

5!
− . . .

= 1−
x2

2!
+
x4

4!
− . . . ,

which is the long polynomial for cos x , as desired.

(Return)

4. Beginning with ex · ey , we find

ex · ey =

(
1 + x +

x2

2!
+ · · ·

)(
1 + y +

y2

2!
+ · · ·

)
= 1 + (x + y) +

(
x2

2!
+ xy +

y2

2!

)
+ · · ·

= 1 + (x + y) +
x2 + 2xy + y2

2!
+ · · ·

= 1 + (x + y) +
(x + y)2

2!
+ · · · ,

which is the long polynomial for ex+y , as desired.

(Return)
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3 Taylor Series

The long polynomial from the last module is actually called a Taylor series about x = 0 (this is referred to as a

Maclaurin series in some textbooks, but this course will use the term Taylor series). The last module gave the

Taylor series for ex , sin x , and cos x . The logical next question is to ask whether every function has a Taylor

series.

The answer is that most reasonable functions, and almost all of the functions encountered in this course, have

a Taylor series. That is, every reasonable function f can be written as

f (x) =

∞∑
k=0

ckx
k = c0 + c1x + c2x

2 + · · · .

This module describes how to compute the coefficients ck for a given function f .

3.1 The definition of a Taylor series at x=0

The definition of the Taylor series of f at x = 0 is

Taylor series at x = 0

f (x) = f (0) +
f ′(0)

1!
x +

f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + · · · =

∞∑
k=0

f (k)(0)

k!
xk ,

where f (k)(0) is the kth derivative of f evaluated at 0. In other words, the coefficient ck mentioned above

is given by

ck =
f (k)(0)

k!
=

1

k!
·
dk f

dxk

∣∣∣∣
0

This seems circular, since the definition uses the function, and its derivatives, to write down the function.

However, the definition only actually requires information about the function at a single point (in this case, 0).

It is best to think of the Taylor series as a way of turning a function into a polynomial.

Example

Compute the Taylor series for ex using the above definition to see that it matches the given series from the

last module. (See Answer 1)
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Example

Compute the Taylor series for f (x) = sin x using the above definition, and verify it matches the series found

using Euler’s formula. (See Answer 2)

Example

Compute the Taylor series for f (x) = x2 − 5x + 3. (See Answer 3)

3.2 Why Taylor series matter

The big idea of this module is that the Taylor series can be thought of as an operator (a machine) which turns a

function into a series. This is a useful operator because some functions are hard (or even impossible) to express

using combinations of familiar functions. Nevertheless, these functions can often be understood by computing

their Taylor series.

Example The Bessel function, denoted J0, is best defined by its Taylor series:

J0 =

∞∑
k=0

(−1)k
x2k

22k(k!)2

= 1−
1

22
x2 +

1

24(2!)2
x4 −

1

26(3!)2
x6 + · · ·

This series has only the even powers of x , and it alternates, which is reminiscent of the series for cosine. One

difference is that the denominator in the Bessel function grows more quickly than the denominator in the series

for cosine. Thus, we might expect the graph to be a wave with a decreasing amplitude, which is exactly what

we find:

It turns out that the Bessel function describes many physical phenomena, including the shape of a hanging chain

as it is rotated, and the shape of the waves formed after a stone is thrown into a pool of water.

3.3 Taylor series as polynomial approximants

The main reason Taylor series are useful is that they turn a potentially complicated function into something

simple: a polynomial. Granted, this polynomial is infinitely long in general, but in practice it is only necessary to

compute the first few terms to get a good, local approximation of the function. The more terms one includes,

the better the polynomial approximates the function.
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As an example, consider a particle on the number line with position function p(t). At time 0, say its position

is 5. Then one approximation of its position as a function of time is p0(t) = 5. Given more information, say

its velocity at time 0 is 3, the approximation becomes better. The next approximation as a function of time is

p1(t) = 5 + 3t. Now, suppose its acceleration at time 0 is −4. Then p2(t) = 5 + 3t − 4
2 t
2 = 5 + 3t − 2t2 is

an even better polynomial approximation of the position function.

3.4 EXERCISES

• What is the Taylor series of x4 − 3x3 + 2x2 + 7x − 3. This should be an easy one!

• What is the Taylor series of (x − 2)2(x − 3)? This, also, should not be *too* hard...

• Compute a few derivatives and figure out the first few terms of the Taylor series of
1

1− x . Have you seen

this series before?

• What are the first two nonzero terms in the Taylor series of 3
√

1− 2x?

• What is the coefficient of the cubic term in the Taylor series of e−3x?

• Use what you know about Taylor series to determine the third derivative of sin3(2x) cos2(3x) at x = 0.

That’s a *lot* easier than computing the derivatives!

• The ERF function is defined in terms of a difficult integral:

ERF (x) =
2√
π

∫ x

0

e−t
2

dt

• Even if you don’t remember integrals all that well, you know how to integrate a polynomial, right? So,

Taylor expand the integrand and integrate term by term to get the Taylor series for ERF.

• What is the third derivative of ERF(x) at zero?

• Why does a Taylor series have all those n! terms in the denominator? Let’s see. Compute the Taylor

series of f (x) = (1 + x)5 by (1) using the binomial theorem (or multiplication) to expand that power;

then (2) by differentiating the function and using the Taylor series formula. What do you notice when

you keep computing higher derivatives?
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3.5 Answers to Selected Examples

1. Here, f (x) = ex , and every derivative of ex is ex . Therefore, for all k we have

f (k)(x) = ex ,

and so f (k)(0) = 1 for all k . Plugging into the Taylor series formula gives

f (x) =

∞∑
k=0

f (k)(0)

k!
xk

=

∞∑
k=0

xk

k!

= 1 + x +
x2

2!
+
x3

3!
+ · · · ,

as claimed.

(Return)

2. Computing the derivatives, and then evaluating at x = 0 gives the following table:

f (x) = sin(x) f (0) = 0

f ′(x) = cos(x) f ′(0) = 1

f ′′(x) = − sin(x) f ′′(0) = 0

f ′′′(x) = − cos(x) f ′′′(0) = −1

...

Thus,

sin(x) = 0 +
1

1!
x +

0

2!
x2 +

−1

3!
x3 + · · ·

= x −
x3

3!
+
x5

5!
− · · · ,

confirming what was found last time.

(Return)

3. Again, by directly using the definition:

f (x) = x2 − 5x + 3 f (0) = 3

f ′(x) = 2x − 5 f ′(0) = −5

f ′′(x) = 2 f ′′(0) = 2

f ′′′(x) = 0 f ′′′(0) = 0

...

So it follows that

f (x) = 3− 5x +
2

2!
x2 = 3− 5x + x2
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(since all the subsequent derivatives are 0), which is the original function. This should not be a surprise,

since the Taylor series represents a function as a long polynomial (henceforth called by its proper name:

series). If f was a polynomial to begin with, it stands to reason that the Taylor series for f should just

be f itself.

(Return)
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4 Computing Taylor Series

The previous module gave the definition of the Taylor series for an arbitrary function. It turns out that this is

not always the easiest way to compute a function’s Taylor series. Just as functions can be added, subtracted,

multiplied, and composed, so can their corresponding Taylor series.

Recall that the Taylor series for a function f is given by

f (x) =

∞∑
k=0

f (k)(0)

k!
xk = f (0) + f ′(0)x +

f ′′(0)

2!
x2 + · · · .

Using the definition of the Taylor series involves taking a lot of derivatives, which could be a lot of work,

especially if the function involves compositions and products of functions, e.g. f (x) = sin(x2)ex
3
. This module

will show how to compute the Taylor series of such functions more easily by using the Taylor series for functions

we already know.

4.1 Substitution

Our first method, substitution, allows us to plug one function into the Taylor series of another. Consider the

function

f (x) =
1

x
sin(x2).

Computing the Taylor series for f from the definition would involve the quotient rule, chain rule, and a lot of

algebra. But by taking the series for sin x and substituting x2 into this series, and then distributing the 1
x , one

finds

1

x
sin(x2) =

1

x

(
(x2)−

1

3!
(x2)3 +

1

5!
(x2)5 − · · ·

)
=

1

x

(
x2 −

1

3!
x6 +

1

5!
x10 − · · ·

)
= x −

1

3!
x5 +

1

5!
x9 − · · · .

Note that getting this many terms using the definition would involve taking nine derivatives of the original

function, which would be a lot of work! To get a more complete description of the Taylor series, one can use
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the summation notation, and again substitute to find

1

x
sin(x2) =

1

x

∞∑
k=0

(−1)k
(x2)2k+1

(2k + 1)!

=
1

x

∞∑
k=0

(−1)k
x4k+2

(2k + 1)!

=

∞∑
k=0

(−1)k
x4k+1

(2k + 1)!

Example

Find the Taylor series for ex
3

by substitution. (See Answer 1)

4.2 Combining like terms

Another way to use previous knowledge of one Taylor series to find another is by combining like terms. This

requires some careful algebra, but it is no more difficult than multiplying two polynomials together. For example,

consider the function

f (x) = cos2(x) = cos(x) · cos(x).

Finding the series for a function multiplied by another function is the same as taking the series for each function

and multiplying them together, and then collecting like terms. This is where some algebra is required.

cos(x) · cos(x) =

(
1−

1

2!
x2 +

1

4!
x4 − · · ·

)(
1−

1

2!
x2 +

1

4!
x4 − · · ·

)
= 1 +

(
−

1

2!
−

1

2!

)
x2 +

(
1

4!
+

1

2!

1

2!
+

1

4!

)
x4 + · · ·

= 1− x2 +
1

3
x4 + · · · .

To see where the coefficient of x4 comes from, note that every x4 term comes from some term from the left

series multiplied together with some term from the right series whose powers add up to 4. There are three such

pairs: 1 on the left paired with 1
4!x
4 on the right; − 12!x

2 on the left paired with − 12!x
2 on the right; and 1

4!x
4

on the left paired with 1 on the right. This is the same algebra one would do when multiplying two polynomials

together; this is just a way of collecting like terms in a systematic way.

Example

Use the trigonometric identity

cos2 x =
1 + cos(2x)

2

and substitution to find the series for cos2 x . Try to give the series in summation notation (other than the

first term). (See Answer 2)
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4.3 Hyperbolic trigonometric functions

The hyperbolic trigonometric functions sinh(x), cosh(x), and tanh(x) are defined by

sinh(x) =
ex − e−x

2

cosh(x) =
ex + e−x

2

tanh(x) =
ex − e−x

ex + e−x
=

sinh(x)

cosh(x)
.

These hyperbolic trig functions, although graphically quite different from their traditional counterparts, have

several similar algebraic properties, which is why they are so named. For example, the Pythagorean identity for

cosine and sine has a version for hyperbolic cosine and sine:

cosh2(x)− sinh2(x) = 1.

One can verify this using the definitions and some algebra. But there is a geometric intuition for this relationship.

Recall that cosine and sine give the x and y coordinates, respectively, for a point on the unit circle x2+ y2 = 1.

The hyperbolic cosine and hyperbolic sine give the x and y coordinates, respectively, for points on the hyperbola

x2 − y2 = 1:
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Example

Using the Taylor series for ex and substitution, show that the Taylor series for cosh and sinh are

cosh(x) = 1 +
x2

2!
+
x4

4!
+ · · · =

∞∑
k=0

x2k

(2k)!

sinh(x) = x +
x3

3!
+
x5

5!
+ · · · =

∞∑
k=0

x2k+1

(2k + 1)!
.

Note that these are almost the same as the series for cosine and sine, respectively, except they do not

alternate. This gives another reason for the names of these functions. (See Answer 3)

4.4 Manipulating Taylor series

Another way of using one Taylor series to find another is through differentiation and integration. For instance,

to find the Taylor series for the derivative of f , one can differentiate the Taylor series for f term by term.

Example

By differentiating the Taylor series for sinh and cosh, show that

d

dx
sinh x = cosh x

d

dx
cosh x = sinh x.

This is yet another relationship which is similar (though not identical) to the relationship between sine and

cosine. (See Answer 4)

4.5 Higher Order Terms in Taylor Series

In some situations, it will be convenient only to write the first few terms of a Taylor series. This is particularly

true when combining or composing more than one Taylor series. Up until now, an ellipsis has been used to

indicate that there are more terms in the series that are being omitted.

There is another way, sometimes used in this course, of notating the omitted terms in a Taylor series. That is

by referring to them as Higher Order Terms (or H.O.T. for short). Having the extra HOT in a series means

that all the remaining terms in the series have a higher degree than the previous terms.

Example

The function ex can be written as

ex = 1 + x +
1

2!
x2 + HOT,

or it could also be written as

ex = 1 + x + HOT.

The point at which the higher order terms are cut-off is somewhat arbitrary and depends on the situation.

There is a more formal way of keeping track of the higher order terms, called Big-O notation, which is
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presented in orders of growth.

Example

Find the first two non-zero terms of the Taylor series for

f (x) = 1− 2xesin x
2

.

(See Answer 5)

4.6 Extra examples

Example

Compute the Taylor series (at 0) for sin2 x up to and including terms of order 6. Try to give the full Taylor

series in summation notation. (See Answer 6)

Example

Find the first three terms of the Taylor series for
√
f (x), where

f (x) = a0 + a1x + a2x
2 + a3x

3 + · · · .

(See Answer 7)

4.7 EXERCISES

• Compute the Taylor series of cos(2x) sin(3x) up to and including terms of degree 5. Don’t try computing

derivatives for this!

• Use a Taylor polynomial to give a cubic approximation to 2xe3x

• Compute the Taylor series of e1−cos t in summation notation.

• Compute the Taylor series of cos(sin(x)) to fourth order.

• Compute the Taylor series of sin(cos(x)) to forth order. What happens that makes this different than the

last problem? (Hint: cos(0) = 1 but sin(0) = 0...)

• Compute the first three nonvanishing terms in the Taylor series of e2x(sinh 3x)/x .

• Compute the Taylor series of 3x2e−x
2

sin 2x3 up to and including terms of order eight (!) Wow, that

means a lot of work, right? Think... which terms should you expand first?

• Compute the Taylor series of 1x e
−x2 sinh(2x) up to the fourth order term.

• What is the second derivative of the function ex cosh(x
2) at x = 0?

• Compute the following limit limx→0(1− ex) sin(x
2)

x3
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4.8 Answers to Selected Exercises

1. Recall the series for ex is

ex = 1 + x +
x2

2!
+
x3

3!
+ · · · =

∞∑
k=0

xk

k!

Substituting x3 into the series for ex gives

ex
3

= 1 + x3 +
(x3)2

2!
+

(x3)3

3!
+ · · ·

= 1 + x3 +
x6

2!
+
x9

3!
+ · · ·

=

∞∑
k=0

(x3)k

k!

=

∞∑
k=0

x3k

k!

(Return)

2. By the above identity,

cos2 x =
1

2
(1 + cos(2x))

=
1

2

(
1 +

(
1−

(2x)2

2!
+

(2x)4

4!
− · · ·

))
=

1

2

(
2−

4x2

2
+

16x4

24
− · · ·

)
= 1− x2 +

x4

3
− · · · .

In summation notation,

cos2 x =
1

2

(
1 +

∞∑
k=0

(−1)k
(2x)2k

(2k)!

)

=
1

2
+

1

2

∞∑
k=0

(−1)k
(2x)2k

(2k)!

=
1

2
+

∞∑
k=0

(−1)k
22k−1x2k

(2k)!

= 1 +

∞∑
k=1

(−1)k
22k−1x2k

(2k)!
.

(Return)
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3.

cosh(x) =
ex + e−x

2

=
1

2

[
(1 + x +

x2

2!
+ · · · ) + (1− x +

x2

2!
− · · · )

]
=

1

2

[
2 + 2

x2

2!
+ 2

x4

4!
+ · · ·

]
= 1 +

x2

2!
+
x4

4!
+ · · ·

=

∞∑
k=0

x2k

(2k)!
.

sinh(x) =
ex − e−x

2

=
1

2

[
(1 + x +

x2

2!
+ · · · )− (1− x +

x2

2!
− · · · )

]
=

1

2

[
2x + 2

x3

3!
+ 2

x5

5!
+ · · ·

]
= x +

x3

3!
+
x5

5!
+ · · ·

=

∞∑
k=0

x2k+1

(2k + 1)!
.

(Return)

4. Differentiating hyperbolic sine gives

d

dx
sinh x =

d

dx

∞∑
k=0

x2k+1

(2k + 1)!

=

∞∑
k=0

(2k + 1)
x2k

(2k + 1)!

=

∞∑
k=0

x2k

(2k)!

= cosh x,

as desired. Similarly, differentiating hyperbolic cosine gives
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d

dx
cosh x =

d

dx

∞∑
k=0

x2k

(2k)!

=

∞∑
k=0

(2k)
x2k−1

(2k)!

=

∞∑
k=1

x2k−1

(2k − 1)!

=

∞∑
k=0

x2k+1

(2k + 1)!
.

There was a little bit of reindexing there, but by writing out a few terms of each series, one can see that

all of the above equalities are true.

(Return)

5. Beginning with the innermost function, in this case sin x2, we find that

sin x2 = x2 −
1

3!
(x2)3 + HOT = x2 −

1

6
x6 + HOT.

Then plugging this into the series for ex gives

esin x
2

= 1 +

(
x2 −

1

6
x6 + HOT

)
+

1

2!

(
x2 + HOT

)2
+

1

3!

(
x2 + HOT

)3
+ HOT

= 1 + x2 +
1

2
x4 +

(
−

1

6
+

1

6

)
x6 + HOT

= 1 + x2 +
1

2
x4 + HOT

Then to complete the answer, plug this into the original function to find

f (x) = 1− 2x

(
1 + x2 +

1

2
x4 + HOT

)
= 1− 2x − 2x3 − x5 + HOT.

(Return)

6.

sin2 x = (x −
x3

3!
+
x5

5!
− · · · )(x −

x3

3!
+
x5

5!
− · · · )

= x2 + (−
1

3!
−

1

3!
)x4 + (

1

5!
+

1

3! · 3!
+

1

5!
)x6 + · · ·

= x2 −
1

3
x4 +

2

45
x6 − · · · .

To get the full Taylor series, one can use the identity

sin2 x =
1− cos(2x)

2
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to find that

sin2 x =
1− cos(2x)

2

=
1

2

(
1−

(
1−

(2x)2

2!
+

(2x)4

4!
− · · ·

))
=

1

2

(
(2x)2

2!
−

(2x)4

4!
+

(2x)6

6!
− · · ·

)
=

1

2

∞∑
k=1

(−1)k−1
(2x)2k

(2k)!
.

(Return)

7. Let g(x) =
√
f (x), where

g(x) = b0 + b1x + b2x
2 + b3x

3 + · · · .

Then g(x)2 = f (x), and so the same holds for the Taylor series:(
b0 + b1x + b2x

2 + b3x
3 + · · ·

)2
= a0 + a1x + a2x

2 + · · · .

Multiplying out and collecting like terms gives

b20 + (b0b1 + b1b0)x + (b0b2 + b1b1 + b2b0)x
2 + · · · = a0 + a1x + a2x

2 + · · · .

Now, equating coefficients of the monomials on the left and right gives the first few equations (of an

infinite system of equations)

b20 = a0

2b0b1 = a1

2b0b2 + b21 = a2.

Solving these equations gives the first three coefficients of g:

b0 =
√
a0

b1 =
a1

2
√
a0

b2 =
1

2
√
a0

(
a2 −

a21
4a0

)
.

Thus, √
a0 + a1x + a2x2 + · · · =

√
a0 +

a1
2
√
a0
x +

1

2
√
a0

(
a2 −

a21
4a0

)
x2 + · · · .

(Return)
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5 Convergence

A Taylor series can be thought of as an infinite polynomial. Up until now, we have not worried about the issues

that come up when adding up infinitely many things. This module deals with two main issues:

1. A function may not have a Taylor series at all;

2. A function’s Taylor series may not converge everywhere, even within the function’s domain.

5.1 Functions without a Taylor series

The first problem is that some functions cannot be expressed in the form

f (x) =

∞∑
k=0

ckx
k = c0 + c1x + c2x

2 + · · ·

Examples include tan, which has vertical asymptotes, and ln, which is not defined for x ≤ 0. Polynomials are

not able to capture these sorts of discontinuities and asymptotes.

The geometric series

The geometric series is an example of a Taylor series which is well behaved for some values of x and nonsensical

for other values of x . The claim is that

1 + x + x2 + x3 + x4 + · · · =
1

1− x ,

for |x | < 1. (See Justiification 1)

Example

Compute the Taylor series for f (x) = 1
1−x directly from the definition. (See Answer 2)

Note The geometric series only holds when |x | < 1. This makes sense, because if |x | > 1, the powers of

x are getting bigger and bigger and so the series should not converge. If x = 1, then the series is adding 1

infinitely many times, which diverges. If x = −1, then the series oscillates between 1 and 0, and hence does

not converge.

The takeaway is that every Taylor series has a convergence domain where the series is well-behaved, and outside

that domain the series will not converge. For many functions, the domain is the whole real number line (e.g.
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the series for ex , sin, cos, cosh, and sinh all converge everywhere), but be aware that there are functions

whose Taylor series do not converge everywhere. This will be covered more formally in Series Convergence And

Divergence.

Example

A beam of light of intensity L hits a pane of glass. Half of the light is reflected, and a third of the light is

transmitted; the rest is absorbed. When a beam of light of intensity L hits two parallel panes with an air

gap between them, how much light is transmitted through both panes? (The following figure shows how

the light gets reflected and rereflected. The first transmitted and reflected beams of light are labeled with

their respective intensities. The question asks for the total of the beams of light emerging on the right side

of the right pane of glass).

(See Answer 3)

Example

Use the Taylor series of 1
1−x to derive the Taylor series of ln(1 + x). Hint: recall that ln(1 + x) =

∫
1
1+x dx .

(See Answer 4)

Example

Use the fact that

arctan x =

∫
1

1 + x2
dx

to find the Taylor series for arctan x . (See Answer 5)
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Example

Another important function is the binomial series (1 + x)α, where α is some constant. Show that

(1 + x)α = 1 + αx +
α(α− 1)

2!
x2 +

α(α− 1)(α− 2)

3!
x3 + · · ·

=

∞∑
k=0

(
α

k

)
xk ,

where (
α

k

)
=
α(α− 1)(α− 2) · · · (α− k + 1)

k!
.

This series also only holds for |x | < 1. (See Answer 6)

5.2 Summary

Here are all the series we have found so far. The following hold for all x :

ex =

∞∑
k=0

xk

k!

cos x =

∞∑
k=0

(−1)k
x2k

(2k)!

sin x =

∞∑
k=0

(−1)k
x2k+1

(2k + 1)!

cosh x =

∞∑
k=0

x2k

(2k)!

sinh x =

∞∑
k=0

x2k+1

(2k + 1)!
.

The following hold for |x | < 1:

1

1− x =

∞∑
k=0

xk

ln(1 + x) =

∞∑
k=1

(−1)k+1
xk

k

arctan x =

∞∑
k=0

(−1)k
x2k+1

2k + 1

(1 + x)α =

∞∑
k=0

(
α

k

)
xk .
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5.3 Electrostatics example

Here we use the geometric series and the binomial series from above in an example from electrostatics. An

electric dipole is a pair of equally and oppositely charged particles separated by a short distance. One question

of interest in electrostatics is the electrostatic potential, which is the sum of the point charge potentials from

each pole.

The point charge potential from a single particle with charge q, at a distance d from the particle, is

V =
kq

d
,

where k is a constant called the Coulomb constant. Then a dipole with particles of charge q and −q has net

electrostatic potential

V =
kq

d+
−
kq

d−
,

where d+ is the distance to the positively charged particle, and d− is the distance to the negatively charged

particle:

We will calculate the first order term for the electrostatic potential at two different locations: p1 and p2:

First consider p1, located directly above and distance d from the positive particle. Let r be the distance between

the charged particles. Then d+ = d , and by the Pythagorean theorem, d− =
√
d2 + r2. It follows that the

electrostatic potential is

V =
kq

d+
−
kq

d−

=
kq

d
−

kq√
d2 + r2

.
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Now, factoring out kq
d , and applying the binomial series with α = − 12 , we find

V =
kq

d

[
1−

1√
1 + (r/d)2

]

=
kq

d

[
1−

(
1 + (r/d)2

)−1/2]
=
kq

d

[
1−

(
1−

1

2
(r/d)2 + HOT

)]
=

1

2

kqr2

d3
+ HOT.

At position p2, which is directly left of and distance d from the positive particle, we have d+ = d , and d− = d+r ,

so we find that the electrostatic potential at p2 is

V =
kq

d+
−
kq

d−

=
kq

d
−

kq

d + r
.

Again, factoring out kq
d and expanding using the geometric series gives

V =
kq

d

(
1−

1

1 + r
d

)
=
kq

d

(
1−

(
1−

r

d
+ HOT

))
=
kqr

d2
+ HOT.

5.4 EXERCISES

• Consider a snowman built from solid snowballs of radius 2−n, for n = 0, 1, 2, . . ., all stacked on top of one

another. How many units tall is the snowman? How many cubic units of snow was required to build it?

• Compute the Taylor series about zero of

ln
1 + 3x

1− 3x

• Compute the Taylor series about zero of

1√
1− x2

• Using your answer to the previous problem, compute the Taylor series about zero of arcsin x , using

termwise integration and the fact that

arcsin x =

∫
dx√

1− x2

• For which values z is the Taylor series of 4
√

3− 2z2 guaranteed to converge?
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• Use the binomial series to give the Taylor expansion of (1 + x)3. Now, do it with your head: easier, right?

Recall, we have said that the binomial series only converges when |x < 1|, but, clearly, that cannot be a

*sharp* constraint, since (1 + x)3 is good for all x , right? Well, Horatio, there are more things... By the

end of this course, we will learn when and how to bend some of these restrictions.

• Build a cylinder with radius 1 and height 3. Build a second cylinder with radius 1/2 and height 9, a third

cylinder with radius 1/4, height 27, a fourth cylinder with radius 1/8 and height 81, and so on. What is

the total volume of the cylinders?

• For which values of x does the Taylor series of ( 14 − 3x2)1/4 converge?

5.5 Answers to Selected Examples

1. Note This is not a formal proof, which would require a few tools and definitions we have not yet learned.

Let y = 1 + x + x2 + x3 + · · · . Multiplying both sides by x gives

y = 1 + x + x2 + x3 + · · ·
xy = x + x2 + x3 + x4 + · · ·

Now, subtracting the second equation from the first, all the terms other than 1 cancel on the right, leaving

us with

y(1− x) = 1.

Dividing by 1− x gives y = 1
1−x .

(Return)

2.

f (x) =
1

1− x f (0) = 1

f ′(x) =
1

(1− x)2
f ′(0) = 1

f ′′(x) =
2

(1− x)3
f ′′(0) = 2

f ′′′(x) =
6

(1− x)4
f ′′′(0) = 6.

Notice the pattern that

f (k)(x) =
k!

(1− x)k+1
,

at least for the first few k . To see that the pattern continues, assume it holds for some k , and show that

it holds for k + 1 (this is a proof technique known as mathematical induction). If f (k)(x) = k!
(1−x)k+1 , then

f (k+1)(x) =
(k + 1)k!

(1− x)k+2
=

(k + 1)!

(1− x)k+2
,

as desired. Then f (k)(0) = k!, so according to the definition of Taylor series, it follows that

1

1− x = 0! + 1!x +
2!

2!
x2 +

3!

3!
x3 + · · ·

= 1 + x + x2 + x3 + · · · ,
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which agrees with the above.

(Return)

3. By labeling more of the transmitted and reflected beams of light, a pattern emerges among the beams of

light on the right side of the right pane:

1
9 ,
1
36 ,

1
144 , . . .. Note that each beam is 14 the previous beam. Thus, the total light emerging on the right

side of the right pane of glass is

L

9
+
L

36
+

L

144
+ · · · =

L

9

(
1 +

1

4
+

1

16
+ · · ·

)
=
L

9

(
1

1− 1/4

)
=
L

9

4

3

=
4L

27
,

by using the formula for the geometric series.

(Return)

4. Note that

1

1 + x
=

1

1− (−x)

= 1− x + x2 − x3 + x4 − · · · .

Now, integrating gives
∫

dx
1+x = ln(1 + x) + C on the one hand, and∫

(1− x + x2 − x3 + x4 − · · · )dx = x −
x2

2
+
x3

3
− · · ·

=

∞∑
k=1

(−1)k−1
xk

k
,
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on the other hand. Plugging in x = 0 shows that C = 0, and so

ln(1 + x) = x −
x2

2
+
x3

3
− · · ·

=

∞∑
k=1

(−1)k+1
xk

k
. (|x | < 1)

Note that because this relied on the geometric series, which only holds for |x | < 1, the same restriction

holds for the Taylor series for ln(1 + x).

(Return)

5. Using the fact, and the geometric series, we find that

arctan(x) =

∫
1

1 + x2
dx

=

∫
1

1− (−x2) dx

=

∫ (
1− x2 + x4 − x6 + · · ·

)
dx (|x | < 1)

= x −
x3

3
+
x5

5
−
x7

7
+ · · ·+ C.

Plugging in x = 0 gives that C = 0, since arctan 0 = 0. Thus,

arctan(x) = x −
x3

3
+
x5

5
− · · ·

=

∞∑
k=0

(−1)k
x2k+1

2k + 1
(|x | < 1).

So even though arctan is defined for all x , its Taylor series only converges for |x | < 1.

(Return)

6. For fixed α we have f (x) = (1 + x)α. Then proceeding from the definition of the Taylor series, one

computes

f (x) = (1 + x)α f (0) = 1

f ′(x) = α(1 + x)α−1 f ′(0) = α

f ′′(x) = α(α− 1)(1 + x)α−2 f ′′(0) = α(α− 1)

f ′′′(x) = α(α− 1)(α− 2)(1 + x)α−3 f ′′′(0) = α(α− 1)(α− 2)

...
...

One finds that, in general, f (k)(0) = α(α − 1)(α − 2) · · · (α − k + 1). Thus, the Taylor expansion for

(1 + x)α is

(1 + x)α = 1 + αx +
α(α− 1)

2!
x2 +

α(α− 1)(α− 2)

3!
x3 + · · ·

= 1 +

(
α

1

)
x +

(
α

2

)
x2 +

(
α

3

)
x3 + · · · =

∞∑
k=0

(
α

k

)
xk ,

as claimed.

(Return)
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6 Expansion Points

Up until now, Taylor series expansions have all been at x = 0. The Taylor series at x = 0 gives a good

approximation to the function near 0. But what if we want a good approximation to the function near a

different point a? That is the topic of this module.

6.1 Expansion points

A function f has a Taylor series expansion about any point x = a provided that f and all its derivatives exist at

a. The definition of the Taylor series for f about x = a is

f (x) = f (a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2 + · · ·

=

∞∑
k=0

f (k)(a)

k!
(x − a)k .

We say this is a series in (x − a). A different way to view this series is by making the change of variables

x = a + h. After cancellation, this yields

f (a + h) = f (a) + f ′(a)h +
f ′′(a)

2!
h2 + · · ·

=

∞∑
k=0

f (k)(a)

k!
hk .

6.2 Taylor polynomial for approximation

Recall that the first few terms of the Taylor series for f about x = 0 gives a polynomial (the Taylor polynomial)

which is a good approximation for f near 0. Similarly, the Taylor polynomial for f about x = a gives a polynomial

which is a good approximation of f near x = a. Note, however, that as the input gets further away from the

expansion point a, the approximation gets worse.

Example

Find the Taylor series for f (x) = 3x2 − x + 4 about x = 2. (See Answer 1)
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Example

Compute the Taylor series expansion for ln(x) about x = 1. (See Answer 2)

Note that the Taylor polynomial is only a good approximation to the function on the domain of convergence.

For functions whose domain of convergence is the entire number line, this is not a concern. But for functions

such as ln x , the Taylor polynomials will only be a good approximation within the domain of convergence, which

is 0 < x < 2. Outside of that domain, the Taylor polynomials diverge wildly from ln x , as shown here:

Even within a function’s domain of convergence, a Taylor polynomial’s approximation gets worse as the input

gets further away from a. One way to improve an approximation is to include more and more terms of the

Taylor series in the Taylor polynomial. However, this involves computing more and more derivatives. Another

way to improve the approximation for f (x) is to choose an expansion point a which is close to x .

Example

Use the Taylor polynomial of degree 2 for f (x) =
√
x about x = 1 to approximate

√
10. Then repeat the

process about x = 9 and compare the results. (See Answer 3)

6.3 Caveat for compositions

When computing the Taylor expansion for the composition f ◦ g about x = a, one must be careful of expansion

points. In particular, one cannot simply take the series for g at x = a and plug it into the series for f at x = a.

Example

Consider the expansion for ecos(x) about x = 0. Although cos(x) = 1− x2

2! + · · · , and ex = 1 + x + x2

2! + · · · ,
one will run into trouble trying to write

ecos(x) = 1 + (1−
x2

2!
+ · · · ) +

1

2
(1−

x2

2!
+ · · · )2 + · · · .
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The trouble is that collecting like terms requires adding up infinitely many things. For instance, the constant

term above is 1 + 1 + 1
2 + · · · . The reason this is a problem is that Taylor series are supposed to give a good

polynomial approximation of a function without requiring too much computation or information about the

function.

Remember that ex = 1 + x + x2

2 + · · · is a good approximation when x is near 0. However, when x is near 0,

cos(x) is near 1. So plugging the series for cos(x) into the series for ex does not give a good approximation.

To avoid this problem when computing the Taylor series for the composition f ◦ g at x = a, one should plug

the Taylor expansion of g about x = a into the expansion of f about x = g(a). In the above example, the

expansion of ex about x = 1 is

ex = e + e(x − 1) +
e

2!
(x − 1)2 + · · · ,

so

ecos(x) = e + e

[(
1−

x2

2!
+ · · ·

)
− 1

]
+
e

2!

[(
1−

x2

2!
+ · · ·

)
− 1

]2
+ · · ·

= e + e(−
x2

2
+ · · · ) +

e

2
(−
x2

2
+ · · · )2 + · · ·

= e −
e

2
x2 + · · · .

6.4 EXERCISES:

• Without using a calculator, find a decimal approximation to
√

83 by Taylor-expanding
√
x about a = 81

and using the zero-th and first order terms.

• Without using a calculator, find a decimal approximation to 3
√

124 using linear approximation. How close

was your answer to truth?

• Without using a calculator, find a decimal approximation to cos(1) [in radians!] using linear approximation.

How close was your answer to truth? (Hint: π/3 ≈ 1...)

• Taylor expand sin x about x = π and compute all the terms. Does what you get make sense?

• Use completing the square and the geometric series to get the Taylor expansion about x = 2 of 1
x2+4x+3

• Approximate 10041/3 using the zeroth and first order terms of the Taylor series.

6.5 Answers to Selected Examples

1. Computing the derivatives, and evaluating at x = 2, one finds

f (x) = 3x2 − x + 4 f (2) = 14

f ′(x) = 6x − 1 f ′(2) = 11

f ′′(x) = 6 f ′′(2) = 6

f ′′′(x) = 0 f ′′′(2) = 0.
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And all the subsequent derivatives are 0. So from the definition, one finds that

f (x) = 14 + 11(x − 2) +
6

2!
(x − 2)2

= 14 + 11(x − 2) + 3(x − 2)2.

This appears to be different than the polynomial f with which we began. If one multiplies out this

polynomial and collects like terms, however, the result is the original polynomial. This should not be

surprising, since the best polynomial approximation to a polynomial is the polynomial itself, even factored

into a slightly different form.

(Return)

2. Begin by computing the first few derivatives and evaluating at x = 1:

f (x) = ln(x) f (1) = 0

f ′(x) = x−1 f ′(1) = 1

f ′′(x) = −x−2 f ′′(1) = −1

f ′′′(x) = 2x−3 f ′′′(1) = 2.

The pattern that emerges is f (k)(x) = (−1)k−1(k − 1)!x−k . To see that the pattern holds, check that

f (k+1)(x) = (−1)k−1(−k)(k − 1)!x−k−1 = (−1)kk!x−(k+1),

as desired. So by induction, the pattern holds. It follows that f (k)(1) = (−1)k−1(k − 1)! for k ≥ 1.

Plugging in to the formula, one finds that

ln(x) =

∞∑
k=1

(−1)k−1(k − 1)!

k!
(x − 1)k

=

∞∑
k=1

(−1)k−1
(x − 1)k

k

= (x − 1)−
(x − 1)2

2
+

(x − 1)3

3
−

(x − 1)4

4
+ · · · .

Note that with the change of variables h = x − 1 (and hence x = h + 1, we find that

ln(1 + h) = h −
h2

2
+
h3

3
−
h4

4
+ · · · ,

which is the same series we found earlier for ln(1 + x).

(Return)

3. Using the definition, one finds

f (x) =
√
x f (1) = 1 f (9) = 3

f ′(x) =
1

2
√
x

f ′(1) =
1

2
f ′(9) =

1

6

f ′′(x) = −
1

4x3/2
f ′′(1) = −

1

4
f ′′(9) = −

1

108
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Thus, the Taylor polynomial about x = 1 is

√
x ≈ 1 +

1

2
(x − 1)−

1/4

2!
(x − 1)2

= 1 +
1

2
(x − 1)−

1

8
(x − 1)2.

And the corresponding approximation is

√
10 ≈ 1 +

1

2
· 9−

1

8
· 92

≈ −4.6,

which is obviously quite far off the mark. On the other hand, the Taylor polynomial about x = 9 is

√
x ≈ 3 +

1

6
(x − 9)−

1/108

2!
(x − 9)2

= 3 +
1

6
(x − 9)−

1

216
(x − 9)2.

And the corresponding approximation is

√
10 ≈ 3 +

1

6
· 1−

1

216
· 12

≈ 3.1620,

which is quite a good approximation of
√

10 ≈ 3.1623.

(Return)
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7 Limits
Having concluded our study of Taylor series, we now move on to limits. Some of the major topics of calculus

(continuity, differentiation, and integration) can all be expressed using limits.

7.1 Definition of the limit

The limit formalizes the behavior of a function as its input approaches some value. The formal definition of the

limit is

Limit

lim
x→a

f (x) = L if and only if for every ε > 0 there exists δ > 0 such that |f (x)−L| < ε whenever 0 < |x−a| < δ.

If there is no such L, then the limit does not exist.

In words, this says that the limit of a function exists if, when the input to f is very close to a (but not equal to

a), the output from f is very close to L. This can also be thought of in terms of tolerances: given a certain

ε tolerance for the output (seen as the band around L in the graph below), one can find a tolerance δ on the

input (the band around a) so that for inputs within the tolerance, the corresponding outputs stays within ε of

the desired output:
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No matter how small ε is made, there must be some δ, which must depend on ε, generally. Actually finding δ

often requires a little bit of work.

Example

Using the definition of the limit, show that lim
x→3

x2 = 9. (See Answer 1)

7.2 When limits may not exist

There are a few ways a limit might not exist:

1. A discontinuity, or jump, in the graph of the function. In this case, the limit does not exist because the

limit from the left and the limit from the right are not equal.

2. A blow-up, when the function has a vertical asymptote.

3. An oscillation, where the graph of the function oscillates infinitely up and down as the input approaches

a certain value.

Most functions in this course will be well-behaved and will not have the above problems. The formal term for

a well-behaved function is continuous.

7.3 Continuous functions

A function is continuous at the point a if the limit limx→a f (x) exists and limx→a f (x) = f (a). Intuitively, this

says that there are no holes or jumps in the graph of f at a.

Finally, a function is continuous if it is continuous at every point in its domain.

7.4 Rules for limits

There are rules for adding, multiplying, dividing, and composing limits. Suppose that lim
x→a

f (x) and lim
x→a

g(x)

exist. Then

1. (Sum) lim
x→a

(f + g)(x) = lim
x→a

f (x) + lim
x→a

g(x).
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2. (Product) lim
x→a

(f · g)(x) =
(

lim
x→a

f (x)
)(

lim
x→a

g(x)
)

.

3. (Quotient) lim
x→a

(
f

g

)
(x) =

limx→a f (x)

limx→a g(x)
, provided that lim

x→a
g(x) 6= 0.

4. (Chain) lim
x→a

(f ◦ g)(x) = f
(

lim
x→a

g(x)
)

, if f is continuous.

Almost all the functions encountered in this course are continuous, and so limits in most cases can be evaluated

by simply plugging in the limiting input value into the function. The one case that sometimes gets complicated

is the Quotient rule above when the limit of the denominator is 0.

Example

Show that lim
x→0

sin(x)

x
= 1. (See Answer 2)

Example

Find lim
x→0

1− cos x

x
. (See Answer 3)

Example

Compute lim
x→0

cos(x)− sin(x)− 1

ex − 1
. (See Answer 4)

Example

Compute lim
x→0

3
√

1 + 4x − 1
5
√

1 + 3x − 1
. (See Answer 5)

There are other methods for computing these types of limits, including memorization, algebraic tricks, and

l’Hopital’s rule (more on that in the next module). However, in many cases, these different methods can all be

replaced by a simple application of Taylor series.

7.5 EXERCISES

Compute the following limits:

lim
q→1

q2 + q + 1

q + 3

lim
x→−2

x2 − 4

x + 2

lim
x→0

sec x tan x

sin x

lim
x→+∞

6x2 − 3x + 1

3x2 + 4

lim
x→+∞

x2 + x + 1

x4 − 3x2 + 2
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lim
y→0

ln(1 + 2y) sin y

y2 cos 2y

lim
x→1

ln x

x2

lim
t→0

(3t2 + 4t) cot(t)

lim
z→0

z cos(sin(z))

sin(2z)

lim
x→0

ln(x + 1) arctan x

x2

lim
x→0

ln2(cos x)

2x4 − x5

lim
s→0

ess sin s

1− cos 2s

lim
x→0+

sin(arctan(sin x))√
x sin 3x + x2 + arctan 5x

lim
x→0

sin x − cos x − 1

6xe2x

lim
x→0

arctan x − 3 sin x + 2x

3x3

lim
p→0

1− p − cos 3p

p3

lim
x→∞

x1/x

7.6 Answers to Selected Examples

1. Note This is rather technical, and is only a demonstration of the process required to prove a limit exists

from the definition. This course deals almost exclusively with continuous functions, where such proofs

are not necessary.

We must show that for any given ε > 0, there exists δ (which depends on ε) such that 0 < |x − 3| < δ

implies |x2 − 9| < ε.

Let ε > 0 be given. A little bit of algebra shows that

|x2 − 9| = |x − 3| · |x + 3|.

We get to control |x − 3| with δ. We also have (by using the triangle inequality) that

|x + 3| = |x − 3 + 6| ≤ |x − 3|+ 6 < δ + 6.

Thus,

|x2 − 9| = |x − 3| · |x + 3| < δ · (δ + 6).

Now, if we pick δ to be the minimum of 1 and ε
7 , then we simultaneously guarantee that δ ≤ ε

7 and

δ + 6 ≤ 7, and so we find

|x2 − 9| < δ · (δ + 6) ≤
ε

7
· 7 = ε,

as desired.

(Return)
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2. There are several proofs of this limit (e.g. memorization, l’Hospital’s rule), but the simplest method is to

use the Taylor series. Because x is near 0, the Taylor series expansion for sin x applies, and so

lim
x→0

sin(x)

x
= lim

x→0

x − x3

3! + · · ·
x

= lim
x→0

x
(

1− x2

3! + · · ·
)

x

= lim
x→0

1−
x2

3!
+ · · ·

= 1.

This works because all the terms involving x go to 0 as x goes to 0.

(Return)

3. Replacing cos with its Taylor series (again, since x is near 0), we find

lim
x→0

1− cos x

x
= lim

x→0

1−
(

1− 1
2!x
2 + 1

4!x
4 − · · ·

)
x

= lim
x→0

1
2!x
2 − 1

4!x
4 + · · ·

x

= lim
x→0

1

2!
x −

1

4!
x3 + · · ·

= 0.

(Return)

4. Again, use the Taylor series (about x = 0) for each function:

lim
x→0

cos(x)− sin(x)− 1

ex − 1
= lim

x→0

(1− x2

2! + · · · )− (x − x3

3! + · · · )− 1

(1 + x + x2

2! + · · · )− 1

= lim
x→0

−x − x2

2! + · · ·
x + · · ·

= lim
x→0

x(−1− · · · )
x(1 + · · · )

= lim
x→0

−1− · · ·
1 + · · ·

= −1.

(Return)
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5. Here, we use the binomial series with α = 1
3 in the numerator, and α = 1

5 in the denominator. We find

lim
x→0

(1 + 4x)1/3 − 1

(1 + 3x)1/5 − 1
= lim

x→0

(
1 + 1

3(4x) + HOT
)
− 1(

1 + 1
5(3x) + HOT

)
− 1

= lim
x→0

4
3x + HOT
3
5x + HOT

= lim
x→0

4
3 + HOT
3
5 + HOT

=
4
3
3
5

=
20

9

(Return)
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8 l’Hôpital’s Rule

In previous modules, we saw that Taylor series are useful for computing certain limits of ratios. But sometimes,

a fact known as l’Hôpital’s rule is easier to use than Taylor series. While l’Hôpital’s rule is commonly taught in

a first calculus course, the justification for why it works is not usually taught. This module gives a justification

for l’Hôpital’s rule, using Taylor series.

8.1 l’Hôpital’s rule

There are some limit situations where Taylor series are not particularly easy to use. For example, if the limit is

being taken at a point about which the Taylor expansion is not already known, or the limit is at infinity, then

using Taylor series is usually more work than it is worth. These are the situations where l’Hôpital’s rule can be

helpful.

l’Hôpital’s Rule, 00 case

If f and g are continuous functions such that lim
x→a

f (x) = 0 and lim
x→a

g(x) = 0, then lim
x→a

f (x)

g(x)
= lim

x→a

f ′(x)

g′(x)
,

provided this limit exists. If this is still of the form 0
0 , then derivatives may be taken again, and so on.

(See Justification 1)

Example

Using l’Hôpital’s rule, compute two of the limits from the last module:

lim
x→0

sin x

x

lim
x→0

1− cos x

x
.

(See Answer 2)

Example

Compute lim
x→0

tan x

arcsin x
. (See Answer 3)

Depending on the situation, it still might be easier to use Taylor series, especially if there are compositions and
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products of functions (assuming we know all the relevant Taylor series).

Example

Compute lim
x→0

x2 ln(cos x)

sin2(3x2)
. (See Answer 4)

Example

Use l’Hopital’s rule to compute lim
x→π

sin(x)

ex cos(x/2)
. (See Answer 5)

l’Hôpital’s Rule, ∞∞ case

If lim
x→a

f (x) = lim
x→a

g(x) =∞, then lim
x→a

f (x)

g(x)
= lim

x→a

f ′(x)

g′(x)
, again provided this limit exists.

Example

Compute lim
x→0

ln x
1
x2

. (See Answer 6)

8.2 Other indeterminate forms

Some limits do not initially look like cases where l’Hôpital’s rule applies, but with some algebra they can be

rearranged into one of the applicable cases. These are called indeterminate forms.

Case: ∞−∞

First, consider lim
x→a

f (x) − g(x), where lim
x→a

f (x) = lim
x→a

g(x) = ∞. Usually, one or both of f and g are ratios

of other functions. In this case, getting a common denominator usually transforms the limit into one where

l’Hospital’s rule or a Taylor series approach applies.

Example

Compute lim
x→0

1

sin2 x
−

1

x2
. (See Answer 7)

Case: ∞ · 0

Next, consider lim
x→a

f (x)g(x) where lim
x→a

f (x) =∞ and lim
x→a

g(x) = 0. Since ∞ · 0 is not defined, it is not clear

what this limit is. However, the product can be turned into one of the following ratios where l’Hôpital’s rule

applies:

lim
x→a

f (x)g(x) = lim
x→a

g(x)

1/f (x)
lim
x→a

f (x)g(x) = lim
x→a

f (x)

1/g(x)
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since dividing by the reciprocal of a number is the same as multiplying. Now, note that lim
x→a

1/f (x) = 0, since

lim
x→a

f (x) =∞. Thus, lim
x→a

g(x)

1/f (x)
is now in the 00 case of l’Hôpital’s rule.

Similarly, lim
x→a

f (x)

1/g(x)
is in the ∞∞ form of l’Hôpital’s rule, and so it can be applied here too.

Deciding which of the above forms to use depends on the situation, but in many situations either form will work.

Example

Compute lim
x→0+

x ln x . (Here we use the one-sided limit x → 0+ becuase ln is only defined on the positive

real numbers). (See Answer 8)

Case: ∞0

Another indeterminate form arises when raising one function of x to a power which involves another function

of x . Suppose lim
x→a

f (x) =∞ and lim
x→a

g(x) = 0. Then what is lim
x→a

f (x)g(x)?

On the one hand, it seems that raising ∞ to any power should be ∞. On the other hand, raising anything to

the 0th power should be 1. To find what the answer actually is, let

y = lim
x→a

f (x)g(x),

and take the ln of both sides. Now, recall that ln is a continuous function. Therefore, from the rules of limits

in the last module, taking ln of a limit is the same as the limit of the ln:

ln(y) = ln
(

lim
x→a

f (x)g(x)
)

= lim
x→a

ln
(
f (x)g(x)

)
= lim

x→a
g(x) ln(f (x))

(the last step uses the fact that ln(ab) = b ln(a)). Now, this is of the form 0·∞, which was covered above. Note

that when this limit is computed, it is ln(y) which has been found, and so the answer must be exponentiated

to find y , the original limit.

Example

Compute lim
x→∞

x1/x . (See Answer 9)

Case: 00

Consider the limit f (x)g(x), where lim
x→a

f (x) = 0 and lim
x→a

g(x) = 0. Because 00 is not defined, this is another

indeterminate form. It can be dealt with as the ∞0 case, by first taking ln, computing the resulting limit, and

then exponentiating.
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Example

Compute lim
x→0+

xx . (See Answer 10)

8.3 Limits going to infinity

l’Hôpital also works with limits going to infinity; the same hypothesis and conclusions hold. Before doing some

examples, what does it mean for lim
x→∞

f (x) = L?

Limit at infinity

lim
x→∞

f (x) = L if and only if for every ε > 0 there exists M > 0 such that |f (x)− L| < ε whenever x > M.

If there is no such L, then the limit does not exist.

Example

Compute lim
x→∞

ln x√
x

. (See Answer 11)

Example

Compute lim
x→∞

ex

x2
. (See Answer 12)

While l’Hopital often works, there are situations where it fails to give an answer, and a little extra thought must

be employed.

Example

Compute lim
x→∞

tanh x . (See Answer 13)

Example

Compute lim
x→∞

x ln x

ln(cosh x)
. (See Answer 14)

It is also possible to deal with limits going to infinity using Taylor series, but it involves some algebra. The idea

is to use a substitution to turn the limit going to infinity into a limit going to zero. Symbolically, if x →∞, then

let z = 1/x . It follows that z → 0 as x →∞, and by replacing x with 1/z throughout, the limit is transformed.

lim
x→∞

f (x) = lim
z→0

f (1/z).

This process works when the limit at 0 exists. A more general technique would only look at the one-sided limit

from the right-hand side:

lim
x→∞

f (x) = lim
z→0+

f (1/z).
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Example

Compute lim
x→∞

sin(1/x)

1/x
. (See Answer 15)

8.4 EXERCISES

Compute the following limits. Should you use l’Hôpital’s rule or Taylor expansion?

lim
x→2

x3 + 2x2 − 4x − 8

x − 2

lim
x→π/3

1− 2 cos x

π − 3x

lim
x→π

4 sin x cos x

π − x

lim
x→9

2x − 18√
x − 3

lim
x→0

ex − sin x − 1

x2 − x3

lim
x→1

cos(πx/2)

1−
√
x

lim
x→4

3−
√

5 + x

1−
√

5− x

lim
x→0

(
1

x
−

1

ln(x + 1)

)
lim

x→π/2

sin x cos x

ex cos 3x

lim
x→+∞

ln x

ex

lim
x→+∞

x ln

(
1 +

3

x

)
lim

x→+∞

(ln x)(sinh x)

(x − 1)ex

8.5 Answers to Selected Examples

1. The Taylor series for f and g about a are given by

f (x) = f (a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2 + · · ·

g(x) = g(a) + g′(a)(x − a) +
g(a)

2!
(x − a)2 + · · · .
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Since, by hypothesis, f (a) = g(a) = 0, it follows that

lim
x→a

f (x)

g(x)
= lim

x→a

f (a) + f ′(a)(x − a) + 1
2 f
′′(a)(x − a)2 + · · ·

g(a) + g′(a)(x − a) + 1
2g(a)(x − a)2 + · · ·

= lim
x→a

f ′(a)(x − a) + (1/2)f ′′(a)(x − a)2 + · · ·
g′(a)(x − a) + (1/2)g(a)(x − a)2 + · · ·

= lim
x→a

(x − a) [f ′(a) + (1/2)f ′′(a)(x − a) + · · · ]
(x − a) [g′(a) + (1/2)g(a)(x − a) + · · · ]

= lim
x→a

f ′(a) + (1/2)f ′′(a)(x − a) + · · ·
g′(a) + (1/2)g(a)(x − a) + · · · .

Now, as x → a, all the terms with x − a go to 0, which leaves f ′(a)
g′(a) . If this fraction is still 0/0, then

l’Hôpital’s rule says to take the derivative of the numerator and the denominator again. In terms of the

Taylor series, this moves to the next leading terms in the numerator and denominator.

(Return)

2. These are both in the 00 case, so differentiating numerator and denominator gives

lim
x→0

sin x

x
= lim

x→0

cos x

1

= 1.

lim
x→0

1− cos x

x
= lim

x→0

sin x

1

= 0.

(Return)

3. Since tan 0 = arcsin 0 = 0, we are in the 00 case of l’Hôpital’s rule. Recall that

d

dx
tan x = sec2 x

d

dx
arcsin x =

1√
1− x2

.

Thus, applying l’Hôpital’s rule gives

lim
x→0

tan x

arcsin x
= lim

x→0

sec2 x
1√
1−x2

=
1

1

= 1.

(Return)

4. We know all the relevant Taylor series for the functions in this problem, so that should be an easier
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method. We find

lim
x→0

x2 ln(cos x)

sin2(3x2)
= lim

x→0

x2 ln
(

1− x2

2! + HOT
)

(3x2 + HOT)2

= lim
x→0

x2
(
− x22 − HOT

)
9x4 + HOT

= lim
x→0

− x42 + HOT

9x4 + HOT

= −
1

18
.

Using l’Hôpital here would be quite a lot of work. It turns out that we would have to apply the rule four

times, which involves a lot of product and chain rule.

(Return)

5. Since sin, cos, exp are all continuous functions, and sin(π) = eπ cos(π/2) = 0, the hypotheses for

l’Hôpital’s rule are met. So it follows that

lim
x→π

sin(x)

ex cos(x/2)
= lim

x→π

[sin(x)]′

[ex cos(x/2)]′

= lim
x→π

cos(x)

ex cos(x/2)− (1/2)ex sin(x/2)

=
−1

0− (1/2)eπ sin(π/2)

= 2e−π.

Note that although we know the Taylor series for these functions at x = 0, the limit here is as x → π.

Thus, we cannot use the Taylor series approach, because a Taylor series about x = 0 does not give a

good approximation when x is not close to 0.

(Return)

6. Note that ln x → −∞ as x → 0, and 1
x2 →∞ as x → 0. Therefore, the ∞∞ case of l’Hôpital’s rule applies.

Applying the rule,

lim
x→0

ln x

x−2
= lim

x→0

1
x

−2x−3

= lim
x→0

x2

−2

= 0.

(Return)
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7. Getting a common denominator, and then Taylor expanding gives

lim
x→0

1

sin2 x
−

1

x2
= lim

x→0

x2 − sin2 x

x2 sin2 x

= lim
x→0

x2 −
(
x − 1

3!x
3 + · · ·

)2
x2
(
x − 1

3!x
3 + · · ·

)2
= lim

x→0

x2 −
(
x2 − 2

3!x
4 + · · ·

)
x2
(
x2 − 2

3!x
3 + · · ·

)
= lim

x→0

2
6x
4 + · · ·

x4 + · · ·

=
1

3
.

(Return)

8. This is of the form 0 · (−∞). In this case, it is easier to flip x into the denominator, because it is easier

to take the derivative of x−1 than it is to take the derivative of (ln x)−1. So, we find

lim
x→0+

x ln x = lim
x→0+

ln x

x−1
,

which is of the form −∞
∞ , so applying l’Hôpital’s rule gives

lim
x→0+

ln x

x−1
= lim

x→0+
x−1

−x−2
= lim

x→0+
−x

= 0.

(Return)

9. This is of the ∞0 form. Let y = lim
x→∞

x1/x . Then taking ln gives

ln(y) = lim
x→∞

ln
(
x1/x

)
= lim

x→∞

1

x
ln(x)

= lim
x→∞

ln x

x

= lim
x→∞

1/x

1

= 0

(l’Hôpital’s rule was used in the second to last step). So ln(y) = 0, and so y = 1 is the answer.

(Return)

10. Letting y = lim
x→0+

xx , and taking logarithms gives

ln y = lim
x→0+

x ln x

= 0,
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by an example above. Thus y = e0 = 1.

(Return)

11. Both the numerator and denominator go to ∞ as x →∞, so applying l’Hôpital’s rule gives

lim
x→∞

ln x√
x

= lim
x→∞

x−1

1
2x
−1/2

= lim
x→∞

2√
x

= 0.

(Return)

12. The numerator and denominator both go to ∞ as x → ∞, so this is the ∞∞ case of l’Hôpital’s rule. It

follows that

lim
x→∞

ex

x2
= lim

x→∞

[ex ]′

[x2]′

= lim
x→∞

ex

2x

= lim
x→∞

ex

2

=∞.

Note that l’Hôpital’s rule was used twice here since limx→∞
ex

2x is still the ∞∞ case.

(Return)

13. Recall that tanh x = sinh x
cosh x . Both sinh x → ∞ and cosh x → ∞ as x → ∞. But applying l’Hôpital’s rule

(and then applying it again) gives

lim
x→∞

tanh x = lim
x→∞

sinh x

cosh x

= lim
x→∞

cosh x

sinh x

= lim
x→∞

sinh x

cosh x
,

so l’Hôpital’s rule clearly will not give us an answer here. Instead, writing out the definition of tanh x and

doing a little algebra, we find

lim
x→∞

tanh x = lim
x→∞

ex − e−x

ex + e−x

= lim
x→∞

ex(1− e−2x

ex(1 + e−2x)

= 1.

(Return)
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14. Using l’Hôpital’s rule, we find

lim
x→∞

x ln x

ln(cosh x)
= lim

x→∞

x
x + 1 · ln x
sinh x
cosh x

= lim
x→∞

1 + ln x

tanh x

=∞,

since the denominator goes to 1 (from the previous example) and the numerator goes to infinity.

(Return)

15. Using the substitution z = 1/x , the limit becomes

lim
x→∞

sin(1/x)

1/x
= lim

z→0

sin(z)

z

= 1,

as was shown in the last module.

(Return)
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9 Orders of Growth
When dealing with limits as x → 0, it is the lowest order term (i.e. the term with the smallest power) which

matters the most, since higher powers of x are very small when x is close to 0. On the other hand, as x →∞,

what is known as the asymptotic growth of a function. In this case, it is the highest order term which matters

the most. This module deals with limits of both types and provides a more formal notion of how quickly a

function grows or shrinks.

9.1 Hierarchy of functions going to infinity

First, consider the monomial xn, where n is a fixed, positive integer. Looking at the graphs of these monomials,

it becomes clear that as x →∞, xn+1 > xn:

What happens when the functions involved are not polynomials? For example, how does the growth of the

exponential compare to a polynomial? Or factorial and exponential?

In general, one can compare the asymptotic growth of the functions f and g by considering the limit limx→∞
f (x)
g(x) .

If this limit is ∞, then f dominates. If the limit is 0, then g dominates. And if the limit is a constant, then f

and g are considered equal (asymptotically).
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Example

Compare exponential growth and polynomial growth. (See Answer 1)

Example

Compare the asymptotic behavior of lnn x (for some fixed integer n) and x . (See Answer 2)

Example

Compare the asymptotic growth of the factorial and the exponential. (See Answer 3)

Thus we have the following hierarchy of growth, from greatest to smallest:

1. Factorial: x! = x(x − 1)(x − 2) · · · 3 · 2 · 1.

2. Exponential: cx for any c > 1 (usually c = e).

3. Polynomial: xk for any k > 0.

4. Logarithmic: ln(x) and other related functions.

When a pair of functions are of a similar type, such as ex and 3
√
x , one must compare these using the limit of

the ratio of the functions, as above.

9.2 Hierarchy of functions going to 0

As above, first consider monomials xn. As x → 0, the inequality for monomials is the reverse of what it was for

x →∞. That is, as x → 0, we find that xn > xn+1. Intuitively, small numbers become even smaller when you

raise them to higher powers.

It is important to keep track of whether a limit is going to 0 or∞, since in the first case, the lowest order terms

dominate, and in the second case the highest order terms dominate.

Example

Compute lim
x→0

2x3 − x2 + x

x3 + 2x
and lim

x→∞

2x3 − x2 + x + 1

x3 + 2x + 2
. (See Answer 4)
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9.3 Big-O notation

When dealing with limits as x → 0 or x →∞, it is best to have a formal notation for the approximations which

result from dropping higher or lower order terms. Big-O notation, pronounced “big oh”, provides this formality.

Big-O notation, x → 0

The function f (x) is in O(xn), as x → 0 if

|f (x)| < C|x |n

for some constant C and all x sufficiently close to 0. Put another way, a function f (x) is in O(xn), for x

close to 0, if f (x) approaches 0 at least as fast as a constant multiple of xn.

More generally, a function f (x) is in O(g(x)), as x → 0 if

|f (x)| < C|g(x)|,

for some constant C and x sufficiently close to 0.

Big-O notation, as x → 0, can be thought of as a more specific way of saying higher order terms. Just as Taylor

series could include a different number of terms before indicating the rest is higher order terms (depending on

the situation), the same is true for big-O.

Example

Express arctan(x) using big-O notation as x → 0. (See Answer 5)

The definition for big-O as x → ∞ is almost identical, except the bound needs to apply for all x sufficiently

large.

Big-O notation, x →∞

The function f (x) is in O(xn), as x →∞ if

|f (x)| < C|x |n

for some constant C and all x sufficiently large. In other words, a function f (x) is in O(xn), as x → ∞, if

f (x) approaches infinity no faster than a constant multiple of xn.

More generally, f (x) is in O(g(x)), as x →∞ if

|f (x)| < C|g(x)|

for some constant C and all x sufficiently large.

Example

The monomial xn is in O(ex) as x →∞ for any (fixed) n. This is a restatement of the above fact that the

exponential dominates polynomials as x →∞.

62



Example

Show that x
√
x2 + 3x + 5 = x2 + 3

2x +O(1) as x →∞. Hint: use the binomial series. (See Answer 6)

Example

Justify the following statements as x → 0:

1. 5x + 3x2 is in O(x) but is not in O(x2).

2. sin x is in O(x) but is not in O(x2).

3. ln(1 + x)− x is in O(x2) but is not in O(x3).

4. 1− cos(x2) is in O(x4) but is not in O(x5).

5.
√
x is not in O(xn) for any n ≥ 1.

6. e−1/x
2

is in O(xn) for all n.

(See Answer 7)

Example

Justify the following statements as x →∞:

1. arctan x is in O(1) as well as O(xn) for any n ≥ 0.

2. x
√

1 + x2 is in O(x2) but is not in O(x3/2).

3. ln sinh x is in O(x) but is not in O(ln x).

4. cosh x is in O(ex) but is not in O(xn) for any n ≥ 0.

5. ln(x5) is in O(ln x) as well as O(xn) for all n.

6. xx is in O(ex
n

) for all n > 1.

(See Answer 8)

9.4 Application: Error Analysis

When approximating a function by the first few terms of its Taylor series, there is a trade-off between convenience

(the ease of the computation) and accuracy. Big-O notation can help keep track of this error.

Example

Consider the approximation, for x close to 0,

sin(x2)ex =
(
x2 +O(x6)

)
(1 +O(x))

= x2 + x2 ·O(x) +O(x6) +O(x6) ·O(x)

= x2 +O(x3).
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So the error of approximating sin(x2)ex ≈ x2 can be bounded by Cx3, for some C when x is small. Deter-

mining a good C, in general, is tricky, and there is more on error bounds in Taylor Remainder Theorem.

9.5 Application: Computational Complexity

In computer science, an algorithm is a sequence of steps used to solve a problem. For example, there are

algorithms to sort a list of numbers and algorithms to find the prime factorization of a number. Computational

complexity is a measure of how efficient an algorithm is. Basically, a computer scientist wants to know roughly

how the number of computations carried out by the computer will grow as the input (e.g. the length of the list

to be sorted, or the size of the number to be factored) gets larger.

Example: Multiplication

Consider how much work is required to multiply two n-digit numbers using the usual grade-school method.

There are two phases to working out the product: multiplication and addition.

First, multiply the first number by each of the digits of the second number. For each digit in the second number

this requires n basic operations (multiplication of single digits) plus perhaps some “carries”, so say a total of

2n operations for each digit in the second number. This means that the multiplication phase requires n · (2n)

basic operations.

The addition phase requires repeatedly adding n digit numbers together a total of n− 1 times. If each addition

requires at most 2n operations (including the carries), and there are n − 1 additions that must be made, it

comes to a total of (2n)(n − 1) operations in the addition phase.

Adding these totals up gives about 4n2 total operations. Thus, the total number of basic operations that must

be performed in multiplying two n digit numbers is in O(n2) (since the constant coefficient does not matter).

The reason the constant coefficient does not really matter when thinking about computational complexity, is

that a faster computer can only improve the speed of a computation by a constant factor. The only way to

significantly improve a computation is to somehow drastically cut the number of operations required to perform

the operation. The next example shows an example of how important algorithmic improvements can be on

computational complexity.

Example: Sorting

In sorting algorithms, the most basic operation is the comparison. For a sorting algorithm, one wants to know

how many comparisons of two numbers will be made, on average.

One common sorting algorithm, which is used by most people who are sorting items by hand, is called Insertion

Sort. It turns out that the number of comparisons for Insertion Sort, on average, is O(n2) as n →∞, where n

is the length of the list of numbers to be sorted.

A more sophisticated sorting algorithm, called Mergesort, uses O(n ln(n)) comparisons on average. This may

not seem like a significant improvement over Insertion Sort, but consider the number of comparisons used to sort

a list of 1000000 integers: Insertion Sort would use on the order of 10000002 = 1012 comparisons on average,

where as Mergesort uses on the order of 13× 106 comparisons. To put that in perspective, if Mergesort took

a half second to complete the computation, Insertion Sort would take over ten hours!
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9.6 Big O in Other Areas of Mathematics

Stirling’s formula

Stirling’s formula gives an asymptotic approximation for x!:

ln(x!) = x ln x − x +O(ln x).

In a slightly more precise form, it can be written

x! =
√

2πx
(x
e

)x (
1 +O

(
1

x

))
.

Prime number theorem

In number theory, one very important function, π(x), is defined to be the number of primes less than or equal

to x . The Prime Number Theorem says that

π(x) = number of primes ≤ x

=
x

ln x

(
1 +O

(
1

ln x

))
.

9.7 EXERCISES

• Compute the following limits.

lim
x→+∞

e2x

x3 + 3x2 + 4

lim
x→+∞

e3x

ex
2

lim
x→+∞

ex(x − 1)!

x!

lim
x→+∞

(

x

2

− 3)(x2 + 3)2x4 − 2x2 + 1

lim
x→+∞

2x + 1

(x + 1)!

lim
x→+∞

(3 ln x)n

(2x)n

• Simplify the following asymptotic expression as x → 0

f (x) =
(
x − x2 +O(x3)

)
·
(

1 + 2x +O(x3)
)

• Simplify the following asymptotic expression as x →∞

f (x) =
(
x3 + 2x2 +O(x)

)
·
(

1 +
1

x
+O

(
1

x2

))
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• Here are some rules for positive functions with x →∞:

O(f (x)) +O(g(x)) = O(f (x) + g(x))

O(f (x)) ·O(g(x)) = O(f (x) · g(x))

Using these, show that

O

(
5

x

)
+O

(
ln(x2)

4x

)
simplifies to

O

(
ln x

x

)
• Which of the following are in O(x2) as x → 0?

x ln(1 + x)

5x2 + 6x + 1

1− e−x

x
√
x2 + 4x3 + 5x6

x sinh2(3x)

x2

ln(1 + x)

9.8 Answers to Selected Examples

1. Fix an integer n, and compute the limit (using l’Hopital repeatedly):

lim
x→∞

xn

ex
= lim

x→∞

nxn−1

ex

= lim
x→∞

n(n − 1)xn−2

ex

=
...

= lim
x→∞

n!

ex

= 0

(note that n is fixed, so n! is a constant). Thus, the exponential dominates the monomial xn (and thus

any polynomial as well).

(Return)
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2. Again, using L’Hopital’s rule repeatedly gives

lim
x→∞

lnn x

x
= lim

x→∞

n lnn−1 x 1x
1

= lim
x→∞

n lnn−1 x

x

=
...

= lim
x→∞

n!

x

= 0,

since n! is a constant here. This shows any polynomial beats any constant power of logarithm.

(Return)

3. First, when x is not an integer, the factorial is defined by

x! =

∫ ∞
t=0

txe−t dt.

This definition shares properties with the traditional definition of factorial: x! = x · (x − 1)!, and 0! = 1,

and they coincide when x is an integer. It is not critical to know this integral definition, but know that

n! = n(n − 1)(n − 2) · · · 3 · 2 · 1 for an integer n.

When x is an integer, note that ex is e multiplied with itself x times. On the other hand, x! has x factors,

most of which are bigger than e (at least when x is bigger than, say, 5). So as x increases to x + 1, ex

only gains another factor of e, but x! gains a factor of x + 1. This explains why x! grows faster than ex

(and similarly for any exponential function).

(Return)

4. As x → 0, the higher powers of x go to 0 quickly, leaving the lowest order terms x
2x = 1

2 in the limit.

As x →∞, it is the highest order terms (the x3 terms) which dominate, so ignoring the lower order terms

leaves 2x
3

x3 = 2 in the limit.

(Return)

5. By taking the Taylor series for arctan(x), we find that

arctan(x) = x −
x3

3
+O(x5)

as x → 0.

We could also say

arctan(x) = x −O(x3)

as x → 0.

(Return)

6. Recall that the binomial series

(1 + x)α = 1 + αx +
α(α− 1)

2!
x2 + . . .
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requires that |x | < 1. So we must do a little algebra to get the square root to be of this form. Factoring

out a x2 will do the trick:

x
√
x2 + 3x + 5 = x

√
x2
(

1 +
3

x
+

5

x2

)

= x2
(

1 +
3

x
+

5

x2

)1/2
= x2

(
1 +

1

2

(
3

x
+

5

x2

)
+O

(
1

x2

))
= x2 +

3

2
x +O(1),

since all the terms involving 1
x2 become constants when multiplied by x2.

(Return)

7. The first four of these can be justified by looking at the Taylor series and then finding the monomial of

the lowest power (remember that as x → 0, the dominant term is that of the lowest power).

To see that
√
x is not in O(xn) for any n ≥ 1, we must show that given any constant C and ε > 0, there

exists some x < ε such that √
x > Cxn

(this is the negation of the definition of big oh). Solving the above inequality for x , one finds that if

x <

(
1

C

)2/(2n−1)
,

then
√
x > Cxn, and so

√
x is not in O(xn) for any n.

Finally, to see that e−1/x
2

is in O(xn), it suffices to show that

e−1/x
2

< |x |n

for all x sufficiently small. Taking natural log of both sides (this preserves the inequality since log is an

increasing function) gives

−
1

x2
− n ln |x |.

But recall from a previous module that x ln x → 0 as x → 0+. This ensures that no matter the (fixed)

value of n, for sufficiently small x we will have

1

n
> −x2 ln |x |,

and hence

e−1/x
2

< |x |n,

as desired.

(Return)

8. (a) Note that as x →∞, arctan x → π
2 . Thus arctan x is bounded, and so it is in O(1).
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(b) Using the binomial series, as in a previous example, shows that

x
√

1 + x2 = x

(
x2
(

1 +
1

x2

))1/2
= x2

(
1 +

1

x2

)1/2
= x2

(
1 +

1

2

1

x2
+O

(
1

x4

))
= x2 +O(1).

Thus, x
√

1 + x2 is in O(x2), but no power smaller than x2.

(a) For large x , e−x is very small, and so sinh x ≈ ex

2 . Therefore,

ln sinh x ≈ ln
ex

2
= x − ln 2.

is in O(x) but not in O(ln x), since logarithms are smaller than polynomials.

(a) Similarly, cosh x ≈ ex

2 for large x . Hence cosh is in O(ex) but cannot be bounded by any polynomial.

(b) A handy property of logarithms tells us that

ln(x5) = 5 ln x,

which is in O(ln x) since it is itself a multiple of ln x .

(a) Fix n > 1. It suffices to show that for large enough x , we have

xx < ex
n

.

Taking the logarithm of both sides gives

x ln x < xn ⇔ ln x < xn−1.

We saw earlier that any positive power of x beats the logarithm for large values of x . So (since n > 1)

this inequality holds for large x , and so xx is in O(ex
n

).

(Return)
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10 Derivatives
There are several definitions of the derivative of a function f (x) at x = a. These definitions are all equivalent,

but they are all important because they emphasize different aspects of the derivative.

Derivative (first definition)

f ′(a) =
df

dx

∣∣∣∣
x=a

= lim
x→a

f (x)− f (a)

x − a .

If the limit does not exist, then the derivative is not defined at a.

This first definition emphasizes that the derivative is the rate of change of the output with respect to the input.

The next definition is similar.

Derivative (second definition)

f ′(a) =
df

dx

∣∣∣∣
x=a

= lim
h→0

f (a + h)− f (a)

h
.

If the limit does not exist, then the derivative is not defined at a.

This definition can be interpreted as the change in output divided by the change in input, as the change in input

goes to 0. One can see this is equivalent to the first definition by making the substitution h = x − a. The third

definition looks quite different from the first two.

Derivative (third definition)

The derivative of f (x) at x = a, f ′(a), is the constant C such that for any variation to the input h, the

following holds.

f (a + h) = f (a) + Ch +O(h2).

That is, f ′(a) is the first-order variation of the output. If no such C exists, then the derivative does not

exist.

To show the equivalence, one can do a little algebra to see that

f (a + h)− f (a)

h
= C +O(h).

Then taking the limit on both sides as h → 0 shows that C = f ′(a).
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Example

Using the second and third definitions above, compute the derivative of f (x) = xn, where n is a positive

integer. (See Answer 1)

Example

Find the derivative of ex using the third definition. (See Answer 2)

Example

Find the derivative of cos x using the third definition. Hint: use the identity

cos(a + h) = cos(a) cos(h)− sin(a) sin(h).

(See Answer 3)

Example

Find the derivative of f (x) =
√
x using the third definition. (See Answer 4)

10.1 Notation

There are several different notations for the derivative of y = f (x). The best options are

df

dx
or

dy

dx
,

because they make it clear that the input is x and the output is f (x) or y , respectively.

The next tier of options are fair, and have the advantage of requiring less writing, but they lose the benefit of

knowing what the input variable is:

f ′ or ẏ or df .

The third option, df , is known as differential notation, which will be covered more in a later module.

Do not try to cancel the d’s in the derivative. Do not write the d’s in cursive, or replace the d’s with ∆’s (those

notations have a different meaning).

10.2 Interpretations

The derivative is commonly interpreted as the slope of the tangent line to the graph of the function. This is

fine when the function has one input and one output. But what happens in the (more realistic) situation of a

function with more than one input and more than one output? How does one graph such a function? And if

the units of the input and output are different, what is the unit of slope?

A better interpretation for the derivative is as the rate of change of output with respect to input. This

interpretation makes sense with functions of many inputs and outputs. However, that will be covered in the

multivariable sequel to this course.
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10.3 Examples with respect to time

The most common use of the derivative is with respect to time. Here are several such examples from different

areas.

Physics

Velocity v(t) is the derivative of position x(t), with respect to time. Similarly, acceleration a(t) is the derivative

of velocity with respect to time:

v =
dx

dt
and a =

dv

dt

Electromagnetism

Electric current, I, in a circuit is the rate of change of charge, Q, with respect to time:

I =
dQ

dt
.

Chemistry

The reaction rate for the product P , denoted rP , in a chemical reaction is proportional to the rate of change of

the concentration of P , denoted [P ], with respect to time:

rP = k
d [P ]

dt
.

10.4 Examples with respect to other variables

Spring constant

The spring constant k for a spring is the derivative of force with respect to deflection:

k =
d(force)

d(deflection)
.

Elasticity

The elasticity modulus λ of a material is the rate of change of stress with respect to strain:

λ =
d(stress)

d(strain)
.

Viscosity

The viscosity of a fluid µ is related to the shear stress by the equation

shear stress = µ
d(velocity)

d(height)
.
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Tax rates

The marginal tax rate is the rate of change of tax with respect to income:

marginal tax rate =
d(tax)

d(income)
.

10.5 EXERCISES

• A rock is dropped from the top of a 320-foot building. The height of the rock at time t is given as

s(t) = −8t2 + 320, where t is measured in seconds. Find the speed (that is, the absolute value of the

velocity) of the rock when it hits the ground in feet per second. Round your answer to one decimal place.

• A very rough model of population size P for an ant species is P (t) = 2 ln(t + 2), where t is time. What

is the rate of change of the population at time t = 2?

• A particle’s position, p, as a function of time, t, is represented by p(t) =
1

3
t3 − 3t2 + 9t. When is the

particle at rest?

• Hooke’s law states that the force F exerted by an “ideal” spring displaced a distance x from its equilibrium

point is given by F (x) = −kx , where the constant k is called the “spring constant” and varies from one

spring to another. In real life, many springs are nearly ideal for small displacements; however, for large

displacements, they might deviate from what Hooke’s law predicts. Much of the confusion between nearly-

ideal and non-ideal springs is clarified by thinking in terms of series: for x near zero, F (x) = −kx+O(x2).

Suppose you have a spring whose force follows the equation F (x) = −2 tan 3x . What is its spring

constant?

• The profit, P , of a company that manufactures and sells N units of a certain product is modeled by the

function P (N) = R(N) − C(N). The revenue function, R(N) = S · N, is the selling price S per unit

times the number N of units sold. The company’s cost, C(N) = C0 + Cop(N), is a sum of two terms.

The first is a constant C0 describing the initial investment needed to set up production. The other term,

Cop(N), varies depending on how many units the company produces, and represents the operating costs.

Companies care not only about profit, but also “marginal profit,” the rate of change of profit with respect

to N. Assume that S = $50, C0 = $75, 000, Cop(N) = $50
√
N, and that the company currently sells

N = 100 units. Compute the marginal profit at this rate of production. Round your answer to one decimal

place.

• In Economics, “physical capital” represents the buildings or machines used by a business to produce a

product. The “marginal product of physical capital” represents the rate of change of output product with

respect to physical capital (informally, if you increase the size of your factory a little, how much more

product can you create?). A particular model tells us that the output product Y is given, as a function of

capital K, by Y = AKαL1−α, where A is a constant, L is units of labor (assumed to be constant), and

α is a constant between 0 and 1. Determine the marginal product of physical capital predicted by this

model.
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10.6 Answers to Selected Examples

1. Using the binomial expansion and the above definition, one finds

f ′(a) = lim
h→0

(a + h)n − an

h

= lim
h→0

an + nan−1h +O(h2)− an

h

= lim
h→0

nan−1h +O(h2)

h

= lim
h→0

nan−1 +O(h)

= nan−1

Using the third definition, and again the binomial expansion, one writes

f (a + h) = (a + h)n

= an + nan−1h +O(h2),

so f ′(a) = nan−1.

(Return)

2. Note that ea+h = ea · eh. Using our knowledge of the Taylor series for eh, we have

ea+h = eaeh

= ea
(

1 + h +O(h2)
)

= ea + eah +O(h2),

and so the derivative of ex , evaluated at x = a, is ea.

(Return)

3. Using the above identity and our knowledge of Taylor series, we find

cos(a + h) = cos(a) cos(h)− sin(a) sin(h)

= cos(a)
(

1 +O(h2)
)
− sin(a)

(
h +O(h3)

)
= cos(a)− sin(a)h +O(h2),

so the derivative of cos x , evaluated at x = a, is − sin(x).

(Return)

4. First, write

f (a + h) =
√
a + h

=
√
a

√
1 +

h

a
.

Now, recalling the binomial series (1 + x)α = 1 + αx +O(x2), we find

√
a

√
1 +

h

a
=
√
a

(
1 +

1

2

h

a
+O(h2)

)
=
√
a +

1

2
√
a
h +O(h2),
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and so the derivative of
√
x , evaluated at x = a, is 1

2
√
a

.

(Return)
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11 Differentiation Rules
Recall from the previous module the third definition given of the derivative, that

f (x + h) = f (x) +
df

dx
h +O(h2).

The derivative can be thought of as a multiplier: a change of h to the input gets amplified by a factor of df
dx to

become a change of df
dx h to the output. This interpretation helps make sense of the following rules.

11.1 Differentiation rules

Suppose u and v are differentiable functions of x . Then the following rules (written using the shorthand

differential notation) hold:

Linearity

d(u + v) = du + dv and d(c · u) = c · du,

where c is a constant.

Product

d(u · v) = u · dv + v · du.

Chain

d(u ◦ v) = du · dv.

(See Proof 1)

Another common way to express the Chain rule, using the more traditional derivative notation, is

du

dx
=
du

dv
·
dv

dx
.
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Caveat

Note that in the chain rule, the output of v is being plugged in as an input to u. Therefore, in the above, if

the derivative d(u ◦ v) is being evaluated at x = a, then du is evaluated at x = v(a) and dv is evaluated at

x = a. More explicitly,

d(u ◦ v)

∣∣∣∣
x=a

= du

∣∣∣∣
x=v(a)

· dv
∣∣∣∣
x=a

.

Example

Compute d
dx

(
esin x

)
. (See Answer 2)

11.2 Other rules

There are a few other differentiation rules commonly taught in a first year calculus class, which can all be proven

using the rules from above.

Reciprocal

d

(
1

v

)
= −

1

v2
dv.

Quotient

d
(u
v

)
=
vdu − udv

v2
.

Inverse

d(u−1) =
1

du

∣∣∣∣
u−1

Note: u−1 is the inverse of u, not the reciprocal (which was covered above). (See Proof 3)

Example

Show that
d

dx
sec x = sec x tan x,

using the reciprocal rule. (See Answer 4)

Example

Show that
d

dx
tan x = sec2 x,

using the quotient rule. (See Answer 5)
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Example

Show that
d

dx
ln x =

1

x
,

using the inverse derivative rule. (See Answer 6)

11.3 Bonus

There are operators in other areas of mathematics which act similarly to the derivative. Finding such similarities

in disparate fields is useful, because theorems from one field can often be carried over to the other and proved

using similar techniques. These connections give a deeper understanding of both fields.

Boundary of spaces

Consider the boundary of a space. Loosely speaking, the boundary of a space is its outline, border, or edge.

Think of the boundary as an operator, denoted ∂:

It turns out the the boundary operator ∂ acts similarly to a derivative. In particular, there is a product rule for

∂. But first, we need a notion of product for spaces.

The Cartesian product of two spaces X and Y , denoted X × Y , is the set of ordered pairs (x, y) where x ∈ X
and y ∈ Y . This can be visualized by taking the first space and extruding it along the second space (easiest to

visualize if the second space is a line segment), as in the following examples:
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So the Cartesian product of two line segments is a filled in rectangle, and the Cartesian product of a disc and

a line segment is a solid cylinder.

Now, consider the boundaries of these regions. The boundary of the filled in rectangle is its border, which can be

thought of as the two vertical edges and the horizontal top and bottom edges. Note that this can be expressed

as the boundary of the first segment times the second segment union the first segment times the boundary of

the second segment:

Similarly, for the solid cylinder, the boundary is the union of the lateral area and the end caps. The lateral area

is the Cartesian product of the circle with the line segment, which is the boundary of the disc times the line

segment. The other piece (the end caps) is the disc times two points, which is the disc times the boundary of

the line segment:
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These examples suggest the (true) fact that for two spaces A and B, one has

∂(A× B) = ∂(A)× B ∪ A× ∂(B).

Thinking of the boundary operator ∂ as the derivative, × as multiplication, and ∪ as addition, this is exactly

like the product rule for functions given above. If you like this strange example, you may wish to take a course

in Topology some day...

Lists

Consider a list of five distinct objects, all labeled with x . We might symbolize this by x5. Now, consider

the deletion operator D which deletes an object from the list. There are five different lists that might result

(depending on which object was deleted), and this would logically be symbolized by 5x4, under the convention

that a plus + stands for ”logical OR”:

There is an entire calculus for lists and other grammatical constructs in Computer Science. As one simple

example, how would we algebraicize the empty list? It has zero elements, so logically it should be expressed as

x0 = 1. Now, let L denote the collection of all finite lists. The trivial observation that any list is either empty
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or has a first element can be translated into an algebraic equation:

L = 1 + xL.

Here’s the cool part...solve for L and you get:

L =
1

1− x = 1 + x + x2 + x3 + x4 + · · · ,

the geometric series! Remember that plus mean ”OR”, so that this equation says any list is either the empty

list, or the list of length 1, or the list of length 2, etc. If you find this sort of thing fun, you may wish to learn

some Computer Science and some Analytic Combinatorics.

11.4 EXERCISES

• Find the derivative of f (x) =
√
x(2x2 − 4x).

• Find the derivative of f (x) = 6x4 −
3

x2
− 2π.

• Find the derivative of f (x) = 7(x3 + 4x)5 cos x .

• Find the derivative of f (x) = (ex + ln x) sin x .

• Find the derivative of f (x) =

√
x + 3

x2

• Find the derivative of f (x) =
ln x

cos x
.

• Find the derivative of f (x) =
3
√
x − 4

x3
.

• Find the derivative of f (x) = sin3(x3).

• Find the derivative of f (x) = e−1/x
2
.

• Use the information about functions f and g from the following table to compute the value of
d

dx

∣∣∣∣
x=1

g(f (x)).

x f (x) f ′(x) g(x) g′(x)

−1 1 1 0 3

0 0 2 0 0

1 2 3 2 0

2 3 −1 −1 2

3 −1 0 3 −1

• Suppose that a certain quantity A is a function of another quantity B, which, in turn, depends on a third

quantity C. We know that B(C) =
√
C. If the rate of change of A with respect to B is B2, what is the

rate of change of A with respect to C?

81



• This problem concerns the boundary operator ∂ from the bonus material. Denote by I the closed unit

interval [0, 1]. Then, as observed, ∂I = {0}∪ {1} is the union of two points. Let’s get a little ”creative”.

Denote by In the ”n-cube”, that is, the Cartesian product of n intervals: In = I × I × · · · × I. This is a

well-defined and perfectly reasonable n-dimensional cube. (Just because you can’t visualize doesn’t mean

it can’t exist!) Note that I1 = I and I0 is a single point (a zero-dimensional cube!). As a step towards

building a ”calculus of spaces”, let us write ∂I1 = 2I0 = 2 as a way of saying that the boundary of an

interval consists of two points and that I0 = 1. The boundary of an n-dimensional cube consists of a

certain number of (n − 1)-dimensional cubes (called ”faces”). For example, a square I2 has four faces.

Using what you know about derivatives, answer this: how many faces does In have?

11.5 Answers to Selected Examples

1. Linearity Using the third definition of the derivative from the last module, we find

(u + v)(x + h) = u(x + h) + v(x + h)

= u(x) +
du

dx
h +O(h2) + v(x) +

dv

dx
h +O(h2)

= (u + v)(x) +

(
du

dx
+
dv

dx

)
h +O(h2),

as desired. Similarly,

(c · u)(x + h) = c · u(x + h)

= c

(
u(x) +

du

dx
h +O(h2)

)
= (c · u)(x) +

(
c
du

dx

)
h +O(h2).

Product Again using the third definition of the derivative, we find

(u · v)(x + h) = u(x + h) · v(x + h)

=

(
u(x) +

du

dx
h +O(h2)

)
·
(
v(x) +

dv

dx
h +O(h2)

)
= u(x)v(x) + u(x)

dv

dx
h + v(x)

du

dx
h +O(h2)

= (u · v)(x) +

(
u(x)

dv

dx
+ v(x)

du

dx

)
h +O(h2),

as desired.

Chain The chain rule is justified similarly, with a little bit more algebra:

(u ◦ v)(x + h) = u(v(x + h))

= u

(
v +

dv

dx
h +O(h2)

)
.
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To simplify the notation temporarily, let h̃ = dv
dx h +O(h2). Then

u(v + h̃) = u(v) +
du

dv
h̃ +O(h̃2)

= u(v) +
du

dv

(
dv

dx
h +O(h2)

)
+O((

dv

dx
h +O(h2))2)

= u(v) +
du

dv
·
dv

dx
h +O(h2),

as desired.

(Return)

2. In the above notation, u(x) = ex and v(x) = sin x , and the question asks for the derivative d(u ◦ v).

Again, remembering to evaluate du at v(x), one finds that

d
(
esin x

)
= d(ex)

∣∣∣∣
sin(x)

d(sin x)

∣∣∣∣
x

= esin x cos x.

(Return)

3. Reciprocal One can think of this as an application of the chain rule, by writing

1

v
= u ◦ v

where u(x) = 1
x . Or one can see it as a special case of the quotient rule.

Quotient Let w = u
v , so that u = w · v . By the product rule,

du = w · dv + v · dw.

Solving for dw , replacing w with u
v , and clearing fractions gives

dw =
du − w · dv

v

=
du − u

v dv

v

=
v · du − u · dv

v2
,

as desired.

Inverse Note that x = u ◦ u−1 by the definition of the inverse of a function. Differentiating both sides of

this equation, using the chain rule on the right, gives

1 = du

∣∣∣∣
u−1
d(u−1)

∣∣∣∣
x

Then solving for d(u−1) gives

d(u−1) =
1

du

∣∣∣∣
u−1

as desired.

(Return)
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4. We find that

d

dx
sec x =

d

dx

(
1

cos x

)
= −

1

cos2 x
(− sin x)

=
1

cos x
·

sin x

cos x

= sec x tan x.

(Return)

5. We find that

d

dx
tan x =

d

dx

sin x

cos x

=
d(sin x) cos x − d(cos x) sin x

cos2 x

=
sin2 x + cos2 x

cos2 x

=
1

cos2 x

= sec2 x.

(Return)

6. The inverse of the logarithm is the exponential, so u = ex in the inverse rule. Thus,

d

dx
ln x =

1

d(ex)

∣∣∣∣
ln x

=
1

ex

∣∣∣∣
ln x

=
1

x
,

as desired.

(Return)
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12 Linearization
One of the main uses of the derivative is linearization, which uses the first two terms (the constant and linear

term) of the Taylor series as an approximation. In many applications, this gives a very good approximation, as

we will see in some examples.

12.1 Linear variation visualized

There are several geometric examples where it is possible to see the linear variation as the change in area as a

parameter is changed by a small amount.

Square

The area of a square of side length x is given by A(x) = x2. When that is varied by a small amount h, the

result is

A(x + h) = (x + h)2 = x2 + 2xh + h2.

The linear variation is 2xh, which can be seen in the diagram as the rectangles along the right and top edges of

the square. There are two of them, each with area xh. The final bit of area, the purple square in the diagram,

has area h2, which is higher order.
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Triangle

The area of a right triangle with legs length x is A(x) = 1
2x
2. When the leg is varied by h, the result is

A(x + h) =
1

2
x2 + xh +

1

2
h2.

Visually, the linear variation xh comes from the red parallelogram, of base h and height x , running along the

hypotenuse. The higher order term 1
2h
2 comes from the small purple triangle at the tip of the triangle.

Disc

The area of a disc of radius x is A(x) = πx2. If the radius is increased by h, the result is

A(x + h) = π(x + h)2 = πx2 + 2πxh + πh2.

Visually breaking this into the linear variation and higher order variation is a little bit harder. The best way is

to imagine taking the ring formed by the increased radius and breaking it into rectangles and wedges. In the
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limit, the wedges can be rearranged into a disc of radius h, and the rectangles can be arranged to form a strip

of length 2πx (the circumference of the inner circle) and width h.

12.2 Linear approximation

The equation underlying any linear approximation should be familiar, since it is just the first order Taylor series

about x = a, after making the substitution h = x − a:

f (a + h) ≈ f (a) + f ′(a)h.

This will be a good linear approximation provided that h is small, i.e., the point a is close to the input we are

trying to approximate. In general, one wants to pick a to be an input where it is easy to compute f (a) and

f ′(a) which is as close to the desired input as possible.

Example

Using a linear approximation, estimate
√

250. (See Answer 1)

Example

Using a linear approximation, estimate
√

104. Is this an over-approximation or an under-approximation?

(See Answer 2)

Example

Approximate π20. Hint: π2 ≈ 9.86. (See Answer 3)

Example

Approximate e30. Hint: e3 ≈ 20.1, and 210 ≈ 1000. (See Answer 4)

12.3 Newton’s method

Another application of linearization gives a way of approximating the root of a function. This is called Newton’s

method.

Given a continuous, differentiable function f , the goal is to find a root (i.e. a value a such that f (a) = 0).

Suppose x is an initial guess of a root. Then x + h will be a root for some small value of h. Linearizing, and

ignoring the higher order terms, gives

f (x + h) = f (x) + f ′(x)h +O(h2)

≈ f (x) + f ′(x)h.

Since we supposed that x + h was a root of f , it follows that f (x + h) = 0. Therefore, setting the above equal

to 0 and solving for h gives

f (x) + f ′(x)h = 0 ⇒ h = −
f (x)

f ′(x)
.
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Thus, an even closer guess of a root is

x + h = x −
f (x)

f ′(x)
.

By taking this new guess of a root, and repeating the above process, one (hopefully) gets a better and better

approximation of a root.

More formally, this is what is called a difference equation. Given an initial guess, called x0, of a root of the

function, one uses the update rule

xn+1 = xn −
f (xn)

f ′(xn)

to get x1, and then x2, and so on.

The resulting sequence hopefully converges to a root of f . Graphically, what is happening is as follows:

1. Pick a guess x0.

2. Find the tangent line to f through the point (x0, f (x0)).

3. Let x1 be the point where the tangent line intersects the x-axis.

4. Repeat steps 2 and 3 (see the figure).

Caveat

This sequence is only defined if f ′(xn) exists and is non-zero for every xn in the sequence. Even if the sequence

is defined, it may not converge to anything. But if the sequence is defined and it does converge, say to L, then

L is a root of f .

Example

Find the update rule for approximating 1
a , the reciprocal of a number a. (See Answer 5)

Example

Find the update rule for using Newton’s method to approximate
√
a. Use the update rule twice with initial

guess x0 = 3 to estimate
√

11. (See Answer 6)
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Example

Find the update rule for finding 3
√
a. Use the update rule once with the initial guess of x0 = 5 to estimate

3
√

100. (See Answer 7)

12.4 EXERCISES

• Use a linear approximation to estimate 3
√

67. Round your answer to four decimal places. Hint: what is

43?

• Use a linear approximation to estimate the cosine of an angle of 66o. Round your answer to four decimal

places. Hint: remember that 60o =
π

3
, and hence 6o =

π

30
.

• Use Newton’s method to determine the intersection of e−x and x .

• The golden ratio ϕ =
1 +
√

5

2
is a root of the polynomial x2 − x − 1. If you use Newton’s method to

estimate its value, what is the appropriate update rule for the sequence xn ?

• To approximate
√

10 using Newton’s method, what is the appropriate update rule for the sequence xn ?

• You want to build a square pen for your new chickens, with an area of 1200 ft2. Not having a calculator

handy, you decide to use Newton’s method to approximate the length of one side of the fence. If your

first guess is 30 ft, what is the next approximation you will get?

• You are in charge of designing packaging materials for your company’s new product. The marketing

department tells you that you must put them in a cube-shaped box. The engineering department says

that you will need a box with a volume of 500 cm3. What are the dimensions of the cubical box? Starting

with a guess of 8 cm for the length of the side of the cube, what approximation does one iteration of

Newton’s method give you? Round your answer to two decimal places.

• Without using a calculator, approximate 9.9898. Here are some hints. First, 9.98 is close to 10, and

1098 = 1 E 98 in scientific notation. What does linear approximation give as an estimate when we decrease

from 1098 to 9.9898?

• A diving-board of length L bends under the weight of a diver standing on its edge. The free end of

the board moves down a distance D = PL3/3EI where P is the weight of the diver, E is a constant

of elasticity (that depends on the material from which the board is manufactured), and I is a moment

of inertia. (These last two quantities will again make an appearance in Lectures 13 and 41, but do not

worry about what exactly they mean now...) Suppose our board has a length L = 2 m, and that it takes

a deflection of D = 20 cm under the weight of the diver. Use a linear approximation to estimate the

deflection that it would take if its length was increased by 20 cm.

12.5 Answers to Selected Examples

1. The function here is f (x) =
√
x . Possible choices for a are perfect squares, because it is easy to compute

the square root of squares. The nearest perfect square is 256 = 162, so we choose a = 256. Thus,
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h = x − a = −6. Then

f (x) ≈ f (a) + f ′(a)h

√
250 ≈

√
256 +

1

2
√

256
(−6)

= 16−
6

32

= 15
13

16

≈ 15.8,

which is very close to the calculator’s answer of 15.811 . . ..

(Return)

2. As above, a = 100 is the closest point where it is easy to compute
√
x and derivatives. Then h = 4, so

the linear approximation is

f (a + h) ≈ f (a) + f ′(a)h

=
√

100 +
1

2
√

100
· 4

= 10 +
4

20

= 10.2.

This is an over-approximation. One way to see why is to consider the graph of
√
x , which is concave

down, so the linear approximation is above the true value. Another argument is to consider the next term

of the Taylor series, which is negative (since the second derivative of
√
x is negative).

For comparison, the value according to a calculator is
√

104 ≈ 10.198.

(Return)

3. From the hint, π20 = (π2)10 ≈ 9.8610. Thus, we are trying to approximate f (x) = x10 at x = 9.86. The

nearest easy input is a = 10, so we find

f (9.86) ≈ f (10) + f ′(10)(−.14)

= 1010 + 10(10)9(−.14)

= 1010 (1− .14)

= 8.6 · 109.

The true answer is approximately 8.77 · 109, so this estimate is within 2%.

(Return)

4. From the first hint, e30 = (e3)10 ≈ (20.1)10, so consider the linear approximation for f (x) = x10 near

a = 20:

f (x) ≈ f (20) + f ′(20)(x − 20)

x10 ≈ 2010 + 10 · 209(x − 20)
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So it follows that

e30 ≈ (20.1)10

≈ 2010 + 10 · 209 · (.1)

≈ 2010 [1 + (.5)(.1)]

≈ 210 · 1010 · 1.05

≈ 1.05 · 1013

(the last step used the second hint that 210 ≈ 103). The true answer is approximately e30 ≈ 1.068 · 1013,

so the error is less than 2%.

(Return)

5. First, we must find a function which has 1a as a root. We might try f (x) = x− 1a , but unfortunately (after

a little algebra) this leads to the update rule

xn+1 =
1

a
,

which is not particularly helpful, since that is the quantity we are trying to approximate.

Another try would be f (x) = a − 1
x . This will work. Note that f ′(x) = 1

x2 , so the update rule is

xn+1 = xn −
f (xn)

f ′(xn)

= xn −
a − 1

xn
1
x2n

= xn −
(
x2n a − xn

)
= 2xn − ax2n .

Note that this rule does not involve division, but only multiplication and subtraction.

(Return)

6. The first step is to find a function whose root is
√
a. A good choice is f (x) = x2 − a. Then according to

Newton’s method, the update rule is

xn+1 = xn −
f (xn)

f ′(xn)

= xn −
x2n − a

2xn

= xn −
xn
2

+
a

2xn

=
xn
2

+
a

2xn
.

Using the update rule with x0 = 3 and a = 11 gives

x1 =
x0
2

+
11

2x0

=
3

2
+

11

6

=
20

6

=
10

3
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Updating one more time gives

x2 =
x1
2

+
11

2x1

=
5

3
+

11
20
3

=
199

60

≈ 3.3166

The calculator gives that
√

11 ≈ 3.3166, so we get a good approximation with only a little bit of work.

One could repeat the update rule several more times to get an even better approximation.

(Return)

7. The function in this case is f (x) = x3 − a. Then f ′(x) = 3x2, and so the update rule is

xn+1 = xn −
f (xn)

f ′(xn)

= xn −
x3n − a

3x2n

= xn −
1

3
xn +

a

3x2n

=
2

3
xn +

a

3x2n
.

Using this to estimate 3
√

100 with the initial guess x0 = 5, one finds

x1 =
2

3
· x0 +

100

3x20

=
10

3
+

4

3

=
14

3

≈ 4.666

If we compare this to the answer from a calculator, we find that 3
√

100 ≈ 4.64, and so even after just one

step, we are within 1% of the true answer.

(Return)
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13 Higher Derivatives

The nth derivative of a function f (x), denoted f (n)(x) or dn

dxn (f ), is defined recursively by

f (n)(x) =
d

dx
f (n−1)(x).

In other words, the nth derivative is what one gets by taking the derivative n times. Note that in the d
dx

notation, the power n goes to the right of dx , to emphasize the fact that the nth derivative of f is achieved by

iterating n times the operator d
dx . So (

d

dx

)n
f =

dn

dxn
f .

13.1 Interpretations

Let x(t) denote the position of a moving body as a function of time. Then the velocity v(t) of the body is

v(t) =
dx

dt
.

The acceleration of an object is the second derivative of its position function (i.e. the derivative of its velocity):

a(t) =
dv

dt
=
d

dt

(
dx

dt

)
=
d2x

dt2
.

The jerk of an object is the third derivative of its position function (i.e. the derivative of its acceleration):

j(t) =
d3x

dt3
.

The snap (or jounce) of an object is the fourth derivative of its position:

s(t) =
d4x

dt4
.

Quadrotors

The maneuverability of nano quadrotors depends on controlling both the jerk and the snap (in addition to

velocity and acceleration).
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Curvature

In geometry, curvature can (informally) be thought of as how quickly the graph of the function curves. Consider

the largest circle that can comfortably sit tangent to the graph of f at the point a. Intuitively, the larger the

radius R of the circle that fits, the smaller the curvature. Here is a curve with several of these circles (called

osculating circles) drawn it at different indicated points.

In fact, the curvature of a curve f , denoted κ, is defined by κ = 1
R , where R is the radius of the largest circle

which fits the curve to second order. With some algebra, one finds the following expression for curvature in

terms of the first and second derivatives of f :

Curvature of a function f

κ =
|f ′′|

(1 + (f ′)2)3/2
.

(See Justification 1)

Note that for a straight line, the second derivative f ′′ = 0, and so κ = 0, which matches intuition. In this case,

the osculating circle is infinite. Similarly, κ = 0 at inflection points of f .

Elasticity

Consider an elastic beam with uniform cross section and static load q(x), where x is the location of the load

along the beam. Then the deflection u(x) (the amount the beam sags at location x) satisfies the equation

EI
d4u

dx4
= q(x),

where E and I are constants: E is the constant of elasticity (depends on the material), and I is the moment of

inertia (depends on the shape of the beam).
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Taylor series

As seen in previous modules, information about the derivatives of a function evaluated at a single point gives

information about the function for inputs near that point via the Taylor series:

f (x) = f (a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2 +

f ′′′(a)

3!
(x − a)3 + · · ·

Taking a few terms of this series gives a polynomial which is a good approximation of f near a. The more

derivatives one knows, the more terms one can include in the series, and the better the approximation.

13.2 Bonus: another look at Taylor series

Consider the alternative way to express the Taylor series, in terms of the distance h from the base point a:

f (a + h) = f (a) + f ′(a)h +
f ′′(a)

2!
h2 +

f ′′′(a)

3!
h3 + · · ·

=

∞∑
k=0

f (k)(a)

k!
hk

=

∞∑
k=0

hk

k!

(
d

dx

∣∣∣∣
a

)k
f

=

∞∑
k=0

1

k!

(
h
d

dx

∣∣∣∣
a

)k
f .

Note that this resembles the Taylor series for the exponential ex , where

x = h
d

dx

∣∣∣∣
a

.

This may seem a little unusual. But the idea of exponentiating an operator to get another operator is a useful

tool, which comes up in other areas of mathematics. In this notation, we can write

f (a + h) = e(h d
dx |a)f .

Another way to think of this is that eh
d
dx is the shift operator, which takes in the function f (x) and gives back

the function f (x + h).

13.3 EXERCISES

• You are given the position, velocity and acceleration of a particle at time t = 0. The position is p(0) = 2,

the velocity v(0) = 4, and the acceleration a(0) = 3. Using this information, which Taylor series should

they use to approximate p(t), and what is the estimated value of p(4) using this approximation?

• If a particle moves according to the position function s(t) = t3 − 6t, what are its position, velocity and

acceleration at t = 3 ?

• If the position of a car at time t is given by the formula p(t) = t4− 24t2, for which times t is its velocity

decreasing?
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• What is a formula for the second derivative of f (t) = t2 sin 2t? Use this formula to compute f ′′(π/2).

• Use a Taylor series expansion to compute the third derivative of f (x) = sin3 (ln(1 + x)) at zero.

• What is the curvature of the graph of the function f (x) = −2 sin(x2) at the point (0, 0)?

13.4 Answers to Selected Examples

1. For a given point on the curve, draw its osculating circle, say of radius R (right now, R is unknown to

us;we will eventually find R). Then place the coordinate axes so that the origin is at the center of the

circle (note that the curvature at a given point only depends on the radius of the osculating circle, which

is independent of where the axes are placed):

The equation of the osculating circle is x2 + y2 = R2. Solving for y gives

y =
√
R2 − x2 = (R2 − x2)1/2,

whose first and second derivatives should respectively match the first and second derivatives of the function

f at the point (that is what it means for the circle to match the function up to second order). Remember

that the first derivative and second derivative of f at the given point are just constants. We will set the

derivative and second derivative of the equation of the circle equal to these constants, respectively, and

then solve for R.

The first derivative of the equation of the circle is

d

dx
(R2 − x2)1/2 =

1

2
(R2 − x2)−1/2(−2x)

= −x(R2 − x2)−1/2.
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The second derivative of the equation of the circle (using the product rule) is

d

dx

(
−x(R2 − x2)−1/2

)
= −(R2 − x2)−1/2 − x

(
−

1

2

)
(R2 − x2)−3/2(−2x)

= −(R2 − x2)−1/2 − x2(R2 − x2)−3/2

= −
1

(R2 − x2)1/2
−

x2

(R2 − x2)3/2

= −
(
R2 − x2

)
(R2 − x2)3/2

−
x2

(R2 − x2)3/2

=
−R2

(R2 − x2)3/2

= −R2(R2 − x2)−3/2.

So setting the corresponding derivatives of f equal to the derivatives of the circle gives

f ′ = −x(R2 − x2)−1/2

f ′′ = −R2(R2 − x2)−3/2.

Now we do some algebra to solve for R in terms of f ′ and f ′′. Squaring the first equation gives

(f ′)2 = x2(R2 − x2)−1.

Solving this equation for x2 gives

x2 =
(f ′)2R2

1 + (f ′)2
.

Plugging this into the second equation, and doing some algebra gives

f ′′ = −R2(R2 − x2)−3/2

= −R2
(
R2 −

(f ′)2R2

1 + (f ′)2

)−3/2
= −R2

[
R2
(

1−
(f ′)2

1 + (f ′)2

)]−3/2
=
−R2

R3

(
1 + (f ′)2 − (f ′)2

1 + (f ′)2

)−3/2
= −

1

R

(
1 + (f ′)2

)3/2
.

Taking absolute values (since the radius of a circle should not be negative) gives

|f ′′| =
1

R

(
1 + (f ′)2

)3/2
.

Now, solving for κ = 1
R gives

κ =
1

R
=

|f ′′|
(1 + (f ′)2)3/2

,

as desired.

(Return)
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14 Optimization

One of the most important applications of derivatives is optimization. In some introductory calculus classes

these types of problems are called max/min problems: given a function, what is the maximum or minimum

output subject to some constraints. This module will review how derivatives can be used in these problems and

give some of the reasons why these methods work.

14.1 Critical points

First, observe that for a differentiable function f , if the derivative is not zero at a point, then that point cannot

be a maximum or a minimum. For instance, if the derivative is positive, then the output is increasing with respect

to the input, so by increasing the input, one can increase the output. Hence, the point is not a maximum. If the

derivative is negative, then decreasing the input will increase the output, so that point cannot be a maximum.

Similarly, a point cannot be a minimum if the derivative is not zero. Thus, the only possible inputs where a

maximum or minimum can occur are those where the derivative is zero. This motivates the following definition

Critical point

A critical point of a function f is an input x = a where either f ′(a) = 0 or where the derivative is undefined.

Critical points include maximum and minimum points (called extrema) as well as inflection points; these are

the points where the derivative is 0. Other critical points occur at corner points or discontinuities, where the

derivative is undefined. The reason for including points where the derivative is not defined is that such a point

could be a maximum or minimum:
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Example

Compute the critical points of f (x) = x3 − 6x2 + 9x − 5. (See Answer 1)

14.2 Classifying critical points

Once one has computed a critical points x = a, one can classify whether it is a maximum or minimum using

the second derivative test:

Second Derivative Test

Suppose x = a is a critical point of f where f ′(a) = 0.

1. If f ′′(a) > 0, then f has a local minimum at a.

2. If f ′′(a) < 0, then f has a local maximum at a.

3. If f ′′(a) = 0, then the test fails.

In the third case, one can use the Taylor expansion about x = a to determine the behavior of the function.

In this case, x = a could still be a local maximum, minimum, or inflection point.

(See Justification 2)

Example

Use the Taylor series about x = 0 for

sin2 x ln(cos x)

to determine whether the function has a local maximum, local minimum, or inflection point at x = 0. (Take

as a given that x = 0 is a critical point). (See Answer 3)

Example

Consider a square sheet of cardboard of side length L. By cutting equal sized squares of side length x from

each corner of the sheet and folding up the flaps which are formed, one gets an open box:
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Note that as x gets bigger, the box gets taller but the area of the base of the box shrinks. As x gets smaller,

the area of the base grows, but the height shrinks. Find the value of x which maximizes the volume of the

resulting box. (See Answer 4)

Example

Classify the critical points of f (x) = x3 − 6x2 + 9x − 5. (See Answer 5)

Example

Suppose a firm producing widgets expects to sell 3000−10p2 units (where p is the price of the unit). What

price p should the firm set to maximize revenue (note that revenue here is just price times quantity sold)?

(See Answer 6)

14.3 Global Extrema

While a local maximum or minimum is sometimes useful information, what is usually more important is the global

maximum and minimum values of a function on a closed interval [a, b] (or subject to some other constraint

such as x ≥ 0). These are called the global extrema, or absolute extrema, of a function.

Global extrema on the interval [a, b] either occur at critical points of f or at the endpoints of the interval. So

in addition to finding the critical points of f in the interval and checking their values, one must also evaluate f

at the endpoints of the interval to find the global extrema.

Example

Find the global extrema of f (x) = x3 − 6x2 + 9x − 5 on the interval [2, 4]. (See Answer 7)

14.4 Application: Statistics

In statistics, one often takes experimental data points of the form (xi , yi) and looks for a relationship. A very

simple relationship is the linear relationship y = mx . The data may not follow this relationship perfectly, and

there may be some slight experimental error or other noise, so one tries to find the value of m which best fits

the data:
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This process, called a linear regression, can be framed as an optimization problem. But what is the quantity

being optimized?

There are several different linear regression models, depending on the quantity being minimized. These different

quantities yield different best fit lines. One of the most common models is called ordinary least squares. This

method seeks to minimize the sum of the squares of the residuals, which are the vertical distances from the

points to the line:

As shown above, the residual for a given point (xi , yi) is yi −mxi . Thus, the quantity being minimized is

S(m) =
∑
i

(yi −mxi)2.
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Taking the derivative with respect to m gives

dS

dm
=
∑
i

2(yi −mxi)(−xi)

=
∑
i

(
−2xiyi + 2mx2i

)
= −2

∑
i

xiyi + 2m
∑
i

x2i .

Setting this equal to 0 and solving for m gives

m =

∑
i

xiyi∑
i

x2i
.

Applying the second derivative test, we compute

d2S

dm2
= 2

∑
i

x2i > 0,

so the above value of m minimizes the sum of squares (hence the least squares name).

Note

To find the line of best fit of the form y = mx +b requires methods of multivariable calculus (because there are

two variables, m and b, which need to be optimized). Optimization with multiple variables is not much more

difficult than for a single variable, but these methods are beyond the scope of this course.

14.5 EXERCISES

• Find all the local maxima and minima of the function y = xe−x
2
.

• Which type of critical point does the function f (x) = esin(x
4) cos(x2) have at zero ?

• Use a Taylor series about x = 0 to determine whether the function f (x) = sin3(x3) has a local maximum

or local minimum at the origin.

• Find the location of the global maximum and minimum of f (x) = x3 − 6x2 + 1 on the interval [−1, 7].

• Consider a stretch of highway in which cars are traveling at an average speed v . The “traffic density” u

is the total amount of cars on our stretch of road divided by its length. These two quantities are related:

the less cars on the road, the faster drivers are able to go. On the other hand, if traffic becomes heavy,

drivers will naturally decrease their speed. The so-called “parabolic model” assumes that this relationship

is dictated by the equation:

u = umax

(
1−

v

vmax

)
where umax represents the capacity of the road, and vmax the speed limit on it. The amount of cars passing

through our road is called the “traffic flux” or “throughput,” and is given by the product of the traffic

density and the average speed: F = uv . Using the parabolic model, find out at what average speed v∗
the flux through our road is maximized.
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• A manufacturing company wants to know how many workers it should hire. If it employs too many people,

the machines in the factory will be overutilized and the workers will have to wait until they are free, thus

reducing the number of units each one will produce in a day’s work. On the other hand, too few workers

would leave the machines idle for long periods of time. A rough model for the relationship between the

number n of workers and their productivity p is given by the equation

p = pmax

(
1−

n

nmax

)
where pmax = 10 is the maximum number of units a worker can produce in a day and nmax = 100 is the

maximum number of workers the factory can accommodate. The amount of units U manufactured in the

whole factory in one day is equal to the product of the number of workers and the number of units each

one produces: U = np. How many workers should the company hire in order to maximize its production?

• A technology company has just invented a new gadget. In order to maximize the profit derived from its

sale, the company must make a critical decision: at what price should it be sold? A market study suggests

that the number N of units sold would approximately follow the equation N = Nmaxe
−P/λ, where P is the

sale price, Nmax = 10, 000, 000 is the number of units that would saturate the market, and λ = $50. If

it costs $250 to manufacture one of these gadgets, at what price P∗ would be profit of the company be

maximized?

• The manufacturing process of a certain chemical substance is exothermic, that is, it releases heat. The

amount of heat released, Q, depends on the temperature T at which the process is carried out, and it

is given by the equation Q = α(T − T0)−2e(T−T0)/λ, where T0 = 70oF is the room temperature of the

manufacturing plant, and α = 3000 J (oF )2 and λ = 50oF . If the temperature T must be maintained

above 100oF , at what temperature T∗ would be the heat loss be minimized?

• Classify the critical point x = 0 of the function f (x) = sin2(3x2) cos(x)
x using Taylor series.

• Construct a box without a top whose base is a square. The material cost for the bottom is $10 per square

feet, the cost for the side is $5 per square feet. The box must have volume 8 cubic feet. Determine the

dimension of the box that will minimize the cost.

14.6 Answers to Selected Examples

1. The derivative f ′(x) = 3x2 − 12x + 9 is defined everywhere, so the critical points are where f ′(x) = 0.

Since

f ′(x) = 3x2 − 12x + 9

= 3(x2 − 4x + 3)

= 3(x − 3)(x − 1),

the critical points are x = 3 and x = 1.

(Return)

2. The second derivative test is justified by considering the Taylor series for f about x = a:

f (x) = f (a) + f ′(a)(x − a) +
1

2
f ′′(a)(x − a)2 + · · ·

= f (a) +
1

2
f ′′(a)(x − a)2 + · · · ,
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since f ′(a) = 0. Thus, when x is close to a, f (x) behaves like a parabola centered at x = a. Recall that

the sign of the coefficient of the square term in a parabola determines if the parabola opens up or down.

A positive coefficient means the parabola opens upward, and a negative coefficient means the parabola

opens downward.

Here, the coefficient of the (x −a)2 is 12 f
′′(a). So if f ′′(a) > 0, then the parabola opens upward, meaning

f (a) is a local minimum of f . If f ′′(a) < 0, then the parabola opens downward, meaning f (a) is a local

maximum of f . If f ′′(a) = 0, then one has to look at more terms of the Taylor series to determine f ’s

behavior at a.

(Return)

3. Expanding and multiplying the Taylor series gives

sin2 x ln(cos x) =
(
x +O(x3)

)2
ln

(
1−

1

2!
x2 +O(x4)

)
= (x +O(x3))(x +O(x3))

(
−

1

2
x2 +O(x4)

)
= −

1

2
x4 +O(x6).

Thus, near x = 0 the function behaves like − 12x
4, which is downward opening (because of the negative

coefficient) and U shaped (because it is an even power). Therefore, the function has a local maximum at

x = 0.

Note that the second derivative test, besides being tricky to apply with all of the product rules and chain

rules, would ultimately be inconclusive in this example.

(Return)

4. The volume of the box is the area of the base times the height. The base is a square of side length L−2x

(since x has been cut from both sides). The height of the box is x . Thus

V = (L− 2x)2 · x = 4x3 − 4Lx2 + L2x

Finding the critical points means taking the derivative with respect to x and setting equal to 0:

dV

dx
= 12x2 − 8Lx + L2 = 0.

This factors as

(6x − L)(2x − L) = 0,

so the critical points are x = L
6 and x = L

2 . To apply the second derivative test, we compute

d2V

dx2
= 24x − 8L

and evaluate at each critical point:

d2V

dx2

∣∣∣∣
x=L/2

= 4L > 0 and
d2V

dx2

∣∣∣∣
x=L/6

= −4L < 0.

Thus, x = L
2 is a local minimum and x = L

6 is a local maximum. (Note also that for x = L
2 there is no

cardboard left, since the removed corners have consumed the entire square!).
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The volume that results from x = L
6 is

V =

(
2L

3

)2
L

6
=

2L3

27
.

(Return)

5. As found in a previous example, the critical points of f are x = 3 and x = 1. The second derivative of f

is f ′′(x) = 6x − 12. Thus, f ′′(3) = 6 > 0 and f ′′(1) = −6 < 0, and it follows from the second derivative

test that 3 is a local minimum of f , and 1 is a local maximum of f .

(Return)

6. Revenue is R(p) = (3000 − 10p2)p = 3000p − 10p3. Taking the derivative gives R′(p) = 3000 − 30p2,

and setting equal to 0 gives

3000− 30p2 = 0

3000 = 30p2

100 = p2

p = ±10.

So R has critical point p = 10 (ignore p < 0 since price should be positive). The second derivative is

R(p) = -60p.T husR(10) = −600 < 0, and p = 10 is a local maximum.

At this price, the revenue is

R(10) = 2000 · 10 = 20000.

(Return)

7. From the prior examples, x = 1 and x = 3 are the critical points of f . But x = 1 is not in the interval

[2, 4], so disregard it. Then evaluate f at 2,3,4 to find the extreme values:

f (2) = 8− 24 + 18− 5 = −3

f (3) = 27− 54 + 27− 5 = −5

f (4) = 64− 96 + 36− 5 = −1.

Thus the absolute maximum is −1 and occurs when x = 4. The absolute minimum is −5 and occurs at

x = 3.

(Return)
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15 Differentials
This module deals with differentials, e.g. dx or du. A formal treatment of differential forms is beyond the scope

of this course. For now, the best way to think about the differential dx or du is to think of them as rates of

change, and relate them with the chain rule:

du =
du

dx
dx.

In words, the rate of change of u equals the rate of change of u with respect to x times the rate of change of

x . This is not a perfect interpretation, but it will serve our purposes for this course.

15.1 The differential as an operator

Think of the differential d as an operator which can be applied to an equation f = g to give back df = dg. This

process allows one to find the derivative of functions which are defined implicitly, i.e., functions which cannot

be “solved for y” as y = f (x). This method is called implicit differentiation.

Example

Find dy
dx of the circle x2 + y2 = r2. (See Answer 1)

Example

In economics, the marginal rate of substitution (MRS) of X for Y is the rate at which a consumer is willing

to exchange good Y for good X to maintain an equal level of satisfaction (called utility in economics jargon).

Let U(X, Y ) denote a particular consumer’s utility function. As a particular example, let X be coffee, in

ounces, and Y be doughnuts. Then the curve U(X, Y ) = C represents all the different combinations of

coffee and doughnuts where the consumer is equally happy. For example, if the utility function is

U(X, Y ) = Y 2(X − 3),

then the following shows the graph of the curve U(X, Y ) = 4. The two plotted points show that this

consumer is equally satisfied with 4 ounces of coffee and 2 doughnuts as with 7 ounces of coffee and 1

doughnut.
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The MRS, then, is the rate of exchange of Y for X (doughnuts for coffee) so that utility stays the same

(i.e. we stay on the curve). Mathematically, this is

MRS = −
d Y

dX
.

Find MRS for the utility function given above, U(X, Y ) = Y 2(X−3). Then calculate the MRS at the points

(4, 2) and (7, 1) and interpret the results. (See Answer 2)

Example

Find the derivative of the function y = f (x) defined implicitly by the equation

yex + x ln(y) = e.

(See Answer 3)

15.2 Related rates

The differential is often used in related rates problems. A related rates problem typically has a physical de-

scription and asks for the rate at which some quantity is changing. The description must be translated into

an implicit relation between the variables involved, and then implicit differentiation is used to find the desired

derivative.

Example

Suppose a 10 foot ladder is leaning against a wall. The base of the ladder starts sliding away from the wall

at a rate of 4 feet per second. At the moment when the base of the ladder is 6 feet away from the wall, at

what rate is the top of the ladder sliding down the wall? (See Answer 4)
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Example

Consider the shape of a stream of water as it flows from a faucet. The stream has a circular cross-section

which gets narrower lower in the stream, and the goal is to find how the radius of that cross-section is

changing with respect to time.

Assume on the one hand that the water is flowing at a constant rate C. On the other hand, the area of the

cross section times the velocity through that cross section equals the flow:

Dividing by π and taking the differential gives

r2v = C

2r dr v + r2 dv = 0

dr = −
r2

2rv
dv = −

r

2v
dv .

So
dr

dv
= −

r

2v
.

Now, using the chain rule and a few facts from physics gives that

dr

dt
=
dr

dv

dv

dt

= −
r

2v

dv

dt

= −
rg

2v

= −
rg

2(v0 + gt)
.

This is known as a differential equation (in particular, a separable differential equation). One can solve this

equation to get an explicit expression for r in terms of t; see the module on separable differential equations.

15.3 Relative rates of change

We can normalize the differential du by dividing by u. This gives du
u . This is known as the relative rate of

change. Note that
du

u
= d(ln u).
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Example

For a given resistor in an electrical circuit, Ohm’s law says that

V = IR,

where V is voltage across the resistor, I is the current, and R is the resistance of the resistor. If the voltage

across a variable resistor is fixed, find the relationship between the relative rates change of resistance and

current. (See Answer 5)

Example

In a geometric solid (say, a sphere or a cube), how does the relative rate of change in volume compare to

that of surface area? (See Answer 6)

Example

In economics, the demand curve for a good is the quantity Q of the good that a consumer would purchase

as a function of the price P of the good. The demand curve slopes downward since a consumer will typically

buy less of a good if it is more expensive (the exception being a Giffen good).

The price elasticity of demand, E, for a good is the rate of change of relative quantity fluctuation with

respect to relative price fluctuation. Informally, it can be thought of as the percent change in quantity

resulting from a percent change in price. One can also think of E as a measure of how price sensitive a

consumer is for that good at that price. Mathematically,

E = −
dQ/Q

dP/P
.

The negative sign is there to force elasticity to be positive (without it, dQ/Q
dP/P would always be negative due

to the downward slope of the demand curve).

A good is said to be elastic at a certain price if E > 1 (that is, a consumer is highly sensitive to price

changes). A good is inelastic at a certain price if E < 1. An example of an elastic good is wine, since a

small increase in the relative price of wine can result in a consumer substituting a different alcohol for it. An

example of an inelastic good is toilet paper, since regardless of price changes, a consumer is likely to require

about the same amount of toilet paper:
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Revenue, R, is given by R = P ·Q. How does one maximize the revenue with respect to price? Express the

criterion in terms of E.

15.4 EXERCISES

• Use implicit differentiation to find
dy

dx
from the equation y2 − y = sin 2x .

• Find the derivative
dy

dx
if x and y are related through xy = ey .

• Use implicit differentiation to find
dy

dx
if sin x = e−y cos x .

• Find the derivative
dy

dx
from the equation x tan y − y2 ln x = 4.

• Model a hailstone as a round ball of radius R. As the hailstone falls from the sky, its radius increases at

a constant rate C. At what rate does the volume V of the hailstone change?

• The volume of a cubic box of side-length L is V = L3. How are the relative rates of change of L and V

related?

• Consider a box of height h with a square base of side length L. Assume that L is increasing at a rate of

10% per day, but h is decreasing at a rate of 10% per day. Use a linear approximation to find at what

(approximate) rate the volume of the box changing. “Hint:” consider the relative rate of change of the

volume of the box.

• A large tank of oil is slowly leaking oil into a containment tank surrounding it. The oil tank is a vertical

cylinder with a diameter of 10 meters. The containment tank has a square base with side length of 15

meters and tall vertical walls. The bottom of the oil tank and the bottom of the containment tank are

concentric (the round base inside the square base). Denote by ho the height of the oil inside of the oil

tank, and by hc the height of the oil in the containment tank. How are the rates of change of these two

quantities related?

• The “stopping distance” Dstop is the distance traveled by a vehicle from the moment the driver becomes

aware of an obstacle in the road until the car stops completely. This occurs in two phases.
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(1) The first one, the “reaction phase,” spans from the moment the driver sees the obstacle until he or

she has completely depressed the brake pedal. This entails taking the decision to stop the vehicle, lifting

the foot from the gas pedal and onto the brake pedal, and pressing the latter down its full distance to

obtain maximum braking power. The amount of time necessary to do all this is called the “reaction time”

treact, and is independent of the speed at which the vehicle was traveling. Although this quantity varies

from driver to driver, it is typically between 1.5 s and 2.5 s. For the purposes of this problem, we will use

an average value of 2 s. The distance traversed by the vehicle in this time is unsurprisingly called “reaction

distance” Dreact and is given by the formula Dreact = vtreact, where v is the initial speed of the vehicle.

(2) In the “braking phase,” the vehicle decelerates and comes to a complete stop. The “braking distance”

Dbrake that the vehicle covers in this phase is proportional to the square of the initial speed of the vehicle:

Dbrake = αv2. The constant of proportionality α depends on the vehicle type and condition, as well as on

the road conditions. Consider a typical value of 10−2 s2/m.

If the initial speed of the vehicle is 108 km/h = 30 m/s, what is the ratio between the relative rate of

change of the stopping distance and the relative rate of change of the initial speed?

• Assume that you possess equal amounts of a product X and Y , but you value them differently. Specifically,

your “utility function” is of the form U(X, Y ) = CXαY β for α, β, and C positive constants. What is your

marginal rate of substitution (MRS) of Y for X?

15.5 Answers to Selected Examples

1. Taking the differential (remembering the chain rule) and doing some algebra gives

2x(dx) + 2y(dy) = 0

2y(dy) = −2x(dx)

dy

dx
=
−2x

2y

= −
x

y
.

So dy
dx = − x

y .

(Return)

2. Using implicit differentiation, we find

Y 2(X − 3) = C

2Y d Y (X − 3) + Y 2 dX = 0.

Now solving for − dYdX we find

MRS = −
d Y

dX
=

Y 2

2Y (X − 3)
=

Y

2(X − 3)
.

Evaluating at (4, 2) gives a MRS of 1, which means that at that point the consumer is willing to substitute

1 doughnut for an ounce of coffee. At (7, 1) the MRS is 18 , which means that the consumer is only willing

to give up 1
8 of a doughnut for an additional ounce of coffee.

In a sense the MRS is a measure of how a consumer reacts to the scarcity of one good relative to another

and how that affects her willingness to exchange the goods.

(Return)
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3. Taking the differential (remembering the product rule) gives

(dy)ex + y(exdx) + (dx) ln(y) + x

(
1

y
dy

)
= 0.

Ultimately, the goal is to solve for dy
dx , so collecting all the terms with dy on the left and the terms with

dx on the right gives (
ex +

x

y

)
dy = (−yex − ln(y)) dx.

Finally, dividing through gives
dy

dx
=
−yex − ln(y)

ex + x/y
.

(Return)

4.

Let x be the distance from the base of the ladder to the wall and y be the distance from the top of the

ladder to the floor. Then by the Pythagorean theorem, x2+ y2 = 102. At the moment in question, x = 6

so y = 8.

The differential of this equation gives

2xdx + 2ydy = 0,

and solving for dy
dx gives dy

dx = − x
y = − 68 = − 34 . But the question asked for dy

dt , not dy
dx . But by the Chain

rule,
dy

dt
=
dy

dx
·
dx

dt
.

Since dy
dx = − 34 and dx

dt = 4 (given in the problem), it follows that

dy

dt
=
dy

dx
·
dx

dt
=

(
−

3

4

)
· 4 = −3.

So the top of the ladder is sliding down the wall at a rate of 3 feet per second.

(Return)

5. Beginning with Ohm’s law and taking the differential gives

V = IR

dV = RdI + I dR.
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Now, note that dV = 0 since voltage was assumed to be constant. Then dividing through by IR gives

RdI + I dR = 0

RdI

IR
+
I dR

IR
= 0

dI

I
+
dR

R
= 0

dI

I
= −

dR

R
.

Thus, the relative rates of change of resistance and current are equal and opposite.

(Return)

6. For a sphere of radius r , the volume and area (and their differentials) are

V =
4

3
πr3 dV = 4πr2 dr

A = 4πr2 dA = 8πr dr.

Then the relative rates of change of volume and area are

dV

V
=

4πr2 dr
4
3πr

3

= 3
dr

r
.

and

dA

A
=

8πr dr

4πr2

= 2
dr

r
.

Thus, the relative rate of change of volume is 32 that of area. Written another way,

dV/V

dA/A
=

3

2
.

For a cube of side length s, it turns out the same holds. The volume and area are

V = s3 dV = 3s2 ds

A = 6s2 dA = 12s ds.

The relative rates are dV
V = 3 dss and dA

A = 2 dss , so once again

dV/V

dA/A
=

3

2
.

(Return)
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16 Differentiation As An Operator

The sum, product, quotient, and chain rules make it possible to differentiate many functions. However, there

are some more exotic functions which cannot be differentiated using these tools alone. For example, what is

the derivative of 2x or xx or xx
x

?

The derivative should be interpreted as a rate of change, but what about the act of differentiation? Differ-

entiation is an operator: it takes in a function and gives out another function. Other examples of operators

include the logarithm, exponentiation, and integration. These (and other) operators can be applied to an entire

equation to transform a hard problem to an easy problem and (once the solution is found) back again. This

idea will allow us to compute the derivatives of the exotic functions above, and more.

16.1 Logarithmic differentiation

A common combination is called logarithmic differentiation, which consists of applying the logarithm operator

followed by the differentiation operator. It is best demonstrated by example.

Example

Find the derivative of ex using logarthmic differentiation. (See Answer 1)

Example

Use logarithmic differentiation to show that d
dx (ax) = ax ln a. (See Answer 2)

Example

Find the derivative of xx . (See Answer 3)

Example

Find the derivative of f (x)g(x). (See Answer 4)

16.2 Other operators

There are other operators which can be used prior to differentiation. Consider the following examples.
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Example

Compute the derivative of ln x by using exponentiation followed by differentiation. (See Answer 5)

Note that ln x is the inverse of ex , and so when we exponentiated the equation, it could be thought of as

applying the inverse of ln x . This same method works for many other inverse functions. In particular, applying a

trigonometric function can be thought of as an operator as well. This method can be used to find the derivatives

of the various inverse trigonometric functions.

Example

Find the derivative of arcsin(x). (See Answer 6)

Example

Find the derivative of arctan(x). (See Answer 7)

16.3 Operators in other contexts

Besides being useful in computing derivatives of exotic functions, operators (especially the logarithm) can also

be useful in computing limits. The method is similar to the above method for derivatives.

Example

Show that

lim
x→∞

(
1 +

a

x

)x
= ea.

This is a common limit which will come up again in the course. (See Answer 8)

16.4 Infinite Power Tower

Consider the infinite power tower

y = xx
xx
···

.

That is, x raised to the x raised to the x etc. This is certainly an unusual function. A better way to define this

function is implicitly:

y = xy .

To see that this makes intuitive sense, note that the exponent of the first x in the infinite tower is itself an

infinite tower, so replacing the exponent of x with y is sensible.

Use logarithmic differentiation to find the derivative of this function (that is, dy
dx ).

(See Answer 9)

It turns out that this function is well-defined and differentiable on

e−e < x < e1/e

One can check that the (x, y) pairs (e−e , e−1), (1, 1), (
√

2, 2), (e1/e , e) all satisfy the above implicit equation.
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16.5 EXERCISES

• Find the derivative of f (x) = (ln x)x

• Find the derivative of f (x) = x ln x

• Compute lim
x→+∞

(
x + 2

x + 3

)2x
• Compute lim

x→0+
[ln(1 + x)]x

• Compute lim
x→0

(
1 + arctan

x

2

)2/x
• Compute lim

x→0+

(
2

x

)sin x
• Let

α = 1 +
2

2 + 2
2+ 2

2+···

What is the value of α?

• Let

ϕ =

√
1 +

√
1 +

√
1 +

√
1 +
√

1 + · · ·

What is the value of ϕ?

16.6 Answers to Selected Examples

1. We already know the derivative of ex , but suppose we did not. Let y = ex . Then applying the logarithm

operator to this equation gives

ln y = ln(ex) = x.

Now applying the differentiation operator to the equation (and remembering the chain rule) gives

dy

y
= dx,

so dy
dx = y , and since y = ex from our original definition, we have

dy

dx
= ex ,

as expected.

(Return)
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2. Similarly to the above example, let y = ax . Then taking the logarithm gives

ln y = ln(ax) = x ln a.

Differentiating gives
dy

y
= (ln a) dx

And so
dy

dx
= y(ln a) = ax ln a,

as desired.

(Return)

3. Let y = xx . Taking the logarithm gives

ln y = x ln x.

Differentiating (using the product rule on the right) gives that

dy

y
= x

1

x
dx + ln x dx.

Next, factoring and solving for dy
dx gives

dy

dx
= y(1 + ln x) = xx(1 + ln x)

(Return)

4. Let y = f (x)g(x). Applying the logarithm gives ln y = g(x) ln f (x), and differentiating gives

dy

y
= g(x)

1

f (x)
f ′(x) dx + g′(x) ln f (x) dx.

Factoring and solving for dy
dx shows

dy

dx
= y

[
g(x)

1

f (x)
f ′(x) + g′(x) ln f (x)

]
= f (x)g(x)

[
g(x)

f (x)
f ′(x) + g′(x) ln f (x)

]

(Return)

5. Letting y = ln x , we exponentiate the equation to find

ey = x.

Now, differentiating gives

ey dy = dx,

and solving for dy
dx gives

dy

dx
=

1

ey
=

1

e ln x
=

1

x
,

as desired.

(Return)
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6. Letting y = arcsin x , take the sine of the equation to find

sin y = x.

Now, differentiating gives

cos y dy = dx.

Thus, we find that
dy

dx
=

1

cos y
.

Now, a little bit of trigonometry helps rewrite sec y in terms of x . Our original equation had y = arcsin x .

That means that y is the angle such that sin y = x . Since sine is the opposite over the hypotenuse, we

can express this relationship with the following right triangle:

where the adjacent leg comes from the Pythagorean theorem. It follows that cos y =
√

1− x2, and so

we find
dy

dx
=

1

cos y
=

1√
1− x2

.

(Return)

7. Let y = arctan(x). Applying tan to the equation gives

tan y = x,

and differentiating gives

sec2 y dy = dx.

Therefore,

dy

dx
=

1

sec2 y

We can now do similar right triangle trig as in the previous example. Or we can recall that by the

Pythagorean identity for tangent and secant, we have

tan2 y + 1 = sec2 y

Making this substitution gives

dy

dx
=

1

sec2 y

=
1

tan2 y + 1

=
1

x2 + 1
.

(Return)
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8. Let y be the function given by

y =
(

1 +
a

x

)x
.

Take the logarithm of both sides, and use the power property of logarithms to see

ln y = ln
(

1 +
a

x

)x
= x ln

(
1 +

a

x

)
.

Now, taking the limit of both sides gives

lim
x→∞

ln y = lim
x→∞

x ln
(

1 +
a

x

)
.

Now, since x → ∞, we have that a
x is small, and so we can use our Taylor series for ln(1 + x), which

gives us that

lim
x→∞

ln y = lim
x→∞

x ln
(

1 +
a

x

)
= lim

x→∞
x

(
a

x
+O

(
1

x2

))
= lim

x→∞
a +O

(
1

x

)
= a.

Recall from our limit rules that the order of the logarithm and the limit can be switched since the logarithm

is a continuous function. Thus

ln
(

lim
x→∞

y
)

= a.

So, exponentiating both sides, we have that

lim
x→∞

y = ea,

as desired.

(Return)

9. First, taking the logarithm gives

ln y = y ln x.

Now, differentiating the equation (implicitly) gives

dy

y
= ln x dy + y

dx

x

Factoring and solving for dy
dx gives (

1

y
− ln x

)
dy = y

dx

x

dy

dx
=

y

x (1/y − ln x)

=
y2

x(1− y ln x)
.

This shows that although a function may be difficult to understand, it can nevertheless be fairly easy to

find its derivative.

(Return)
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