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17 Antidifferentiation
This module begins our study of integration. Integration, or anti-differentiation, can be thought of as running

differentiation in reverse, or undoing the derivative.

This motivates the following definition:

The Indefinite Integral

The indefinite integral of f (t), denoted
∫
f (t) dt, is the class of functions whose derivative is f (t).

∫
f (t) dt

is also referred to as the anti-derivative of f . The act of taking the indefinite integral is an operator which

is referred to as anti-differentiation or integration.

Note

The indefinite integral of a function is only defined up to an added constant, called the constant of integration.

In other words, if F (x) is an anti-derivative of f (x), then G(x) = F (x) + C, C a constant, is also an anti-

derivative of f , because C disappears when differentiated. Conversely, any two indefinite integrals of f (x) differ

only by some constant.

Any of the known derivatives from the previous chapter can be rephrased as an integral. For example, just

as there was a power rule for differentiating monomials, there is a corresponding power rule for integrating

monomials. And any anti-derivative can easily be checked by taking the derivative and seeing that the result

gives back the original function.

Example

Give the integral of each of the following functions: xn, 1
x , sin x , cos x , ex . (See Answer 1)

There are other functions which are harder to integrate by merely using one of the derivatives we already know.

Some of these can be integrated using other techniques from upcoming modules, but there are also functions

whose anti-derivative cannot be expressed in terms of simple functions.

17.1 Differential equations

The motivating problem for the study of anti-differentiation is solving a differential equation. A differential

equation is an equation involving a function and its derivative. In this course, we deal with ordinary differential

equations, ODEs, which are differential equations involving only functions of one variable and the derivative
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with respect to that variable (future courses deal with partial differential equations, which involve functions of

several variables and partial derivatives).

Solving a differential equation means finding the function (or class of functions, usually) which satisfy the

differential equation.

A Simple ODE

The simplest differential equation is of the form

dx

dt
= f (t).

Here, the goal is to find the function x(t) whose derivative with respect to t is f (t). But this is precisely what

the integral is. And so, the solution of the differential equation dx
dt = f (t) is given by x(t) =

∫
f (t)dt.

Using the interpretation of the derivative as slope, one can think of the function f (t) as describing the slope of

the function x(t):

Thus, x(t) is a function which fits the slopes prescribed by f (t). Note that any constant vertical shift of a

solution x(t) will still have the same slope at each point. This is one interpretation of the integration constant:

it represents the potential vertical shifts to a solution of the differential equation.

Example

Consider a falling object. Let x(t) be the height of the object at time t, v(t) be the velocity of the object,

and assume that acceleration is the constant −g (negative because gravity pulls down). Express the height

of the object as a function of t, v0, and x0; here, v0 and x0 are the velocity and height of the object,

respectively, at time t = 0. (See Answer 2)

The Next Simplest ODE

Another slightly more complex ODE is of the form

dx

dt
= f (x).

8



Before we discuss how to solve this in general, we consider a specific example, which is one of the most famous

differential equations:
dx

dt
= ax,

where a is a constant. We solve this differential equation in three different ways:

1. (Guess) Solve this differential equation by first observing that x = Cet satisfies dx
dt = x and then adjusting

the exponent so that an extra factor of a comes out when differentiating. Hint: remember the chain rule.

(See Answer 3)

2. (Series) Solve the differential equation by assuming

x(t) = c0 + c1t + c2t
2 + c3t

3 + · · ·

and then determining what the constants ci must be to satisfy the differential equation. (See Answer 4)

3. (Integration) Rearrange the differential equation into the form

dx

x
= a dt

and integrate both sides to solve the differential equation. (See Answer 5)

The differential equation from this example is sometimes used as a simple model of population growth. In words,

the differential equation says that the growth of a population is proportional to the size of the population. As the

solution above slows, this model implies the population has exponential growth. This is not a very good model

for most populations because of competition for resources and overcrowding. But under certain conditions and

for short periods of time, some populations (for instance, bacteria with an abundant food supply) do exhibit

exponential growth. For more examples of exponential growth, see the next module.

17.2 Initial value problems

Although a general differential equation’s solution often depends on a constant (sometimes several), an addi-

tional condition called an initial value or initial condition can specify a specific solution. This condition is usually

of the form y(t0) = y0. A differential equation with such an initial condition is called an initial value problem.

To solve such a problem, first find the general solution and then use the initial value to find the specific constant

of integration which satisfies the initial condition.

In the context of population growth, the initial value is typically the size of the population at time 0. This

is particularly nice in the exponential growth model, because the solution is of the form P (t) = DeAt . So if

P (0) = P0 is given, then plugging this in gives P (t) = P0e
At .

17.3 EXERCISES

•
∫

(4x3 + 3x2 + 2x + 1) dx =

•
d

dx

∫
ln tan x dx =

•
∫ (

d

dx
e−x
)
dx =

9



• Find the general solution of the differential equation

dx

dt
= t2

• Find the general solution of the differential equation

dx

dt
= x2

• There is a large class of differential equations – the so-called “linear” ones – for which we can find solutions

using the Taylor series method discussed in the Lecture. One such differential equation is

t
d2x

dt2
+
dx

dt
+ tx = 0

This is a particular case of the more general “Bessel differential equation,” and one solution of it is given

by the Bessel function J0(t) that we saw earlier. Notice that this involves not only the first derivative but

also the second derivative. For this reason, it is said to be a “second order” differential equation.

In this problem we will content ourselves with finding a relationship (specifically, a “recurrence relation”)

on the coefficients of a Taylor series expansion about t = 0 of a solution to our equation. Hence consider

the Taylor series

x(t) =

∞∑
k=0

ckt
k

Substituting this into the differential equation above will give you two conditions. The first one is c1 = 0.

What is the other one?

“Note:” this problem involves some nontrivial manipulation of indices in summation notation. Do not get

discouraged if it feels more difficult than other problems: it is!

• Find the general solution of the differential equation

dx

dt
= t3 + x2t3

17.4 Answers to Selected Examples

1. ∫
xndx =

1

n + 1
xn+1 + C∫

1

x
dx = ln |x |+ C∫

sin xdx = − cos x + C∫
cos xdx = sin x + C∫
exdx = ex + C

(Don’t forget the constant!)

(Return)
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2. We know from an earlier module that
dv

dt
= a = −g.

Beginning with the second of these equations, we find that

v(t) =

∫
(−g) dt = −gt + C.

We can determine C by plugging in t = 0. This cancels that −gt and leaves us with C = v(0) = v0, the

initial velocity. Thus,

v(t) = −gt + v0

Now, using the fact that
dx

dt
= v ,

we find that

x(t) =

∫
v(t) dt

=

∫
(−gt + v0) dt

= −
1

2
gt2 + v0t + C.

Again, we can find C by plugging in t = 0. This leaves us with x(0) = C, and so C = x0, the initial

height. Thus,

x(t) = −
1

2
gt2 + v0t + x0.

(Return)

3. Observe that x = Ceat will get an extra factor of a when differentiated by the chain rule. That is,

d

dt

(
Ceat

)
= aCeat .

And so x(t) = Ceat is a solution of the differential equation.

(Return)

4. Assuming that

x(t) = c0 + c1t + c2t
2 + c3t

3 + · · · ,

and then taking the derivative of this series, term by term, we find

dx

dt
= 0 + c1 + 2c2t + 3c3t

2 + · · · .

On the other hand, from the original differential equation we have

dx

dt
= ax

= a
(
c0 + c1t + c2t

2 + c3t
3 + · · ·

)
= ac0 + ac1t + ac2t

2 + ac3t
3 + · · · .
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Because these two series both equal dx
dt , they must be equal to each other. But two series are equal if

and only if their corresponding coefficients are equal. Therefore,

c1 = ac0

2c2 = ac1

3c3 = ac2,

and so on. Solving these equations one by one gives

c1 = ac0

c2 =
1

2
ac1 =

1

2
a2c0

c3 =
1

3
ac2 =

1

6
a3c0

And, generally, cn = 1
n!a

nc0 (this can be proven using a method called induction). Doing a little bit of

factoring and grouping of factors, we find

x(t) = c0 + ac0t +
1

2!
a2c0t

2 +
1

3!
a3c0t

3 + · · ·

= c0

(
1 + (at) +

1

2!
(at)2 +

1

3!
(at)3 + · · ·

)
= c0e

at ,

which is, again, of the form Ceat .

(Return)

5. Using the chain rule and substituting according to the differential equation, we have

dx =
dx

dt
dt

dx = ax dt

dx

x
= a dt.

Integrating both sides of the equation gives

ln x = at + C

(only one constant of integration is necessary here, because a constant on the left side could be subtracted

from both sides and absorbed into C). Now, exponentiating the equation gives x = eat+C . By exponential

rules, eat+C = eateC , and the eC is often rewritten as a new constant, often written C again.

Thus, the solution to dx
dt = ax is x(t) = Ceat , where C is any constant.

(Return)
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18 Exponential Growth Examples

Recall from the last module that the differential equation dx
dt = ax has solution x = Ceat , where C is some

constant. The constant C can be thought of as an initial condition, the value of the function at time t = 0.

When a > 0, the function has exponential growth. When a < 0, the function has exponential decay :

This module is devoted to several examples of exponential growth and decay.

18.1 Radioactive decay

Carbon-14 is a radioactive isotope of carbon which exists in organic materials. It is known that the rate at which

carbon-14 atoms decay is proportional to the number of carbon-14 atoms present. If I represents the number

of atoms, then the differential equation is
dI

dt
= −λI,

where λ is positive (and so the number of atoms is decreasing).

13



18.2 Population growth

For bacteria with an abundant food supply, the population P satisfies

dP

dt
= bP,

for some positive b. But as the food supply dwindles, or overcrowding occurs, the population growth will

necessarily slow (or else the bacteria would eventually consume the earth). Thus, this is not usually an accurate

population model.

18.3 Interest accumulation

Consider a bank account with initial deposit (also called the principal) P , annual interest rate r , and which is

compounded n times a year (so n = 1 gives simple interest, n = 4 is quarterly interest, etc.). Then the value

of the account at the end of k years is P
(

1 + r
n

)nk
. What happens as n gets bigger and bigger? Recall that

lim
n→∞

(
1 +

α

n

)n
= eα. Then it follows that

lim
n→∞

P
(

1 +
r

n

)nk
= lim

n→∞
P
[(

1 +
r

n

)n]k
= Perk .

This is called continuous compounding. So an account with continuous compounding is worth Perk after k

years, where P is the initial investment, and r is the annual interest rate.

Rule of 70

The Rule of 70 is a mental math trick that approximates the number of years it takes for a continuously

compounded account to double in value. The rule says that

# years for the account to double =
70

100r
.

In other words, the number of years is 70 divided by the annual percentage. Verify the Rule of 70. (See Answer

1)

18.4 Linguistics

Historical linguists study (among other things) word usage and the rate at which words fall out of use. Let W (t)

be the number of words which are in active use in English after t years. One model predicts that dW
dt = −λW ,

hence W = Ce−λt , and C is the number of common words at time 0.

Example

Suppose the writing of John Milton (from around 1667) consists of 20% words which are unfamiliar to us

today. Use the above model to estimate the fraction of words that Shakespeare’s audience (from around

1600) recognized of Chaucer’s writing (from around 1400). (See Answer 2)

This model ignores the creation of new words as well as the fact that definitions of existing words can evolve

over time. So it is probably not the most accurate model. It is worth noting that even if the mathematics are

correct, if the underlying model is not very good, then the resulting answer will not be very good either.
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18.5 Zombies

Suppose in the zombie apocalypse that the rate of change of the infected population Z(t) is proportional to

the uninfected population U(t). Let P be the total population (assumed to be constant). Then

dZ

dt
= rU = r(P − Z),

since U = P − Z (the number of uninfected is the total population less the infected). Taking the derivative of

U = P − Z gives

dU

dt
=
dP

dt
−
dZ

dt

= −
dZ

dt

= −rU,

since P was assumed to be constant. Thus, U(t) = U0e
−r t , where U0 is the initial uninfected population. And

so the zombie population is given by

Z(t) = P − U0e
−r t .

Note the population is doomed, as Z(t)→ P as t →∞.

Although a zombie apocalypse is unlikely, this model is still useful for other phenomena involving how quickly

something spreads. This includes the spread of disease, propaganda, and technology. Another example is heat

transfer, discussed in detail below.

18.6 Newton’s law of cooling

Newton’s law of cooling says that the rate of change of the temperature of a body is proportional to the

difference of the temperatures of the body and ambient environment. Let T be the temperature of the body

and A be the ambient temperature. Then
dT

dt
= k(A− T ),

for some positive constant k . Separating gives

dT

T − A = −k dt,

and integrating and exponentiating gives T − A = Ce−kt . Thus the solution is T = A + Ce−kt . Note that

k must be positive for this to model to make sense. Indeed, as t → ∞, the temperature of the body should

approach the ambient temperature, which will only happen if k > 0. Also, note that C = T0 − A is the initial

difference in temperature.

18.7 EXERCISES

• After drinking a cup of coffee, the amount C of caffeine in a person’s body obeys the differential equation

dC

dt
= −αC

where the constant α has an approximate value of 0.14 hours−1

How many hours will it take a human body to metabolize half of the initial amount of caffeine?
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• The amount I of a radioactive substance in a given sample will decay in time according to the following

equation:
dI

dt
= −λI

Nuclear engineers and scientists tend to be concerned with the “half-life” of a substance, that is, the time

it takes for the amount of radioactive material to be halved.

Find the half-life of a substance in terms of its decay constant λ.

• In a highly viscous fluid, a falling spherical object of radius r decelerates right before reaching the bottom

of the container. A simple model for this behavior is provided by the equation

dh

dt
= −

α

r
h,

where h is the height of the object measured from the bottom, and α is a constant that depends on the

viscosity of the fluid.

Find the time it would take the object to drop from h = 6r to h = 2r in terms of α and r .

• On a cold day you want to brew a nice hot cup of tea. You pour boiling water (at a temperature of 212◦

F) into a mug and drop a tea bag in it. The water cools down in contact with the cold air according to

Newton’s law of cooling:

dT

dt
= κ(A− T )

where T is the temperature of the water, A = 32◦F the ambient temperature, and κ = 0.36 min−1.

The threshold for human beings to feel pain when entering in contact with something hot is around 107◦

F. How many seconds do you have to wait until you can safely take a sip?

• On the night of April 14, 1912, the British passenger liner RMS Titanic collided with an iceberg and sank

in the North Atlantic Ocean. The ship lacked enough lifeboats to accommodate all of the passengers, and

many of them died from hypothermia in the cold sea waters. Hypothermia is the condition in which the

temperature of a human body drops below normal operating levels (around 36◦C). When the core body

temperature drops below 28◦C, the hypothermia is said to have become severe: major organs shut down

and eventually the heart stops.

If the water temperature that night was -2◦C, how long did it take for passengers of the Titanic to enter

severe hypothermia? Recall from lecture that heat transfer is described by Newton’s law of cooling:

dT

dt
= κ(A− T )

where T is the body temperature of a passenger, A the water temperature, and κ = 0.016 min−1.

• The birthrate of a population (number of births per year × 100 / number of population) is 20%, and the

mortality rate (number of deaths per year × 100/ number of population) is 5%. If the initial population

is 10,000, find the function P (t), the population as a function of time. How long does it take for the

population to double?

• Let y(t) denote the number of atoms of a particular radioactive isotope of carbon at year t. We know

that the rate at which y(t) decreases is proportional to y itself. (a) What differential equation does y(t)

satisfy? (b) If it takes 5 years for the number to decrease to half of its initial number, what is the constant

involved in your answer of part (a)?
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18.8 Answers to Selected Examples

1. The problem asks for k when the balance has doubled. That is, find k such that

2P = Perk .

Dividing by P and taking logarithms gives rk = ln(2), so k = ln(2)
r . Since ln(2) ≈ .7, this shows that

k =
ln(2)

r

≈
.7

r

≈
70

100r
,

as desired.

(Return)

2. Let t denote time measured in years. Let WM(t) denote the number of words from Milton’s time which

are in common use at time t. Then

WM(t) = WM(1667)e−λ(t−1667)

(the t−1667 is used in the exponent because we are interested in the number of years since Milton). Let

WC(t) denote the number of words from Chaucer’s time which are in common use at time t. Then

WC(t) = WC(1400)e−λ(t−1400).

From the given information, we have that

WM(2013)

WM(1667)
=

4

5
.

And according to the above formula, we have

WM(1667)e−λ·346

WM(1667)
=

4

5
.

The factors of WM(1667) cancel, leaving

e−λ·346 =
4

5
.

Taking the logarithm of both sides and dividing by −346 gives

λ =
− ln(4/5)

346
≈ 6.5× 10−4.

Knowing λ allows us to compute the fraction of words from Chaucer’s time that would be recognized in

Shakespeare’s time:

WC(1600)

WC(1400)
=
WC(1400)e−λ(200)

WC(1400)

= e−λ(200)

≈ .88

So, according to this model, approximately 88% of words from Chaucer’s work would have been understood

in Shakespeare’s time.

(Return)
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19 More Differential Equations

Recall that an ordinary differential equation is an equation involving a function and its derivatives. The solution

to a differential equation is a function which satisfies the equation. An earlier module introduced a few basic

differential equations. This module deals with a few different families of differential equations and the methods

of solving them.

19.1 Autonomous differential equations

A differential equation is called autonomous if the derivative of the function x(t) is independent of t, i.e. the

equation is of the form
dx

dt
= f (x).

Logically, a nonautonomous differential equation is one where the derivative equals a function of both x and t:

dx

dt
= f (x, t).

In general, nonautonomous differential equations can be very difficult, but certain types yield to a little algebra

and integration. These include separable differential equations and linear first order differential equations, which

are covered here.

19.2 Separable differential equations

A separable differential equation is one where, with a little algebra, we are able to express the differential

equation in the form
dx

dt
= f (x)g(t).

This may involve some algebra. Note in particular that any autonomous equation is separable (think of g(t) = 1).

Once a differential equation is factored this way, it can be solved by using the chain rule and some algebra:

dx =
dx

dt
dt

dx = f (x)g(t) dt

dx

f (x)
= g(t) dt.
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(This is why these equations are called separable–the variables can be separated to opposite sides of the

equation). To solve this equation, one must find the functions whose derivatives are 1
f (x) and g(t), respectively.

In other words, one integrates both sides.

Example

Solve the differential equation

y ′ = 3yx2.

(See Answer 1)

Example

Solve the differential equation
dx

dt
= et−x .

(See Answer 2)

Example

Solve the initial value problem dy
dx = xy + x , with y(0) = 3. (See Answer 3)

Example

Assume that a falling body with mass m has a drag force proportional to velocity v(t). Then the downward

acceleration mg is being counteracted by the upward acceleration κv , for some constant κ. Thus,

m
dv

dt
= mg − κv

= −κ
(
v −

mg

κ

)
.

which is separable. Solve this differential equation. (See Answer 4)

19.3 Linear 1st order differential equations

The product rule gives a technique (integration by parts) for seemingly difficult integrals; the product rule

also gives a technique for solving a certain class of non-separable differential equations called linear 1st order

differential equations. This is a differential equation which can be written in the form

dx

dt
= A(t)x + B(t)

(as for separable differential equations, this may involve a little algebra). This form gives the reason for calling

these equations linear, since dropping the t’s gives

dx

dt
= Ax + B,

which is reminiscent of the equation of a line. 1st order means that the equation only involves the function x

and its derivative dx
dt (and no higher derivatives), along with functions of t.
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The standard form of a linear 1st order differential equation is achieved by bringing all the terms involving x to

the left side, which gives
dx

dt
− A(t)x = B.

Example

Identify which of these is a linear 1st order differential equation, and put it in standard form if it is. In the

cases that are not, identify which condition is violated. Are all separable equations also linear 1st order?

1. tx ′ + x = 0

2. x ′ − etx2 = 0

3. x ′ = x sin(t)

4. x ′′ − t2 dx
dt = 0

(See Answer 5)

Integrating factors

The method for solving linear 1st order differential equations is to use the product rule to factor the sum of

two derivatives into the derivative of a product. It is best explained by example.

Example

In part 1 from the previous example, note that tx ′ + x = (tx)′ by the product rule. So that differential

equation can be written as (tx)′ = 0. Integrating both sides gives tx = C for some constant C. Thus the

solution is x = C
t .

However, not all linear 1st order differential equations are expressed so nicely. For instance, in example

3 above, one cannot rewrite x ′ − sin(t)x as the derivative of a product of functions. This is where an

integrating factor is used.

The integrating factor, denoted by I(t) in this course, is a function which is multiplied through the entire

differential equation, giving

I
dx

dt
− IAx = IB.

I(t) is chosen so that the left side of this equation can be factored as a derivative of a product using the

product rule. Symbolically, the goal is to choose I(t) so that

I
dx

dt
− IAx =

d

dt
(Ix).

To find I, expand the product d
dt (Ix) = I dxdt + dI

dt x . For this to equal the left side of the above equation, it

must be that −IA = dI
dt . This differential equation is separable, and one finds that dI

I = −Adt. Integrating

and exponentiating gives that

I(t) = e
∫
−A(t) dt .

One need not work through all this algebra every time but can jump straight to writing down the integrating

factor. Multiplying through by the integrating factor allows the left side to be rewritten by the product rule,

and integrating both sides finishes the problem.

To summarize the method:
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1. Get the differential equation into standard form dx
dt − A(t)x = B(t).

2. Compute the integrating factor I(t) = e−
∫
A(t) dt .

3. Multiply the entire equation by I(t), which gives

I
dx

dt
− IAx = IB.

1. Rewrite the left side as the derivative of a product (this works because of the way I(t) was chosen):
d
dt (Ix) = IB.

2. Integrate both sides and then divide by I.

3. The final answer, then, is given by

x(t) = e
∫
A ·
∫
Be−

∫
A.

Example

Solve the differential equation

tx ′ + tx = t2.

Hint:
∫
tet dt = tet − et + C. (See Answer 6)

Example

Suppose a 1000 gallon tank is 90% full. An additive is is pumped into the tank at a rate of 10 gallons per

minute. The mixture is well stirred and drained at a rate of 5 gallons per minute.

What is the concentration of the additive when the tank is full? (See Answer 7)

19.4 EXERCISES

• Solve the differential equation
dx

dt
=
x

t
.

• Solve the differential equation
dx

dt
=

√
1− x2

√
1− t2

.

• Given that x(0) = 0 and
dx

dt
= tex , compute x(1).

• What integrating factor should be used to solve the linear differential equation

t2 dx

dt
= 4t − t5x

• Solve the differential equation
dx

dt
− 5x = 3.

• Solve the differential equation
dx

dt
=

x

1 + t
+ 2.
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• Suppose that, in order to buy a house, you obtain a mortgage. If the lender advertises an annual interest

rate r , your debt D(t) will increase exponentially according to the simple O.D.E.

dD

dt
= rD

If you pay your debt at a rate of P (annual rate, paid continuously), the evolution of your debt will then

(under assumptions of continual compounding and payment) obey the linear differential equation

dD

dt
= rD − P

Using this model, answer the following question: if initial amount of the mortgage is for $400,000, the

annual interest rate is 5%, and you pay at a rate of $40,000 every year, how many years will it take you

to pay off the debt?

• German physician Ernst Heinrich Weber (1795-1878) is considered one of the fathers of experimental

psychology. In his study of perception, he noticed that the perceived difference between two almost-equal

stimuli is proportional to the percentual difference between them. In terms of differentials, we can express

Weber’s law as

dp = k
dS

S
,

where p is the perceived intensity of a stimulus and S its actual strength. Observe the relative rate of

change on the right hand side. In what way must the magnitude of a stimulus change in time for a human

being to perceive a linear growth? Linearly? Logarithmically? Polynomially?

• Some nonlinear differential equations can be reduced to linear ones by a clever change of variables.

Bernouilli equations

dx

dt
+ p(t)x = q(t)xα, α ∈ R

constitute the most important case. Notice that for α = 0 or α = 1 the above equation is already linear.

For other values of α, the substitution u = x1−α yields a linear differential equation in the variable u.

Apply the above change of variables in the case

dx

dt
+ 2tx = x3

What differential equation on u do you get?

19.5 Answers to Selected Examples

1. Separating gives
dy

y
= 3x2 dx.

Integrating both sides, we have ∫
dy

y
=

∫
3x2 dx

ln y = x3 + C.
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Now exponentiating both sides gives

y = ex
3+C

= Cex
3

,

for some constant C (remember that the C is not the same in the first and second line above, but we

just rewrite it for convenience).

(Return)

2. First, using a law of exponents on the right side, we have

et−x = ete−x .

Now, separating gives

ex dx = et dt.

We might be tempted at this point to say x = t because of the symmetry of this equation. But we must

integrate both sides, which introduces an integration constant:

ex = et + C.

Now taking the logarithm gives

x = ln(et + C).

Note We must have the integration constant contained within the natural logarithm. In general, it is best

to introduce the integration constant as soon as the integration occurs. A common mistake is to forget

the constant and then at the very end of the problem add it. This is frequently incorrect, as in this case.

(Return)

3. First, this differential equation does not look like it is of the form of a separable differential equation.

However, with a little factoring, one finds that dy
dx = x(y + 1). Thus,

dy

y + 1
= x dx.

Anti-differentiating gives ln |y + 1| = 1
2x

2 + C. Then, exponentiating gives

|y + 1| = ex
2/2+C = Dex

2/2.

Apply the initial condition by plugging in x = 0 and y = 3, which gives that D = 4. Thus, the solution

to the initial value problem is y = 4ex
2/2 − 1. One should double check that this satisfies the differential

equation.

(Return)

4. Separating gives
dv

v −mg/κ = −
κ

m
dt.

Integrating both sides gives ln(v −mg/κ) = −κt/m + C, and so exponentiating and solving for v gives

v = Ce−κt/m +
mg

κ
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(here C is replacing the constant eC from exponentiating). Note that as t → ∞, the exponential term

goes to 0, and so v(t)→ mg
κ , which is the terminal velocity of the falling body (when the force of gravity

and drag cancel each other).

(Return)

5. 1. Linear 1st order. Standard form is x ′ + 1
t x = 0.

2. Not linear because of the x2. Note that this is separable though.

3. Linear 1st order. Standard form is x ′ − sin(t)x = 0.

4. Not 1st order because of the presence of x ′′.

Number 2 shows that a differential equation can be separable even though it is not linear 1st order.

(Return)

6. Divide through by t to get the equation in standard form: x ′ + x = t. Compute the integrating factor

I = e
∫
dt = et .

Multiplying through gives

etx ′ + etx = ett.

Rewriting this using the product rule gives (etx)′ = tet . Integrating both sides and using the hint gives

etx = tet − et + C.

Finally, dividing by et gives

x = t − 1 +
C

et

as a final answer.

(Return)

7. Begin by setting up a few variables to help make sense of what is happening. Let V (t) be the volume of

the total mixture at time t. Let Q(t) be the total amount of additive in the mixture at time t. Let C(t)

be the concentration of the mixture, i.e.

C(t) =
Q(t)

V (t)
.

The volume is not too difficult to compute. Since there are 10 gallons per minute entering the tank, and

5 gallons per minute leaving the tank, the net amount of fluid entering the tank is 5 gallons per minute.

The tank begins at 90% full, which is 900 gallons. So

V (t) = 900 + 5t,

and is full at t = 20. Next, consider the rate at which the quantity Q(t) of additive in the tank is changing.

There is 10 gallons of pure additive entering per minute and 5 gallons of mixture leaving. Therefore the

amount of additive leaving is 5C. Putting this together gives

d

dt
Q = 10− 5C = 10−

5Q

900 + 5t
.

Rearranging this gives
dQ

dt
+

1

180 + t
Q = 10.
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This is a 1st order linear differential equation. Computing the integrating factor we find

I = exp

(∫
1

180 + t
dt

)
= exp(ln(180 + t))

= 180 + t.

Multiplying through gives

(180 + t)
dQ

dt
+Q = 10(180 + t).

Now, as always, the left side can be rewritten using the product rule to give

d

dt
[Q(180 + t)] = 1800 + 10t.

Integrating both sides gives

Q · (180 + t) = 1800t + 5t2 +K

(using K here to avoid confusion with concentration C). We can find K by setting t = 0 in this equation.

Since Q(0) = 0 (there is no additive in the tank initially), we find K = 0.

Now, solving for Q and evaluating at t = 20 gives

Q =
1800t + 5t2

180 + t

= 190.

So the final concentration of the full tank is

190

1000
= 19%.

(Return)
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20 ODE Linearization
We have seen techniques for solving two types of differential equations: separable and linear. Unfortunately,

there are a lot of differential equations which do not fit into these categories. In some of these cases, we can

use linearization to determine the behavior of such differential equations.

20.1 Oscillation

How does one model oscillation? It turns out that a first order differential equation will not work, but a second

order (i.e. involving the second derivative) equation will:

d2x

dt2
= −a2x.

Solving such an equation is beyond the scope of this course, but in a course on differential equations one finds

the pair of solutions

x = C1 cos(at)

x = C2 sin(at).

For this course we will look at a simpler way to model oscillation.

20.2 Simple Oscillator

Consider a spinner where θ(t) represents the angle the arrow makes with the positive x-axis at time t. Then θ

increases linearly with t and whenever θ gets to 2π, it goes back to 0: (Click Here: Simple Oscillator Animated

GIF)

This can be modeled by

dθ

dt
= a

θ = at + θ0 mod 2π

where mod 2π means ”take the remainder when divided by 2π”. Here a can be thought of as the frequency

of the spinner (e.g. how many revolutions per minute it makes).
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20.3 Coupled Oscillators

Now consider two simple oscillators, θ1 and θ2, with the same frequency a, but which are slightly out of phase

with each other (i.e. one arrow is slightly ahead of the other): (Click Here: Two Oscillators Animated GIF)

Now suppose these oscillators are coupled so that each exerts a small influence on the other (e.g. by connecting

their axles with a rod). One way to represent this mathematically is to adjust the rates of change of the oscillators

so that they are affected by the difference in angles:

dθ1

dt
= a + ε sin(θ2 − θ1)

dθ2

dt
= a − ε sin(θ2 − θ1).

Here, ε is some small constant which represents the strength of the effect of the coupling. When θ2 is bigger

than θ1, the above differential equations speed up θ1 slightly and slow down θ2 slightly. One can find by

simulation that this coupling effect causes the oscillators to synchronize relatively quickly, depending on how

big the phase is between them and how big ε is: (Click Here: Coupled Oscillators Animated GIF)

Synchronization

To analyze the synchronization effect mathematically, consider the phase ϕ between the two oscillators:

ϕ = θ2 − θ1.

Looking at how the phase ϕ changes with respect to time gives

dϕ

dt
=
d

dt
(θ2 − θ1)

=
dθ2

dt
−
dθ1

dt

= (a − ε sin(θ2 − θ1))− (a + ε sin(θ2 − θ1))

= −2ε sin(θ2 − θ1)

= −2ε sin(ϕ).

This is a separable differential equation, but solving it to find ϕ as an explicit function of t is not so easy, and

does not really help us understanding the synchronization phenomenon. But linearization will help us understand

the synchronization effect and how quickly it occurs.

Linearization

Going back to the differential equation for the phase, suppose we replace sinϕ with its linearization:

dϕ

dt
= −2ε sinϕ

= −2ε
(
ϕ+O(ϕ3)

)
≈ −2εϕ.

This will be a good approximation assuming the phase is small (the oscillators are not too far out of sync). This

is a familiar differential equation, which gives us the approximate solution

ϕ(t) ≈ ϕ0e
−2εt ,
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where ϕ0 is the initial phase. This is called the linearized solution to the original differential equation. Here, the

linearized solution predicts that the phase decays exponentially, which is consistent with the above simulation.

20.4 Equilibria

Another way to study differential equations and predict their behavior, is to study the equilibria of the equation.

An equilibrium of the equation

ẋ = f (x)

(here, ẋ = dx
dt ), is a solution x(t) = C, C a constant, such that ẋ = 0. In other words, an equilibrium is a

root of f . In terms of the differential equation, an equilibrium is a steady state where the quantity x does not

change.

One way to find the equilibria of a differential equation is to plot the derivative of a function versus the function

itself. From the phase differential equation above, we plot ϕ̇ on the y-axis and ϕ on the x-axis and look for

roots:

The roots of this equation are the values of ϕ for which sinϕ = 0. For the range of values in which we

are interested, the roots are ϕ = −π, 0, π. The equilibrium at 0 is familiar, because that is the state of

synchronization to which the above simulation converged. The other two correspond to a phase of π, which

means the oscillators are completely opposite one another (it is the same for −π since these angles are co-

terminal).

Stable and Unstable

A logical question at this point is why did the above coupled oscillator simulation eventually synchronize rather

than ending up in opposite directions?

In general, some equilibria are attractive in the sense that if the quantity x gets near such an equilibrium, it will

be drawn towards it and stay at it. Some equilibria are repellent in the sense that even if x is very close to such

an equilibrium, it will be pushed away from it. Formally,
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Stable and Unstable Equilibria

An equilibrium C of the differential equation

dx

dt
= f (x)

is stable if f ′(C) < 0 and is unstable if f ′(C) > 0.

It is best to make sense of these definitions visually. Plot ẋ versus x . Then each root of this equation is an

equilibrium. If the graph crosses from positive to negative (going from left to right), then the equilibrium is

stable. If the graph crosses from negative to positive (again, from left to right), then the equilibrium is unstable:

Another way to think of stable and unstable equilibria is to visualize one ball sitting in a bowl, and another ball

sitting on top of an inverted bowl:

Each of these balls is in equilibrium (it will stay where it is as long as it is not disturbed). But the ball in the

bowl is stable because if we nudge it in either direction, it will return to its equilibrium. However, the ball on

the inverted bowl is unstable because if it is nudged in either direction it will roll off the bowl.
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Example

Find and classify the equilibria of the equation

dx

dt
= x2 − 4x + 3.

(See Answer 1)

20.5 EXERCISES

• The differential equation

dx

dt
= (ex − 1)(x − 1)

has an equilibrium at x = 0. What is the linearized equation at this equilibrium? Hint: Taylor-expand the

right hand side about zero.

• There is also an equilibrium at x = 1 in the equation above. What is the linearized equation at this

equilibirum? Hint: let h = x − 1 be a local coordinate and compute ḣ = ẋ = · · · by Taylor expanding the

right hand side at x = 1.

• Recall from Lecture 18, Newton’s Law of Heat Transfer, which states that

dT

dt
= κ(A− T ),

where κ > 0 is a thermal conductivity constant and A is the (constant) ambient temperature. Find and

classify the equilibria in this system (using the derivative of the right hand side at the equilibria, recall...).

Wasn’t that easy?

• Find and classify all the equilibria of the ODE

dy

dt
= −2y + y2 + y3

• Recall from Lecture 19 how we computed the terminal velocity of a falling body with linear drag given by

m
dv

dt
= mg − κv,

where, of course, m is mass, g is gravitation, v is velocity, and κ > 0 is the drag coefficient. Can you see

how easily one can solve for the equilibrium v∞ = mg/κ? Do it!

• Very good. Now, let’s use a more realistic model of drag that is quadratic as opposed to linear:

m
dv

dt
= mg − λv2,

where λ > 0 is a constant drag coefficient. This differential equation is not as easy to solve (but soon

you will learn how). Is there is terminal velocity? What is it?
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• Recall that with continuous compounding at an interest rate of r > 0, an investment I(t) with initial

investment I0 = I(0) is I(t) = I0e
r t . What happens if you wish to withdraw funds from the investment

at a rate of spending S, where S > 0 is constant? The differential equation is:

dI

dt
= r I − S.

Your goals are as follows. You have an initial investment I0, and you cannot change it or the rate r .

You want to be able to spend as much as possible but you also don’t want to ever spend all your money.

What amount of spending rate S can you bear? Hint: if you’re not sure what to do, find and classify the

equilibria in this model and think about which initial conditions lead to which long-term behaviors.

• In our lesson, we looked at two oscillators with ”sinusoidal” coupling. Other types of coupling are possible

as well. Consider the system of two oscillators modeled by

dθ1

dt
= 2 + ε(eθ1−θ2 − 1) ;

dθ2

dt
= 2 + ε(1− eθ1−θ2 )

Consider the phase difference ϕ = θ2 − θ1. Note that ϕ = 0 (where the oscillators are coupled) is an

equilibrium. What is the linearized equation for ϕ about 0?

This looks intimidating, but is very straightforward. If you’re not sure how to start, compute
dϕ

dt
. Then

linearize this about ϕ = 0.

20.6 Answers to Selected Examples

1. Here, f (x) = x2 − 4x + 3. Factoring, one finds

dx

dt
= (x − 1)(x − 3).

So the roots (and hence the equilibria) are x = 1 and x = 3. Taking the derivative, we find

f ′(x) = 2x − 4

f ′(1) = −2 < 0

f ′(3) = 2 > 0.

Thus x = 1 is a stable equilibrium, and x = 3 is an unstable equilibrium.

(Return)
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21 Integration By Substitution

The previous modules gave some of the motivation for integration as a method of solving differential equations.

In this and the next few modules, we turn to techniques of integration.

21.1 Integration rules

Since integration is the inverse of differentiation, one can turn differentiation rules into integration rules. For

example, by the linearity of the derivative, we have linearity of the integral:∫
(u + v) dx =

∫
u dx +

∫
v dx∫

(cu) dx = c

∫
u dx

where c is a constant. In other words, integration is a linear operator.

The rest of this module deals with turning the chain rule for differentiation into a rule for integration. This rule

is called substitution, or u-substitution traditionally.

21.2 Substitution: the chain rule in reverse

Recall the chain rule, which says that if u = u(x) is a function of x , then

du =
du

dx
dx.

Now if f = f (u) is a function of u, then we find∫
f (u) du =

∫
f (u(x))

du

dx
dx

(To get from the left side to the right, all we have done is replace u and du by u(x) and du
dx dx , respectively).

This is the formula for substitution, or u-substitution.

Substitution is a useful technique but is not always easy to apply. In a typical problem, one encounters the right

side of the above equation, but without knowing what f and u are. If one can find the correct f and u so that

the integral can be expressed as above, then one can switch over to the left side of the above equation, which

is usually easier to evaluate.
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Example

Compute ∫
esin x cos x dx.

(See Answer 1)

Example

Compute ∫
2xex

2

dx.

(See Answer 2)

It is not always so easy to see the ideal choice of u, and sometimes it might take a few tries to find the right

substitution. Usually, a good strategy is to look for the inner function of a composition of functions and let

that be u. Another idea is to look for a function whose derivative is also a factor of the integrand.

Example

Compute ∫
x
√
x − 1 dx

(See Answer 3)

Another general tip for integration by substitution is to try to simplify the integrand as much as possible before

integrating.

Example

Compute ∫
cot θ csc θ dθ.

(See Answer 4)

Example

The Gompertz model for the size N(t) of a tumor at time t is

dN

dt
= −aN ln(bN),

where a > 0 and 0 < b < 1 are constants. Solve this differential equation. Hint: it is separable.

Then find the limit behavior

lim
t→∞

N(t).

Finally, find the equilibria of the original differential equation and classify them as stable or unstable. (See

Answer 5)
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Example

Compute ∫
4(2x + 5)4dx.

(See Answer 6)

21.3 Perspective

The big idea of this module is that a change of variables (a substitution of one variable for a function of

another) can change a difficult integral into an easier one. After computing the easier integral, we can change

the variables back again. This idea will come up again in this course and in multivariable calculus.

21.4 Additional Examples

Example

Compute ∫
(ln x)2

x
dx.

(See Answer 7)

Example

Compute ∫
tan θ dθ.

(See Answer 8)

Example

Compute ∫
x5
√

1 + x3 dx.

(See Answer 9)

21.5 EXERCISES

• Compute the integral

∫
3 cos x dx

• Compute the integral

∫
x sec2 x2 dx

• Compute the integral

∫
4x

(x2 − 1)3
dx
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• Compute the integral

∫
e
√
x

√
x
dx

• Compute the integral

∫
ln(15x5)

x
dx

• Compute the integral
x dx√
x + 3

dx

• Compute the integral
dx

x
√
x2 − 1

dx using the substitution u =
√
x2 − 1

• Now do the same integral using the substitution u = x−1 What is going on here?

• Compute the integral
dx

x
√
x2 + 1

dx

21.6 Answers to Selected Examples

1. Let u = sin x and f (u) = eu. Then

du =
du

dx
dx = cos x dx,

and ∫
esin x cos x dx =

∫
f (sin x)d(sin x)

=

∫
f (u) du

=

∫
eu du

= eu + C

= esin x + C.

Note that after evaluating the integral in terms of u, we usually replace u with its function of x , since the

original integral was with respect to x .

We can check that this is the correct antiderivative by differentiating (remembering to apply the chain

rule) and seeing that we get back the function which we were integrating originally.

Typically, we need not write out all the details of what f is. It is sufficient to identify u and du and then

make the necessary substitutions.

(Return)

2. The inner function here looks like u = x2. Then du = 2x dx , which is the remaining factor in the

integrand. Thus, ∫
2xex

2

dx =

∫
eu du

= eu + C

= ex
2

+ C.

(Return)
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3. Here, the inner function seems to be x − 1. So let u = x − 1. Then du = dx . This takes care of what

is under the square root, and the differential, but what about the extra factor of x? We can take care of

this factor by noting that u = x − 1 implies x = u + 1. So the integral becomes∫
x
√
x − 1 dx =

∫
(u + 1)

√
u du

=

∫
(u + 1)u1/2 du

=

∫
u3/2 + u1/2 du

=
2

5
u5/2 +

2

3
u3/2 + C

=
2

5
(x − 1)5/2 +

2

3
(x − 1)3/2 + C.

From the third to the fourth line above, we used the power rule on each term of the integrand. Again,

we can differentiate to make sure we get back to our original integrand (though it might require a little

algebra to show that they are in fact equal).

(Return)

4. Since cotangent and cosecant are not very familiar functions, it is helpful to rewrite them in terms of sine

and cosine. This gives ∫
cot θ csc θ dθ =

∫
cos θ

sin θ
·

1

sin θ
dθ

=

∫
cos θ

sin2 θ
dθ.

It is easier now to see that u = sin θ is a good choice, since its derivative du = cos θ dθ is in the numerator.

Making this substitution shows ∫
cos θ

sin2 θ
dθ =

∫
1

u2
du

=

∫
u−2 du

= −u−1 + C

= −
1

sin θ
+ C

= − csc θ + C.

Of course, if one happened to remember the fact that

d

dθ
csc θ = − csc θ cot θ,

then we would not require a substitution. But substitution allows us to do these integrals (and harder

ones) without needing to memorize a lot of information.

(Return)

5. Separating variables and integrating both sides gives∫
dN

N ln(bN)
=

∫
−a dt.
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The right side is easy, but the left side requires some work. Looking for a function whose derivative is a

factor in the integrand, we see that u = ln(bN) is a good choice. In this case

du =
1

bN
· b dN =

dN

N
.

And so, the integral on the left above becomes∫
dN

N ln(bN)
=

∫
1

u
du

= ln u + C

= ln ln(bN) + C.

Putting this together with the integral on the right above (and combining the integration constants to

one integration constant on the right), we have

ln ln(bN) = −at + C

Exponentiating twice and then dividing by b gives

N =
1

b
ee
−at+C

=
1

b
eCe

−at
.

By plugging in t = 0, we find that C = ln(bN0), where N0 is the initial size of the tumor.

In the long run, the exponential e−at → 0, since a > 0 by assumption. Therefore, the entire exponent is

going to 0, and so

lim
t→∞

N(t) =
1

b
.

Note that N(t) = 1
b is an equilibrium solution to the original differential equation, since it gives dN

dt = 0.

It is a stable equilibrium since the graph of of −aN ln(bN) goes from positive to negative as N goes from

less than 1
b to greater than 1

b .

Another equilibrium is N = 0. This is unstable, since N > 0 means dN
dt > 0. Intuitively, even if the tumor

is very tiny, it will grow according to this model.

(Return)

6. In this case, the inner function is u = 2x + 5, and one finds that du = 2dx . Thus dx = du
2 , which gives∫

4(2x + 5)4dx =

∫
4u4 du

2

=

∫
2u4du

=
2

5
u5 + C

=
2

5
(2x + 5)5 + C.

(Return)
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7. Here, a good inner function is u = ln x , because the derivative du = 1
x dx . Thus∫

(ln x)2

x
dx =

∫
u2 du

=
u3

3
+ C

=
(ln x)3

3
+ C.

(Return)

8. First, rewrite tangent in terms of sine and cosine:∫
tan θ dθ =

∫
sin θ

cos θ
dθ

Now, note that u = sin θ would not work, because its derivative, cos θ is in the denominator. On the other

hand, u = cos θ is a good substitution because its derivative (up to a constant) is in in the numerator.

That is, du = − sin θ dθ. Therefore, ∫
sin θ

cos θ
dθ =

∫
−

1

u
du

= − ln(u) + C

= − ln(cos θ) + C.

(Return)

9. The logical choice of inner function is u = 1 + x3, which gives du = 3x2 dx and so

dx =
du

3x2

Substituting in, we find ∫
x5
√

1 + x3 dx =

∫
x5
√
u
du

3x2

=
1

3

∫
x3
√
u du.

This seems problematic, because we haven’t been able to get everything in terms of u. But we can use

our original substitution to help. Since u = 1 + x3, we have that x3 = u − 1, and so

1

3

∫
x3
√
u du =

1

3

∫
(u − 1)

√
u du

=
1

3

∫
u3/2 − u1/2 du

=
1

3

(
2

5
u5/2 −

2

3
u3/2

)
+ C

=
2

15
(1 + x3)5/2 −

2

9
(1 + x3)3/2 + C.

(Return)
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22 Integration By Parts

This module uses the product rule to derive another useful integration technique: integration by parts. Recall

the product rule:

d(u · v) = u · dv + v · du.

Integrating both sides gives ∫
d(u · v) =

∫
u dv +

∫
v du.

Solving for
∫
u dv gives

Integration by parts

If u = u(x) and v = v(x) are two functions of x , then∫
u dv = uv −

∫
v du.

Intuitively, we are given a difficult integral
∫
u dv . By breaking the integrand into u and dv and applying the

above formula, we are hopefully able to wind up with an easier integral
∫
v du. Like with the substitution

technique, it requires a little bit of thought to choose suitable u and dv . Once u and dv are picked, it is a fairly

mechanical process to apply the formula (assuming a good choice of u and dv).

Note that the selection is constrained by the fact that u dv must be the entire integrand. So whatever choice

is made for u, whatever factors are left over become dv . Note also that the formula involves finding v , and so

dv must be integrable. Ideally, dv should be easy to integrate, which can help guide the selection.

Example

Compute ∫
xexdx.

(See Answer 1)

Example

Compute ∫
ln(x)dx.
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(See Answer 2)

Example

Try to compute ∫
sin x

x
dx

Hint: it cannot be done using integration by parts. (See Answer 3)

22.1 LIPET: A tip for choosing u and dv

It is not always obvious how to choose u and dv . The mnemonic LIPET gives a suggestion for how to select

u, and then whatever is left over becomes dv .

1. Logarithm

2. Inverse function

3. Polynomial

4. Exponential

5. Trigonometric.

When picking u, go down the list until some factor of the integrand first matches something from the list. So

in the first example above, there was no logarithm, no inverse function, but there was a polynomial, x , which

was chosen for u. In the second example, there was a logarithm, so that became u.

This will not always work perfectly, because (as the above example showed) some integrals simply cannot

be computed using integration by parts. But in most examples where integration by parts works, the above

mnemonic will help give the correct selection of u and dv .

Example

Compute ∫
ln x

x2
dx.

(See Answer 4)

22.2 Repeated use

Sometimes integration by parts requires repeated use, if the integral
∫
v du is not easy to compute. It is not

always easy to tell when repeating integration by parts will help, but with practice it becomes easier.

Example

Compute ∫
ex cos(x)dx.
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(See Answer 5)

Example

Compute ∫
e2x sin(3x) dx.

(See Answer 6)

There are integrals that require several applications of integration by parts before they are finished. Unfortu-

nately, it is not always clear when it will work and when it will not. Doing a lot of practice can help develop the

intuition to tell the difference.

As the next example shows, sometimes an integral that looks like a perfect candidate for integration by parts

does not yield to this method.

Example

Compute ∫
ex cosh x dx.

(See Answer 7)

22.3 Reduction formulae

A final application of integration by parts is to prove what are known as reduction formulae. These formulae

express one integral in terms of another slightly simpler integral. One can use a reduction formula to repeatedly

simplify an integral, eventually reaching a known integral. These formulae are invariably derived by using

integration by parts and some algebra.

Example

For a fixed integer n ≥ 0, show that∫
xn cos x dx = xn sin x + nxn−1 cos x − n(n − 1)

∫
xn−2 cos x dx.

Use this formula to find ∫
x2 cos xdx.

(See Answer 8)

Example

Similar algebra as in the above example shows that for n ≥ 0∫
xn sin x dx = −xn cos x + nxn−1 sin x − n(n − 1)

∫
xn−2 sin x dx.
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Example

Find a reduction formula for ∫
xnex dx.

Use it to evaluate ∫
x2ex dx.

(See Answer 9)

Example

Show that for n ≥ 2,∫
secn(x) dx =

1

n − 1
secn−2(x) tan(x) +

n − 2

n − 1

∫
secn−2(x) dx.

(See Answer 10)

22.4 Additional examples

Example

Compute ∫
x sin(x) dx.

(See Answer 11)

Example

Compute ∫
arctan x dx.

Hint: recall that
d

dx
arctan x =

1

1 + x2
.

(See Answer 12)

22.5 EXERCISES

Compute the following integrals:

•
∫
xex/2 dx

•
∫
x2ex/2 dx

42



•
∫

3x ln x dx

•
∫

3x2 ln x dx

•
∫
x2 cos

x

2
dx

•
∫
e2x sin 3x dx

•
∫

ln x dx

•
∫

ln2 x dx

•
∫

sin(ln x) dx

•
∫

arcsin(2x) dx

To solve the integral

∫
ex cos x dx , we used the method of integration by parts twice. Based on how we solved

the integral of ex cosh x , we can try the same with the cosine version, using the fact that cos x =
1

2
(e ix +e−ix).

Try! The integration is the easy part...the hard part is getting the algebra to work out (hello again, Euler’s

formula...)

• Compute

∫
sin(2x) cos(3x) dx

22.6 Answers to Selected Examples

1. Letting u = x and dv = exdx (we see that these factors together make up our integrand), one finds by

differentiating u and integrating dv that du = dx and v = ex . Many students find it helps to organize

this information in a grid:

u = x du = dx

dv = ex dx v = ex .

Then, from the formula it follows that∫
xexdx = xex −

∫
exdx

= xex − ex + C

= (x − 1)ex + C.

One can check that the derivative of this gives back the original integrand, as desired.

(Return)

43



2. The selection of u and dv that works is

u = ln(x) du =
1

x
dx

dv = dx v = x.

Note that the only other possibility would be dv = ln(x)dx . But this choice would mean that to find v

we would need to find the integral of ln(x), which is the problem at hand.

Applying the formula, we find ∫
ln(x)dx = x ln(x)−

∫
x ·

1

x
dx

= x ln(x)−
∫
dx

= x ln(x)− x + C

= x(ln(x)− 1) + C.

Again, we can check that the derivative of this function gives back ln x , our original integrand.

(Return)

3. One choice we might try is

u = sin x du = cos x dx

dv =
1

x
dx v = ln x.

However, this requires us to compute the integral∫
v du =

∫
ln x cos x dx,

which is no better than the original integral. Another possible choice is

u =
1

x
du = −

1

x2
dx

dv = sin x dx v = − cos x.

This leads to the integral ∫
v du =

∫
cos x

x2
dx,

which is again no better than the original integral.

It turns out no selection will work. Some integrals cannot be computed using integration by parts.

And some integrals (like this one) have no elementary answer (i.e. some combination of trigonometric

functions, polynomials, exponentials, etc.).

That said, we could expand sin(x) as a Taylor series, divide by x and integrate term by term, which gives

a series solution. This gives a perfectly suitable solution provided that x is not too far from 0.

(Return)
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4. A good choice is

u = ln x du =
1

x
dx

dv =
1

x2
dx v = −

1

x
.

Then ∫
ln x

x2
dx = −

1

x
ln x −

∫
−

1

x2
dx

= −
1

x
ln x −

1

x
+ C.

(Return)

5. We can take

u = ex du = ex dx

dv = cos x dx v = sin x.

(it turns out that this would work equally well if we reversed these). Then the formula says that∫
ex cos(x)dx = ex sin(x)−

∫
sin(x)exdx.

This does not seem much better than the original problem. However, with some persistence and algebra,

this will work. Let I =
∫
ex cos(x)dx be the original integral, and let J =

∫
sin(x)exdx be the new

integral. So the above calculation shows

I = ex sin(x)− J

Using integration by parts on J, we pick

u = ex du = ex dx

dv = sin x dx v = − cos x.

Then it follows that

J =

∫
sin(x)exdx

= ex(− cos(x))−
∫

(− cos(x))exdx

= −ex cos(x) +

∫
ex cos(x)dx

= −ex cos(x) + I.

So the problem has come back to the original integral I. This might seem like cause for despair, but

putting together the previous calculations shows

I = ex sin(x)− J
= ex sin(x)− (−ex cos(x) + I)

= ex sin(x) + ex cos(x)− I.
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Now, solving for I gives

2I = ex sin(x) + ex cos x + C

I =
1

2
(ex sin(x) + ex cos(x)) + C.

(Return)

6. The algebra is similar to the above example, but care must be taken with the constants. Let

I =

∫
e2x sin(3x) dx.

Let

u = e2x du = 2e2x dx

dv = sin(3x) dx v = −
1

3
cos(3x).

Then

I = −
1

3
e2x cos(3x)−

∫ (
−

1

3
cos(3x)

)
2e2x dx

= −
1

3
e2x cos(3x) +

2

3

∫
e2x cos(3x) dx.

Now, let

J =

∫
e2x cos(3x) dx.

Selecting

u = e2x du = 2e2x dx

dv = cos(3x) dx v =
1

3
sin(3x),

we have

J =
1

3
e2x sin(3x)−

2

3

∫
e2x sin(3x) dx

=
1

3
e2x sin(3x)−

2

3
I.

Putting this all together, we have

I = −
1

3
e2x cos(3x) +

2

3
J

= −
1

3
e2x cos(3x) +

2

3

(
1

3
e2x sin(3x)−

2

3
I

)
= −

1

3
e2x cos(3x) +

2

9
e2x sin(3x)−

4

9
I.
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Solving for I gives

13

9
I = −

1

3
e2x cos(3x) +

2

9
e2x sin(3x)

I =
9

13

(
−

1

3
e2x cos(3x) +

2

9
e2x sin(3x)

)
=

1

13
e2x (−3 cos(3x) + 2 sin(3x)) .

Remember that any indefinite integral has an integration constant, so the final answer is∫
e2x sin(3x) dx =

1

13
e2x (−3 cos(3x) + 2 sin(3x)) + C.

(Return)

7. This looks so similar to the above examples, that it is reasonable to expect that two applications of

integration by parts will allow us to algebraically find this integral. Unfortunately, there is a problem that

will soon present itself. Let

I =

∫
ex cosh x dx.

If we set

u = ex du = ex dx

dv = cosh x dx v = sinh x,

we find

I = ex sinh x −
∫
ex sinh x

= ex sinh x − J,

where we have set

J =

∫
ex sinh x dx.

Letting

u = ex du = ex dx

dv = sinh x dx v = cosh x,

we find

J = ex cosh x −
∫
ex cosh x dx

= ex cosh x − I.

Putting it all together,

I = ex sinh x − J
= ex sinh x − (ex cosh x − I)
= ex sinh x − ex cosh x + I.
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Here is where our problem arises. We cannot solve for I because there is a positive I on both sides. This

problem is due to the fact that (unlike sine and cosine), the hyperbolic sine and cosine do not introduce

negative signs when integrated or differentiated, respectively.

So what do we do? Rewrite our integral using the definition of cosh x and it becomes easy:∫
ex cosh x dx =

∫
ex ·

(
ex + e−x

2

)
=

1

2

∫ (
e2x + 1

)
dx

=
1

2

(
1

2
e2x + x

)
+ C

=
1

4
e2x +

1

2
x + C.

(Return)

8. Let

u = xn du = nxn−1 dx

dv = cos x dx v = sin x.

Then according to the formula,∫
xn cos x dx = xn sin x −

∫
nxn−1 sin x dx.

Now, since we want to get our integral in terms of an integral involving cos x and a power of x , we can

apply integration by parts to ∫
xn sin x dx.

Here, we let

u = xn du = nxn−1 dx

dv = sin x dx v = − cos x.

This gives ∫
xn sin x dx = −xn cos x +

∫
nxn−1 cos x dx.

Now, using this in our earlier equation (though with n replaced by n − 1), we find∫
xn cos x dx = xn sin x −

∫
nxn−1 sin x dx

= xn sin x − n
∫
xn−1 sin x dx

= xn sin x − n
(
−xn−1 cos x +

∫
(n − 1)xn−2 cos x dx

)
= xn sin x + nxn−1 cos x − n(n − 1)

∫
xn−2 cos x dx.
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The formula says that ∫
x2 cos x dx = x2 sin x + 2x cos x − 2

∫
cos x dx

= x2 sin x + 2x cos x − 2 sin x + C

= x2 sin x + 2x cos x − 2 sin x + C.

(Return)

9. Letting

u = xn du = nxn−1 dx

dv = ex dx v = ex ,

we find that ∫
xnex = xnex − n

∫
xn−1ex dx.

Applying this when n = 2 (then applying it again) gives∫
x2ex = x2ex − 2

∫
xex dx

= x2ex − 2

(
xex −

∫
ex dx

)
= x2ex − 2xex + 2ex + C.

(Return)

10. In integrating a power of a trigonometric function, it can be hard to pick how many factors become u

and how many become dv . The fact that dv is supposed to be easy to integrate can guide this selection.

Since
∫

sec2 xdx = tan x , letting dv = sec2 xdx should work well.

Thus, u = secn−2(x) and dv = sec2 xdx , which means du = (n − 2) secn−3(x) sec(x) tan(x)dx (by the

chain rule), and v = tan x . Recalling the Pythagorean identity tan2 x = sec2 x − 1, one finds that∫
secn(x)dx = secn−2(x) tan(x)−

∫
(n − 2) secn−2(x) tan2(x)dx

= secn−2(x) tan(x)− (n − 2)

∫
secn−2(x)(sec2(x)− 1)dx

= secn−2(x) tan(x)− (n − 2)

∫
(secn(x)− secn−2(x))dx

= secn−2(x) tan(x)− (n − 2)

∫
secn(x)dx + (n − 2)

∫
secn−2(x)dx

Now, solving for
∫

secn(x)dx gives∫
secn(x)dx =

1

n − 1
secn−2(x) tan(x) +

n − 2

n − 1

∫
secn−2(x)dx,

as desired.

(Return)
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11. The logical choice (either by the LIPET mnemonic, or by picking u to be something which gets simpler

when differentiated) for parts is

u = x du = dx

dv = sin(x) dx v = − cos(x)

Therefore, ∫
x sin(x) dx = −x cos(x)−

∫
− cos(x) dx

= −x cos(x) +

∫
cos(x) dx

= −x cos(x) + sin(x) + C.

(Return)

12. As in some earlier examples, the only choice we have is to set

u = arctan x du =
1

1 + x2
dx

dv = dx v = x.

Therefore, ∫
arctan x dx = x arctan x −

∫
x

1 + x2
dx.

This second integral can be solved with a substitution of

u = 1 + x2

du = 2x dx.

So dx = du
2x . Making the substitution gives∫

x

1 + x2
dx =

∫
x

u
·
du

2x

=
1

2

∫
du

u

=
1

2
ln u + C

=
1

2
ln(1 + x2) + C.

Putting it all together, we find∫
arctan x dx = x arctan x −

∫
x

1 + x2
dx

= x arctan x −
1

2
ln(1 + x2) + C.

(Return)
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23 Trigonometric Substitution

There is another class of integrals which usually do not involve trigonometric functions, but which can be solved

by substituting the variable with a trigonometric function. This can be thought of as using the substitution

formula, from Integration By Substitution, in the other direction. That is, going from the left side to right side

in the equality ∫
f (x) dx =

∫
f (x(θ))

dx

dθ
dθ,

where we have made the substitution x = x(θ). We often use θ when making a trigonometric substitution.

Example

Compute ∫
dx

1 + x2
.

(See Answer 1)

23.1 Typical substitutions

Trigonometric substitution makes use of the Pythagorean identities. In general, the basic trigonometric substi-

tutions are:

Form Substitution Identity used

1 + x2 x = tan θ 1 + tan2 θ = sec2 θ

1− x2 x = sin θ 1− sin2 θ = cos2 θ

x2 − 1 x = sec θ sec2 θ − 1 = tan2 θ

Caveat

The form x2 − 1 often leads to a messy integral involving sec(θ). This can often be avoided using a hyperbolic

trigonometric substitution (see below).

After a substitution has been made, the resulting integral will often involve a product of trigonometric functions,

possibly raised to powers. These types of integrals are covered in more detail in Trigonometric Integrals. For

now, here are a few of the useful identities in evaluating these integrals:
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Power reduction

sin2(θ) = 1−cos(2θ)
2

cos2(θ) = 1+cos(2θ)
2

Double angle

sin(2θ) = 2 sin θ cos θ

cos(2θ) = cos2 θ − sin2 θ

Example

Compute ∫ √
1− x2 dx.

(See Answer 2)

Example

Compute ∫
dx√

1− x2
.

(See Answer 3)

23.2 Forms with other constants

There are other forms which are similar to the above forms but have different constants involved. These are

dealt with using similar substitutions which make the constants cancel and factor so that the same identities

can be used.

Example

Compute ∫
dx

x2
√
x2 + 4

(See Answer 4)

Example

Compute ∫
dx

4 + 9x2
.

(See Answer 5)

The following table summarizes the substitutions to be made when other constants are involved. The identities

used are the same Pythagorean identities given in the above table.

Form Substitution

a2x2 + b2 x = b
a tan θ

b2 − a2x2 x = b
a sin θ

a2x2 − b2 x = b
a sec θ
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23.3 Completing the square

Sometimes it is not obvious at first that an integral is of the form where a trigonometric substitution is helpful.

It may take a little bit of algebra to see what the right substitution is. This common algebraic tool is known as

completing the square, which simply rewrites a quadratic expression as the square of a binomial plus a constant.

To review the algebra involved in this process, check Wikipedia:Completing the square.

Example

Compute ∫
dx√

3 + 2x − x2

(See Answer 6)

23.4 Hyperbolic trigonometric substitutions

Recall that the hyperbolic trigonometric functions sinh(x) and cosh(x) are defined by

sinh(θ) =
eθ − e−θ

2

cosh(θ) =
eθ + e−θ

2
.

These functions satisfy the Pythagorean identity cosh2(θ)− sinh2(θ) = 1. Also, note that d
dθ cosh(θ) = sinh(θ),

and d
dθ sinh(θ) = cosh(θ). This means hyperbolic substitutions are another option for dealing with the following

forms:

Form Substitution Identity used

1 + x2 x = sinh θ 1 + sinh2 θ = cosh2 θ

x2 − 1 x = cosh θ cosh2 θ − 1 = sinh2 θ

This often gives a simpler answer than the x = sec θ substitution suggested above, but the trade-off is that

the answer will involve hyperbolic functions. Here are some of the other identities for the hyperbolic functions,

which are similar to those for regular trigonometric functions:

Double Angle

sinh(2θ) = 2 sinh(θ) cosh(θ)

cosh(2θ) = cosh2(θ) + sinh2(θ)

cosh(2θ) = 2 cosh2(θ)− 1

cosh(2θ) = 2 sinh2(θ) + 1

Power reduction

sinh2(θ) = cosh(2θ)−1
2

cosh2(θ) = cosh(2θ)+1
2
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Example

Compute ∫
dx√

1 + x2
.

(See Answer 7)

Example

Compute ∫ √
1 + x2 dx.

(See Answer 8)

23.5 Blow-ups

Sometimes a differential equation can be solved by using a trigonometric substitution. But this can sometimes

lead to an unreasonable solution due to blow-ups or singularities, which exist for many trigonometric functions.

Example

Consider a financial model which predicts that marginal profits equal some positive constant plus something

which is proportional to the square of net profits. Mathematically,

dP

dt
= b2 + a2P 2,

for constants a and b (we square them to ensure that they are positive). Solve this differential equation and

find where it has a blow-up. (See Answer 9)

23.6 EXERCISES

Compute the following integrals:

•
∫

x2

√
4− x2

dx

•
∫

dx√
x2 − 2x

•
∫ √

1− x2

x2
dx

•
∫

(1− x2)−3/2 dx

•
∫

x√
1 + x2

dx

•
∫

dx

x
√
x2 − 1
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•
∫

dx√
x2 − 6x + 10

•
∫

dx√
x2 − 2x − 8

23.7 Answers to Selected Examples

1. Consider the substitution x = tan(θ). Then one finds that dx = sec2 θ dθ. Making these substitutions

and recalling the Pythagorean identity 1 + tan2 θ = sec2 θ, the integral becomes∫
dx

1 + x2
=

∫
sec2 θ dθ

1 + tan2 θ

=

∫
sec2 θ dθ

sec2 θ

=

∫
dθ

= θ + C

= arctan(x) + C.

The last line comes from our original substitution:

x = tan θ ⇔ arctan x = θ.

(Return)

2. According to the above guide, the substitution to make is x = sin θ. Then dx = cos θ dθ, and it follows

that ∫ √
1− x2 dx =

∫ √
1− sin2 θ cos θ dθ

=

∫ √
cos2 θ cos θ dθ

=

∫
cos2 θ dθ.

Now using the power reduction identity for cosine, we have∫
cos2 θ dθ =

∫
1

2
(1 + cos(2θ)) dθ

=
θ

2
+

1

4
sin(2θ) + C.

Finally, we must get this back in terms of x . We know that θ = arcsin x . But to take care of sin 2θ, we

must use the double angle formula from above. This gives

sin 2θ = 2 sin θ cos θ

= 2x
√

1− x2

In the last line above, we knew sin θ = x from the original substitution. We found cos θ by drawing a right

triangle which relates x and θ according to the substitution sin θ = x :
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Putting this all together and doing a little simplification, we find∫ √
1− x2 =

1

2
arcsin x +

1

2
x
√

1− x2 + C.

(Return)

3. By the above table, the substitution x = sin θ should be used (hence θ = arcsin(x)). Then dx = cos θ dθ,

so the integral becomes ∫
dx√

1− x2
=

∫
cos θ dθ√
1− sin2 θ

=

∫
cos θ dθ√

cos2 θ

=

∫
dθ

= θ + C

= arcsin(x) + C.

(Return)

4. The form x2 + 4 in the denominator reminds us of the substitution we made earlier for x2 + 1, which was

the substitution x = tan θ. This is the correct impulse, but unfortunately it does not work quite right here

since there is no nice simplification for tan2 θ + 4.

We can fix this by adjusting the coefficients. The idea is that we could factor out a 4 if we had

4 tan2 θ + 4 = 4(tan2 θ + 1).

To get that extra factor of 4, we can make the substitution x = 2 tan θ. Then dx = 2 sec2 θ dθ, and the

integral becomes ∫
dx

x2
√
x2 + 4

=

∫
2 sec2 θ dθ

4 tan2 θ
√

4 tan2 θ + 4

=

∫
2 sec2 θ dθ

4 tan2 θ
√

4(tan2 θ + 1)

=
1

4

∫
sec2 θ dθ

tan2 θ sec θ
.
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The last equality above comes from again using the identity tan2 θ+1 = sec2 θ. Doing a little simplification

and rewriting in terms of sine and cosine gives

1

4

∫
sec θ dθ

tan2 θ
=

1

4

∫
1

cos θ
·

cos2 θ

sin2 θ
dθ

=
1

4

∫
cos θ dθ

sin2 θ
.

This we can handle with a substitution of u = sin θ and du = cos θ dθ, which gives

1

4

∫
cos θ dθ

sin2 θ
=

1

4

∫
du

u2

=
1

4

(
−

1

u

)
+ C

= −
1

4u
+ C

= −
1

4 sin θ
+ C

Now, we must do one final bit of right triangle trigonometry to get sin θ in terms of x . By the original

substitution we have tan θ = x
2 , and this can be expressed by the following triangle:

It follows that sin θ = x√
x2+4

. Putting it all together, we have∫
dx

x2
√
x2 + 4

= −
1

4 sin θ
+ C

= −
√
x2 + 4

4x
+ C.

(Return)

5. This is another example which looks like x = tan θ is the right type of substitution to make. However,

again we need to adjust the coefficient since 4 + 9 tan2 θ does not simplify nicely.
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The key is to get the constants to cancel and factor. The substitution x = 2
3 tan θ will work, and in this

case θ = arctan( 3
2x). Then dx = 2

3 sec2 θdθ, and the integral becomes∫
dx

4 + 9x2
=

2

3

∫
sec2 θ dθ

4 + 9(4/9) tan2 θ

=
2

3

∫
sec2 θ dθ

4(1 + tan2 θ)

=
2

3

∫
sec2 θ dθ

4 sec2 θ

=
2

3
·

1

4

∫
dθ

=
1

6
θ + C

=
1

6
arctan(

3

2
x) + C.

(Return)

6. Start by completing the square for the quadratic:

3 + 2x − x2 = −x2 + 2x + 3

= −(x2 − 2x) + 3

= −(x2 − 2x + 1) + 4

= −(x − 1)2 + 4

= 4− (x − 1)2.

So we can rewrite the integral as∫
dx√

3 + 2x − x2
=

∫
dx√

4− (x − 1)2

=

∫
du√

4− u2
,

where we substituted u = x − 1 and du = dx . This can now be dealt with using a trigonometric

substitution of u = 2 sin θ (remember, the extra factor of 2 is there so that the 4 will factor out). So

du = 2 cos θ dθ, and the integral becomes∫
du√

4− u2
=

∫
2 cos θ dθ√
4− 4 sin2 θ

=

∫
2 cos θ dθ

√
4
√

1− sin2 θ

=

∫
2 cos θ dθ

2 cos θ

=

∫
dθ

= θ + C.
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Solving our original substitution for θ, we see that

θ = arcsin
(u

2

)
= arcsin

(
x − 1

2

)
.

So the final answer is ∫
dx√

3 + 2x − x2
= arcsin

(
x − 1

2

)
+ C.

(Return)

7. Using a regular trigonometric substitution, we would set x = tan θ, and dx = sec2 θ dθ, which, after the

usual algebra, gives ∫
dx√

1 + x2
=

∫
sec2 θ dθ√
1 + tan2 θ

=

∫
sec θ dθ.

But the integral of secant is not easy to remember, nor easy to rederive. If instead, we make the hyperbolic

trigonometric substitution x = sinh u, so dx = cosh u du, then we have∫
dx√

1 + x2
=

∫
cosh u du√
1 + sinh2 u

=

∫
cosh u du

cosh u

=

∫
du

= u + C

= arcsinh x + C.

So the hyperbolic trigonometric substitution led to a much easier integral to evaluate. The trade-off is

that the final result involves the inverse hyperbolic trigonometric functions, as opposed to more familiar

functions.

(Return)

8. Using the hyperbolic trigonometric substitution x = sinh(θ) gives∫ √
1 + x2 dx =

∫ √
1 + sinh2 θ cosh θ dθ

=

∫ √
cosh2 θ cosh θ dθ

=

∫
cosh2 θ dθ

=
1

2

∫
(cosh(2θ) + 1) dθ

=
1

2

(
θ +

1

2
sinh(2θ)

)
+ C

=
1

2
θ +

1

4
2 sinh(θ) cosh(θ) + C

=
1

2
sinh−1 x +

1

2
x
√

1 + x2 + C.
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(Return)

9. This is a separable equation. Separating the variables and integrating both sides gives∫
dP

b2 + a2P 2
=

∫
dt.

On the left, we can use the trigonometric substitution

P =
b

a
tan θ

dP =
b

a
sec2 θ dθ.

Note then that θ = arctan a
bP . This gives∫

dP

b2 + a2P 2
=

∫ b
a sec2 θ dθ

b2(1 + tan2 θ)

=
b

a

∫
sec2 θ dθ

b2 sec2 θ

=
1

ab

∫
dθ

=
1

ab
θ

=
1

ab
arctan

a

b
P.

(leaving off the constant for now). On the right side we get t + C, so

1

ab
arctan

a

b
P = t + C.

Solving this for P gives

P (t) =
b

a
tan(abt + C).

If initial profits, at t = 0, are 0, then C = 0, so the final answer is

P (t) =
b

a
tan(abt).

Since tangent blows up at π
2 , this model implies profit goes to infinity at t = π

2ab , which is a sign that this

model is not perfect.

(Return)
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24 Partial Fractions
So far, the techniques of integration covered in this course have all been derived from differentiation rules run

in reverse. This module gives an algebraic method for integrating rational functions. Recall that a rational

function is a function of the form

f (x) =
P (x)

Q(x)
,

where P (x) and Q(x) are polynomials. It turns out that with a little bit of algebraic manipulation, many of

these integrals are not too difficult to compute.

Example

Compute ∫
3x2 − 5

x − 2
dx.

(See Answer 1)

The rest of this module expands on this method (in particular, when the denominator is of a higher degree),

which is known as the method of partial fractions.

24.1 Partial fractions

Given a rational function P (x)
Q(x) , and P has a lower power than Q, the method of partial fractions uses algebra

to rewrite the function as a sum of simpler terms which are easy to integrate. While there are some cases to

deal with, the basic outline of the method is:

1. Given the integral
∫ P (x)
Q(x)dx where P and Q are polynomials.

2. Factor Q(x) = (x − r1)(x − r2) . . . (x − rn). Assume for now that each of these factors is distinct.

3. We use the following fact, that the rational function can be expressed as

P (x)

Q(x)
=

A1

x − r1
+

A2

x − r2
+ . . .+

An
x − rn

.

4. Use algebra to find what each of the constants Ai is. This step requires the most work.

5. Then
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∫
P (x)

Q(x)
dx =

∫ (
A1

x − r1
+ . . .+

An
x − rn

)
dx

= A1 ln |x − r1|+ . . .+ An ln |x − rn|+ C.

Example

Compute ∫
3x − 1

x2 − 2x − 3
dx.

(See Answer 2)

Example

Compute ∫
2x2 − 6x − 2

x3 − x2 − 2x
dx.

(See Answer 3)

Example

Compute ∫
x2 + 2x − 1

2x3 + 3x2 − 2x
dx.

(See Answer 4)

Example

A simple model for the deflection x(t) of a thin beam under a load proportional to λ2 is

dx

dt
= λ2x − x3 = x(λ− x)(λ+ x).

Solve this differential equation (but do not solve for x(t) explicitly). Then find the equilibria of the differential

equation and classify them as stable or unstable. (See Answer 5)

Example

The logistic model for population dynamics says that the rate of change of a population P with respect to

time is
dP

dt
= rP − bP 2

where r and b are positive constants which can be thought of as the reproduction rate and death rate,

respectively. Factoring and letting K = r
b , we have

dP

dt
= bP (K − P ).

Solve this differential equation. What is the long run population behavior? (See Answer 6)
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24.2 Other technicalities

Higher degree numerator

For the algebra to work out above, the degree of the numerator, P (x), must be lower than that of the

denominator, Q(x). However, it is easy to deal with the case when the numerator has equal or higher degree.

One can use long division to rewrite the quotient as a divisor plus a remainder, just like writing an improper

fraction as a mixed number in middle school.

Repeated factors

If the denominator has one or more repeated factors, i.e.

P (x)

Q(x)
=

P (x)

(x − r1)m1 . . . (x − rk)mk
,

where one or more of the mi is greater than 1. Then the way to express the function is

P (x)

(x − r1)m1 . . . (x − rn)mn
=

A1

x − r1
+

A2

(x − r1)2
+ · · ·+

Am1

(x − r1)m1

+
B1

x − r2
+

B2

(x − r2)2
+ · · ·+

Bm2

(x − r2)m2

+ . . . .

Now, the algebra proceeds as before to find the constants in the numerators. It is easiest to see this through

an example.

Example

Compute ∫
2x2 − 4x − 2

(x + 1)(x − 1)2
dx.

(See Answer 7)

Quadratic factors

Suppose one of the factors of the denominator is a quadratic which cannot be factored (e.g. x2 + 1). Then the

numerator of this factor in the expansion should be of the form Ax +B. Then the algebra proceeds as before.

Example

Compute ∫
3x2 − 2x + 1

(x − 1) (x2 + 1)
dx.

(See Answer 8)

24.3 EXERCISES

Compute the following integrals:
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•
∫

5 + x

x2 + x − 6
dx

•
∫

2x + 3

6x2 + 5x + 1
dx

•
∫

x

(x + 1) (x + 2)
dx

•
∫

x2 − x + 5

(x − 2) (x − 1)(x + 3)
dx

•
∫

2x − 1

x3 − x dx

•
∫
x2 − 3

x2 − 4
dx

•
∫
x3 + 10x2 + 33x + 36

x2 + 4x + 3
dx

•
∫

x + 2

(x − 1)2
dx

•
∫

dx

x4 − 6x3 + 12x2

24.4 Answers to Selected Examples

1. By doing polynomial long division on this ratio, we find

(For more on polynomial long division, see wikipedia).

The above observation, which is entirely based on algebra, allows us to evaluate the integral as∫
3x2 − 5

x − 2
dx =

∫ (
3x + 6 +

7

x − 2

)
dx

=
3

2
x2 + 6x + 7 ln |x − 2|+ C.

(Return)
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2. Factoring the denominator gives x2− 2x − 3 = (x + 1)(x − 3). Thus, the goal is to find constants A and

B such that
3x − 1

(x + 1) (x − 3)
=

A

x + 1
+

B

x − 3
.

There are several methods for finding the constants, but one of the simplest is to clear denominators,

which gives

3x − 1 = A(x − 3) + B(x + 1).

This equation must hold for every value of x . In particular, one can pick convenient values of x which

make the algebra easy. In this case, by plugging in x = 3, the first term on the right disappears. Thus,

the equation becomes 8 = B · 4, and so B = 2. Similarly, picking x = −1 makes the second term on the

right disappear. Thus, −4 = A · (−4) so A = 1. It follows that∫
3x − 1

x2 − 2x − 3
dx =

∫
3x − 1

(x + 1) (x − 3)
dx

=

∫ (
1

x + 1
+

2

x − 3

)
dx

= ln |x + 1|+ 2 ln |x − 3|+ C.

(Return)

3. Factoring the denominator gives

x3 − x2 − 2x = x(x + 1)(x − 2)

So we are looking for constants A, B, and C such that

2x2 − 6x − 2

x(x + 1)(x − 2)
=
A

x
+

B

x + 1
+

C

x − 2
.

Clearing fractions gives

2x2 − 6x − 2 = A(x + 1)(x − 2) + Bx(x − 2) + Cx(x + 1).

Now, picking the following convenient values of x allows us to find each constant:

x = 0 −2 = −2A A = 1

x = −1 6 = 3B B = 2

x = 2 −6 = 6C C = −1.

So we have that ∫
2x2 − 6x − 2

x(x + 1)(x − 2)
=

∫ (
1

x
+

2

x + 1
−

1

x − 2

)
dx

= ln |x |+ 2 ln |x + 1| − ln |x − 2|+ C.

(Return)
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4. Factoring gives

2x3 + 3x2 − 2x = x(2x − 1)(x + 2)

So we are looking for constants A,B, C such that

x2 + 2x − 1

2x3 + 3x2 − 2x
=
A

x
+

B

2x − 1
+

C

x + 2
.

As before, we clear fractions which gives

x2 + 2x − 1 = A(2x − 1)(x + 2) + Bx(x + 2) + Cx(2x − 1).

Now we pick convenient values of x to make the factors cancel and solve for the constants:

x = 0 −1 = −2A A =
1

2

x =
1

2

1

4
=

5

4
B B =

1

5

x = −2 −1 = 10C C = −
1

10
.

So we find ∫
x2 + 2x − 1

x(2x − 1)(x + 2)
dx =

∫ (
1/2

x
+

1/5

2x − 1
+
−1/10

x + 2

)
dx

=
1

2
ln |x |+

1

5
·

1

2
ln |2x − 1| −

1

10
ln |x + 2|+ C

=
1

2
ln |x |+

1

10
ln |2x − 1| −

1

10
ln |x + 2|+ C.

Note the extra factor of 1
2 for the middle term comes from doing a substitution of u = 2x − 1, which

implies dx = 1
2 du.

(Return)

5. Factoring gives
dx

dt
= x(λ− x)(λ+ x).

Separating and integrating gives ∫
dx

x(λ− x)(λ+ x)
=

∫
dt.

Now, we use partial fractions on the left side:

1

x(λ− x)(λ+ x)
=
A

x
+

B

λ− x +
C

λ+ x

Clearing fractions gives

1 = A(λ− x)(λ+ x) + Bx(λ+ x) + Cx(λ− x).
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Picking convenient values of x gives

x = 0 1 = λ2A A =
1

λ2

x = λ 1 = 2λ2B B =
1

2λ2

x = −λ 1 = −2λ2C C = −
1

2λ2
.

So we have ∫
dx

x(λ− x)(λ+ x)
=

∫ (
1/λ2

x
+

1/2λ2

λ− x −
1/2λ2

λ+ x

)
dx

=
1

λ2
ln |x | −

1

2λ2
ln |λ− x | −

1

2λ2
ln |λ+ x |.

All of this equals t + C on the right.

The equilibria of the differential equation are x = 0, x = λ, and x = −λ. The equilibrium at 0 is unstable

and the other two are stable, as the graph shows:

(Return)

6. Separating gives
dP

P (K − P )
= bdt. (1)

Integrating the left side is done using partial fractions, and the denominator is already factored. So the

next step is to find A and B such that

1

P (K − P )
=
A

P
+

B

K − P .

Clearing denominators gives 1 = A(K − P ) +BP . Remember, K and A are constants, and this equation

must hold for every value of P . Setting P = K cancels the first term and gives 1 = BK, so B = 1
K .
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Setting P = 0 cancels the second term and gives A = 1
K . Thus,∫

dP

P (K − P )
=

∫
1

K

(
1

P
+

1

K − P

)
dP

=
1

K
(lnP − ln(K − P ))

=
1

K
ln

P

K − P ,

by a property of logarithms. Multiplying through by K gives

ln

(
P

K − P

)
=

∫
Kb dt

=

∫
r dt

= r t + C

(recall that Kb = r by the definition of K). Now, exponentiating gives

P

K − P = C̃er t ,

for a new constant C̃. By plugging in t = 0, we find that

C̃ =
P0

K − P0
,

where P0 is the initial population. Multiplying through by K − P and doing a little algebra gives

P = C̃er t(K − P )

P + P C̃er t = C̃er tK

P (1 + C̃er t) = C̃er tK

P =
C̃er tK

1 + C̃er t
.

Replacing C̃ = P0

K−P0
gives

P =
P0

K − P0
er tK ·

1

1 + P0

K−P0
er t

=
KP0e

r t

K − P0 + P0er t

=
KP0

(K − P0)e−r t + P0

(From the first to the second line, we distributed (K −P0) in the denominator. From the second to third

line, we multiplied the top and bottom by e−r t .).

Note that if P0 = 0 (i.e. there was no population to begin with), then the population will stay at 0. This

is consistent with the above equation. On the other hand, if P0 > 0, then as t → ∞, the e−r t in the

denominator goes to 0, and so

lim
t→∞

P (t) =
KP0

P0
= K.
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We can think of K as the carrying capacity for the population, a sort of ideal size for the population.

Alternatively, by looking at the original differential equation, we see that K is an equilibrium. It is stable,

since populations above K have a negative derivative (hence are decreasing), and populations below K

have a positive derivative (hence are increasing).

On the other hand 0 is an unstable equilibrium. The model implies that as long as the population is not

extinct to begin with, it will grow and eventually equal K.

(Return)

7. The denominator is already factored, so write

2x2 − 4x − 2

(x + 1)(x − 1)2
=

A

x + 1
+

B

x − 1
+

C

(x − 1)2
.

Clearing the denominators gives

2x2 − 4x − 2 = A(x − 1)2 + B(x + 1)(x − 1) + C(x + 1).

Plugging in x = 1 cancels the first two terms on the right, leaving −4 = 2C, so C = −2. Plugging in

x = −1 cancels the second two terms and leaves 4 = 4A, so A = 1.

Now, it seems that there are no more nice values of x to help solve for B. But remember that the equation

must hold for any value of x . Picking x = 0 (which is an easy value to use), gives −2 = A − B + C.

Knowing A = 1 and C = −2 gives B = 1.

Thus, ∫
2x2 − 4x − 2

(x + 1) (x − 1)2
dx =

∫ (
1

x + 1
+

1

x − 1
+

−2

(x − 1)2

)
dx

= ln |x + 1|+ ln |x − 1|+
2

x − 1
+ C

(Return)

8. Write
3x2 − 2x + 1

(x − 1) (x2 + 1)
=

A

x − 1
+
Bx + C

x2 + 1
.

Clearing fractions gives 3x2 − 2x + 1 = A(x2 + 1) + (Bx + C)(x − 1). Picking x = 1 gives 2 = 2A, so

A = 1. Now, picking any other two values for x will allow finding B and C. For instance, x = 0 gives

1 = A− C, and so C = 0. Finally, picking x = −1 gives 6 = 2A+ (−B)(−2), so B = 2.

Thus, ∫
3x2 − 2x + 1

(x − 1) (x2 + 1)
dx =

∫ (
1

x − 1
+

2x

x2 + 1

)
dx

= ln |x − 1|+ ln(x2 + 1) + C.

(Return)
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25 Definite Integrals

This module moves from the indefinite integral, which is a class of functions, to the definite integral, which is

a number. The relationship between these seemingly unrelated topics will be revealed in the next module.

The idea underlying the definite integral is that adding up local increments leads to a global total. Before

getting into the details of what this means, consider a simple example.

Example

Consider
n∑
i=1

i = 1 + 2 + 3 + · · ·+ n.

One can visualize this sum as the area of a triangular stack of 1× 1 boxes. The first column has 1 box, the

second column has 2 boxes, and so on through the nth column with n boxes:

The area of this roughly triangular region can be found by splitting it into two regions: a right triangle of

base and height n, and the half boxes left over:
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The total area is therefore 1
2n(n + 1), and so we find that

n∑
i=1

i =
1

2
n(n + 1).

The point of this example is to compare the amount of computation (e.g. the number of additions) required to

do the sum using local information (adding up the terms one by one), verses the global information (evaluating

the product on the right above). It is much easier to simply evaluate the product.

The definite integral takes this type of idea and generalizes it to more difficult sums. Before we can define it,

we need a few definitions.

25.1 Partitions and Riemann sums

Given an interval [a, b], a partition P of [a, b] is a division of the interval [a, b] into subintervals Pi . Visually,

think of placing hash marks along the interval [a, b] and then labeling the subintervals P1, P2, . . . from left to

right:

Let (∆x)i be the width of the ith subinterval, Pi .

Choose a sample point xi from the ith subinterval (this can be a point chosen at random from the subinterval

or systematically; it does not matter).
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Given a function f , a partition P for an interval [a, b], and sample points xi , the Riemann sum of f on P is

given by
N∑
i=1

f (xi)(∆x)i .

The Riemann sum can be interpreted as an approximation of the area under the curve of f from a to b using

rectangles. The width and height of the ith rectangle are (∆x)i and f (xi), respectively. Note that in this area

interpretation, a rectangle which is below the x-axis has negative area (since f (xi) < 0 in this case). For an

example with N = 4 rectangles, consider the following figure:

25.2 The definite integral

The definite integral

The definite integral of a function f from a to b, denoted∫ b

x=a

f (x) dx,

is defined by ∫ b

x=a

f (x) dx = lim
∆x→0

N∑
i=1

f (xi)(∆x)i .

The function f being integrated is called the integrand.

In other words, the definite integral is the limit of the Riemann sums as the lengths of the subintervals approach

0. In the area interpretation, the widths of all the rectangles are getting arbitrarily small, which ultimately gives

the area under the curve:

(Link to Riemann Sum Limit Animated GIF)

Remember that when interpreting the definite integral as the area under the curve, any region which is below

the x-axis contributes negative area to the total.
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Example

Using the definition of the definite integral, compute∫ 1

x=0

x dx.

(See Answer 1)

Notation

Sums The integral sign
∫

and the summation sign
∑

are both short for sum. The integral sign
∫

looks like a

stylized S, and the summation sign is the Greek sigma, short for sum.

Limits Including the variable in the limits of integration is not strictly necessary, but is a useful habit to develop

for future courses where integration will be happening with respect to several variables. It is also fine to suppress

the notation and just have
∫ b
a f (x) dx : ∫ b

a

f (x) dx =

∫ b

x=a

f (x) dx.

Variables The variable used in the integrand does not matter; it is sometimes referred to as a dummy variable:∫ b

x=a

f (x) dx =

∫ b

t=a

f (t) dt =

∫ b

z=a

f (z) dz.

However, if there is a variable used in one of the limits of integration (as will happen from time to time), it is

important to avoid using that as the dummy variable too. For example,∫ x

a

f (t) dt instead of

∫ x

a

f (x) dx.

Caveat

Note that, although their notation is similar, definite integrals are not the same as indefinite integrals! The

indefinite integral of a function is a class of functions, whereas the definite integral of a function over an interval

is a number.

That said, it is no accident that they have similar notations, because of their relationship, which is given by the

Fundamental Theorem of Integral Calculus in the next module.

25.3 Properties of definite integrals

Linearity

The definite integral is linear, i.e.∫ b

x=a

(f (x) + g(x)) dx =

∫ b

x=a

f (x) dx +

∫ b

x=a

g(x) dx.∫ b

x=a

c · f (x) dx = c

∫ b

x=a

f (x) dx.

(See Justification 2)
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Additivity

When integrating the same function over two adjacent intervals, we have additivity:∫ b

a

f (x) dx +

∫ c

b

f (x) dx =

∫ c

a

f (x) dx.

In the area interpretation, this can be thought of as taking the area under the curve from a to b and adding

the area under the curve from b to c , which gives the area under the curve from a to c :

Another way of thinking about it is adding the intervals [a, b] and [b, c ] together to get [a, c ]. It is important

to note that the orientation of the interval matters, as discussed in the next subsection.

Orientation

The orientation of the interval over which we integrate matters. Integrating from left to right is positive, and

integrating from right to left is negative:∫ b

a

f (x) dx = −
∫ a

b

f (x) dx.

(See Justification 3)

Dominance

This is another intuitive property. If f (x) ≥ 0 for all x in the interval [a, b], then∫ b

a

f (x) dx ≥ 0.

Also, if f (x) ≥ g(x) for all x in the interval, then∫ b

a

f (x) dx ≥
∫ b

a

g(x) dx

(See Justification 4)
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25.4 More examples

There are a few definite integrals that we can compute directly from the definition. But for most functions, it

is not easy to work directly with the definition.

Example

Compute ∫ b

a

c dx

(See Answer 5)

Example

Compute ∫ b

a

x dx

(See Answer 6)

25.5 Odd and even functions

There are a few final cases where certain definite integrals can be simplified by using properties of the integrand.

Odd and even functions

A function f (x) is called odd if

f (−x) = −f (x).

A function g(x) is called even if

g(−x) = g(x).
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The reason for the terminology comes from Taylor series. A function is odd if and only if every term in its

Taylor series has odd power. Similarly, a function is even if and only if every term in its Taylor series has even

power. (See Justification 7)

Example

Sine and hyperbolic sine are both odd functions because they only have odd powers in their Taylor series.

Cosine and hyperbolic cosine are both even functions because they only have even powers in their Taylor

series.

Odd function over a symmetric domain

If an odd function f is integrated over a domain that is symmetric about the origin (i.e., an interval of the form

[−L, L], then ∫ L

x=−L
f (x) dx = 0.

Formally, any subinterval’s on the left half of the interval will make a contribution to the Riemann sum which is

equal and opposite to the contribution of the corresponding subinterval on the right half of the interval. These

equal and opposite sums cancel, and so the definite integral over the entire interval is 0.

In terms of the area interpretation, the net area under the curve over the left half of the interval will be equal

and opposite in sign to the net area under the curve over the right half of the interval. Therefore, the total

area will be 0:
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Even function over a symmetric domain.

If an even function g is integrated over a domain that is symmetric about the origin (i.e., an interval of the

form [−L, L]), then ∫ L

x=−L
g(x) dx = 2

∫ L

x=0

g(x) dx.

Formally, each subinterval on the left half of the interval has a corresponding subinterval on the right with an

equal contribution to the Riemann sum. So one can just take the Riemann sum on the right and double it.

Using the area interpretation, one can see that the region under the curve on the left will be the mirror image

of the region under the curve on the right, so the total area is just twice the area on the right:

25.6 EXERCISES

• One particular choice of partition and sampling that can be used to numerically evaluate definite integrals

is the following. With n fixed, divide the interval [a, b] into n subintervals Pi of common length (∆x)i =

(b − a)/n. For the sampling, choose the right endpoint of each Pi ; this gives you the formula:

xi = a + i
b − a
n

With these choices of partition and sampling, compute the Riemann sums for the integral
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∫ 2

x=1

dx

x

for n = 1, 2, 3 subdivisions. Note: in the next Lecture we will learn that

∫ 2

x=1

dx

x
= ln 2 ' 0.693

How does this compare to the values you obtained from the Riemann sums?

• With the same choices of partition and sampling as in the previous problem, evaluate the Riemann sum

for the integral

∫ 3

x=0

x2 dx

for an arbitrary number n of subdivisions. You may need to use the following:

n∑
i=1

i =
n(n + 1)

2
,

n∑
i=1

i2 =
n(n + 1)(2n + 1)

6
,

n∑
i=1

i3 =
n2(n + 1)2

4

• The line y = x , the x-axis and the vertical line x = 2 bound a triangle of area 2. Thus,

I =

∫ 2

x=0

x dx = 2

Evaluating the Riemann sum for n subdivisions for the above integral with the same choices of partition

and sampling as in the previous problem yields an approximation RS(n) for its value I. The error E(n)

we commit by using this approximation is defined to be the difference

E(n) = RS(n)− I

Show that E(n) is in O(n−k) for some k > 0. What’s the best value of k?

• What is the following integral? Think!

∫ π/4

x=−π/4

(
x2 + ln | cos x |

)
sin

x

2
dx

• Using the definition of definite integrals, compute

∫ 1

0

x3 dx . Use a uniform partition and the fact that∑n
i=1 i

3 = n2(n+1)2

4 .
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25.7 Answers to Selected Examples

1. Let the partition P divide the interval [0, 1] into N equally sized subintervals. Then the ith subinterval

of P is given by [(i − 1) 1
N , i

1
N ], and (∆x)i = 1

N . Choose the right endpoint of each subinterval to be its

sample point, i.e. xi = i
N . Finally, note that as N →∞, ∆x → 0. It follows that∫ 1

0

x dx = lim
∆x→0

N∑
i=1

f (xi)(∆x)i

= lim
N→∞

N∑
i=1

i

N
·

1

N

= lim
N→∞

1

N2

N∑
i=1

i

= lim
N→∞

1

N2

N(N + 1)

2

= lim
N→∞

N2 + N

2N2

=
1

2
.

We used the fact from earlier that
n∑
i=1

i =
1

2
n(n + 1)

(Return)

2. The definite integral is defined as the limit of Riemann sums. Note that for any partition P of the interval,

N∑
i=1

(f + g)(xi)(∆x)i =

N∑
i=1

[f (xi) + g(xi)] (∆x)i

=

N∑
i=1

f (xi)(∆x)i + g(xi)(∆x)i

=

N∑
i=1

f (xi)(∆x)i +

N∑
i=1

g(xi)(∆x)i ,

because of linearity of finite sums. Therefore, as one takes the limit as ∆x → 0, one finds (by the linearity

of limits) that ∫ b

a

(f (x) + g(x)) dx =

∫ b

a

f (x) dx +

∫ b

a

g(x) dx.

The argument for a constant multiple is almost identical: we can pull a constant out from a sum, and

pull a constant out from a limit.

(Return)

3. Consider what happens if one computes∫ b

a

f (x) dx +

∫ a

b

f (x) dx.
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By the additivity property (where c has been replaced by a), this is∫ a

a

f (x) dx.

But this equals 0, which is intuitive in the area interpretation. (More formally, any partition of an interval

with 0 width has subintervals of 0 width, so the Riemann sums equal 0). Therefore,∫ b

a

f (x) dx +

∫ a

b

f (x) dx = 0,

and rearranging gives ∫ b

a

f (x) dx = −
∫ a

b

f (x) dx,

as desired.

(Return)

4. For the first part, note that regardless of the partition of [a, b], the Riemann sum

N∑
i=1

f (xi)(∆x)i ≥ 0,

because f (xi) ≥ 0 by the above assumption. Since each Riemann sum is non-negative, the limit is

non-negative.

For the second part, note that

f (x) ≥ g(x) =⇒ f (x)− g(x) ≥ 0.

So applying the first part, we have ∫ b

a

(f (x)− g(x)) dx ≥ 0.

Then by linearity of the definite integral (above),∫ b

a

f (x) dx −
∫ b

a

g(x) dx ≥ 0,

and rearranging gives ∫ b

a

f (x) dx ≥
∫ b

a

g(x) dx.

(Return)

5. If we use the partition of [a, b] into n equal intervals, then

(∆x)i =
b − a
n
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Also, note that f (xi) = c for all i . So∫ b

a

c dx = lim
∆x→0

n∑
i=1

c
b − a
n

= lim
∆x→0

c · n ·
b − a
n

= c · (b − a).

We could also see this by interpreting this definite integral as the area under the curve y = c between

x = a and x = b, which is simply a rectangle of base b − a and height c .

(Return)

6. Again using a partition into n equal sized subintervals, we have that (∆x)i = b−a
n . If we take our sample

point to be the right endpoint of each subinterval, then we have xi = a + b−a
n i . So∫ b

x=a

x dx = lim
n→∞

n∑
i=1

(
a +

b − a
n

i

)
b − a
n

= lim
n→∞

n∑
i=1

a
b − a
n

+

n∑
i=1

i

(
b − a
n

)2

= lim
n→∞

n · a
b − a
n

+

(
b − a
n

)2
n(n + 1)

2

= a(b − a) +
(b − a)2

2

=
2ab − 2a2 + b2 − 2ab + a2

2

=
1

2
(b2 − a2).

This can also be found by interpreting the definite integral as the area under the curve y = x , which can

be broken into a rectangle with base b − a and height a and a triangle with base and height b − a:
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(Return)

7. If f only has odd powers in its Taylor series, then

f (x) = a1x + a3x
3 + a5x

5 + · · ·

for some constants a1, a3, · · · . So evaluating f (−x) and doing a little algebra, we find

f (−x) = a1(−x) + a3(−x)3 + a5(−x)5 + · · ·
= −a1x − a3x

3 − a5x
5 − · · ·

= −
(
a1x + a3x

3 + a5x
5 + · · ·

)
= −f (x),

as desired. Similarly, if g(x) has even powers, then

g(x) = a0 + a2x
2 + a4x

4 + · · ·

and it follows that

g(−x) = a0 + a2(−x)2 + a4(−x)4 + · · ·
= a0 + a2x

2 + a4x
4 + · · ·

= g(x),

as desired.

(Return)
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26 Fundamental Theorem Of Integral
Calculus

Computing definite integrals from the definition is difficult, even for fairly simple functions. Fortunately, there

is a powerful tool—the Fundamental Theorem of Integral Calculus—which connects the definite integral with

the indefinite integral and makes most definite integrals easy to compute.

The Fundamental Theorem of Integral Calculus (FTIC)

Given a continuous function f , it follows that

1. d
dx

(∫ x
a f (t)dt

)
= f (x) and

2.
∫ b
a f (x)dx =

(∫
f (x)dx

) ∣∣∣∣b
a

(where F (x)

∣∣∣∣b
a

= F (b)− F (a)).

In other words, Part 1 says that the function

F (x) =

∫ x

t=a

f (t)dt

is an anti-derivative of f .

Part 2 says that the definite integral can be computed by finding the indefinite integral of f and subtracting the

evaluation at the bottom bound from the evaluation at the top bound. Note that even though the indefinite

integral is actually a class of functions that differ by a constant, F (b)−F (a) has the same value for any function

F in such a class, so when computing the antiderivative for the purpose of computing a definite integral, it is

allowable (and convenient) to forego the constant of integration.

Part 2 can be expressed in a slightly different way which is illustrative. For a differentiable function F we have

F

∣∣∣∣b
x=a

=

∫ b

x=a

dF.

This says that the net change in quantity (given on the left side) equals the integral of the rate of change (given

on the right side). This interpretation will be used in many applications in the next chapter. (See Rough Proof

1)
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Example

Compute ∫ T

x=1

1

x
dx.

(See Answer 2)

Example

Compute ∫ 3

1

x2dx.

(See Answer 3)

Example

Suppose a publisher prints 12000 books per month with expected revenue of $60 per book. The marginal

cost of each book is given by

MC(x) = 10 +
1

2000
x.

What would be the change in profit from a 25% increase in production? (See Answer 4)

Example

Find
d

dx

(∫ x

0

sin(t)dt

)
.

(See Answer 5)

Example

Find
d

dx

(∫ x3

x

sin(t)dt

)
.

(See Answer 6)

Caveat

Note that if the integrand f (t) fails to be defined or continuous at a point in the interval [a, b], then the FTIC

does not hold. The following example shows this using the singularities of a rational function.

Example

Compute ∫ 4

1

dx

x2 − 5x + 6
.

(See Answer 7)
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26.1 Limits of integration and substitution

One must be careful when using Part 2 of the Fundamental Theorem of Integral Calculus along with the

method of substitution. The reason this can cause problems is that when a substitution is made, the old limits

of integration are still in terms of the original variable. Therefore, one must either get the antiderivative in terms

of the original variable before evaluating (this is what we usually did at the end of the substitution anyway), or

one can change the limits of integration to reflect the new variable.

Consider the following example which demonstrates both techniques.

Example

Compute ∫ 1

x=0

x(x − 1)n dx,

where n is some fixed positive constant. (See Answer 8)

Another case where one must be careful of the limits of integration is with Integration By Parts. One can

compute the indefinite integral completely and then apply the limits of integration, or one can apply them as

one goes, as in the following: ∫ b

a

u dv = uv

∣∣∣∣b
a

−
∫ b

a

v du.

Example

Again compute the definite integral ∫ 1

x=0

x(x − 1)n dx,

but this time using integration by parts. (See Answer 9)

26.2 Additional examples

Example

Compute ∫ e5

x=e3

ln x

x
dx.

(See Answer 10)

Example

Compute ∫ 1

x=−1

1

1 + 3x2
dx.

(See Answer 11)
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26.3 EXERCISES

• Evaluate the following integrals:

∫ 1

x=−1

dx

1 + x2

∫ 3

x=0

5x
√
x + 1 dx

∫ π

x=−π

d

dx
(x cos x) dx

• Compute the following derivatives:

d

dx

∫ π

x=−π
x cos x dx

d

dx

∫ x

t=0

cos t dt

d

dx

∫ x4

t=x2

e−t
2

dt

d

dx

∫ x

t=1

1√
t
dt

d

dx

∫ arcsin x

t=0

ln |sin t + cos t| dt

d

dx

∫ tan x

t=sin x

e−t
2

dt

• What is the leading-order term in the Taylor series about x = 0 of

f (x) =

∫ x

0

ln(cosh(t))dt

• We usually use Riemann sums to approximate integrals, but we can go the other way, too, using an

antiderivative to approximate a sum. Using only your head (no paper, no calculator), compute an approx-

imation for

100∑
n=0

n3

Hint: what integral does this resemble?

• Compute
d

dx

∫ x4

3x

e−t
2/2dt

• Find the critical points of the function f (x) =
∫ x2

e ln(1 + t2) cos(
√
t)dt
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26.4 Answers to Selected Examples

1. Part 1: By the definition of the derivative, and the definition of the definite integral,

d

dx

(∫ x

a

f (t)dt

)
= lim

h→0

∫ x+h

a f (t)dt −
∫ x
a f (t)dt

h

= lim
h→0

∫ x+h

x f (t)dt

h

= lim
h→0

f (x∗)∆x

h

= lim
h→0

f (x∗)h

h

= lim
h→0

f (x∗)

= f (x),

since x ≤ x∗ ≤ x + h.

Part 2: By Part 1, F (x) =
∫ x
a f (t)dt is an anti-derivative of f . Furthermore, we have

F (b)− F (a) =

∫ b

a

f (t)dt −
∫ a

a

f (t)dt =

∫ b

a

f (t)dt − 0 =

∫ b

a

f (t)dt.

Let G(x) be some anti-derivative of f . Since anti-derivatives of the same function differ only by a constant,

G(x) = F (x)− C for some constant C. Then we have

G(b)− G(a) = (F (b)− C)− (F (a)− C) = F (b)− F (a)

as desired.

(Return)

2. Using Part 2 of the Fundamental Theorem, we find that∫ T

x=1

1

x
dx = ln x

∣∣∣∣T
x=1

= lnT − ln 1

= lnT.

Note that the above definite integral is sometimes used as the definition of the natural logarithm.

(Return)

3. By Part 2 of FTIC, ∫ 3

1

x2dx =
1

3
x3

∣∣∣∣3
1

=
1

3
(33 − 13)

=
26

3
.

(Return)
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4. The additional 25% means an extra 3000 books. So the goal is to find the change in profit P as x goes

from 12000 to 15000. That is,

P

∣∣∣∣15000

x=12000

=

∫ 15000

x=12000

dP,

according to Part 2 of the Fundamental Theorem. Now, since profit is revenue minus cost, it follows that

marginal profit is given by

dP = dR − dC.

Here,

dR = MR(x) dx = 60 dx

since the marginal revenue from each book is $60. And

dC = MC(x) dx = 10 +
1

2000
x dx.

Putting it all together, we find that

P

∣∣∣∣15000

x=12000

=

∫ 15000

x=12000

dP

=

∫ 15000

x=12000

(
60−

(
10 +

1

2000
x

))
dx

=

∫ 15000

x=12000

(
50−

1

2000
x

)
dx

= 50x −
1

4000
x2

∣∣∣∣15000

x=12000

=

(
50 · 15000−

150002

4000

)
−
(

50 · 12000−
120002

4000

)
= $129750

(Return)

5. By Part 1 of FTIC, d
dx

(∫ x
0 sin(t)dt

)
= sin(x).

(Return)

6. One must be careful with a function of x in one or both bounds. A good way to break the problem down

is to write F (x) =
∫ x

0 sin(t)dt. By Part 1 of FTIC, F ′(x) = sin(x). Now, note that∫ x3

x

sin(t)dt =

∫ x3

0

sin(t)dt −
∫ x

0

sin(t)dt

= F (x3)− F (x).

Next, taking the derivative (and remembering the chain rule) gives

d

dx

(∫ x3

x

sin(t)dt

)
=

d

dx

(
F (x3)− F (x)

)
= F ′(x3)(3x2)− F ′(x)(1)

= sin(x3)(3x2)− sin(x).

(Return)
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7. This is a rational function, and the denominator factors as (x − 3)(x − 2), so use partial fractions to

express
1

(x − 3) (x − 2)
=

A

x − 3
+

B

x − 2
.

Clearing denominators gives 1 = A(x − 2) + B(x − 3). Setting x = 3 gives A = 1. Setting x = 2 gives

B = −1. Thus, ∫
dx

x2 − 5x + 6
=

∫ (
1

x − 3
−

1

x − 2

)
dx

= ln |x − 3| − ln |x − 2|.

Then trying to apply FTIC would give∫ 4

1

dx

x2 − 5x + 6
= ln |x − 3| − ln |x − 2|

∣∣∣∣4
1

= ln(1)− ln(2)− (ln(2)− ln(1))

= −2 ln(2).

However, because 1
(x−3)(x−2) has singularities at x = 2 and x = 3, one must evaluate the improper integral

as follows: ∫ 4

1

dx

x2 − 5x + 6
=

∫ 2

1

dx

x2 − 5x + 6
+

∫ 3

2

dx

x2 − 5x + 6
+

∫ 4

3

dx

x2 − 5x + 6
,

and none of these integrals exist, as will be shown in the next section on improper integrals, so the entire

integral does not exist.

(Return)

8. First, we will try the method of substituting back in before evaluating. We make the substitution

u = x − 1

du = dx.

Then the integral becomes ∫ 1

x=0

x(x − 1)n dx =

∫ 1

x=0

(u + 1)un du

=

∫ 1

x=0

un+1 + un du

=
un+2

n + 2
+
un+1

n + 1

∣∣∣∣1
x=0

.

This is where a lot of students might make the mistake of plugging in the limits of x when trying to

evaluate the integral. This is a reason to include the x = a at the bottom limit of integration: it helps

remind us that those limits are in terms of x , even if we have made one or more substitution.

89



To avoid this pitfall, we now finish getting the antiderivative in terms of x so that we can evaluate:

un+2

n + 2
+
un+1

n + 1

∣∣∣∣1
x=0

=
(x − 1)n+2

n + 2
+

(x − 1)n+1

n + 1

∣∣∣∣1
x=0

= 0 + 0−
(−1)n+2

n + 2
−

(−1)n+1

n + 1

= (−1)n+2

(
1

n + 1
−

1

n + 2

)
=

(−1)n

(n + 1) (n + 2)
.

On the other hand, as soon as we made the substitution u = x − 1, we could have changed the limits of

integration to reflect our new variable.

Namely, at the lower limit x = 0, what is the corresponding value of u? Well, u = x − 1, so when x = 0,

we have u = −1. Similarly, when x = 1, the corresponding value of u is u = 0. So as we were making our

substitution, we could make a corresponding change in the limits of integration so that the new definite

integral is entirely in terms of u:∫ 1

x=0

x(x − 1)n dx =

∫ 0

u=−1

(u + 1)un du.

Now the calculation proceeds as before, and gives the same answer. Changing the limits can sometimes

be easier, especially in a complicated integral which may involve (for example) a u-substitution and a

trigonometric substitution. Otherwise, the algebra can get messy as one substitutes back in and then

substitutes back in again.

(Return)

9. The logical choice of parts is

u = x du = dx

dv = (x − 1)n dx v =
(x − 1)n+1

n + 1
.

Then by the formula for parts, we have∫ 1

x=0

x(x − 1)n dx = x
(x − 1)n+1

n + 1

∣∣∣∣1
x=0

−
∫ 1

x=0

(x − 1)n+1

n + 1
dx

= 0−
(x − 1)n+2

(n + 1) (n + 2)

∣∣∣∣1
x=0

=
(−1)n+2

(n + 1) (n + 2)

=
(−1)n

(n + 1) (n + 2)
.

Note that from the first to second line above, we have x (x−1)n+1

n+1 is 0 at both x = 1 and at x = 0, so that

entire term disappears.

(Return)
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10. This integral is best computed with a substitution of

u = ln x

du =
1

x
dx

(Integration by parts works too, but it involves a little bit of algebra). Here it is convenient to change the

limits of integration as we go, so note that when x = e3, we have u = 3. When x = e5 we have u = 5.

Thus, ∫ e5

x=e3

ln x

x
dx =

∫ 5

u=3

u du

=
1

2
u2

∣∣∣∣5
u=3

=
1

2
(25− 9)

=
1

2
· 16

= 8.

(Return)

11. This looks like a good candidate for a trigonometric substitution. Because of the extra factor of 3, the

logical substitution is

x =
1√
3

tan θ

dx =
1√
3

sec2 θ dθ.

Remember the constant 1√
3

is there so that when it is squared it will cancel with the factor of 3 and allow

us to use the identity 1 + tan2 = sec2. Again, we will change the bounds as we go. Note that

x = −1 ⇒
1√
3

tan θ = −1

⇒ tan θ = −
√

3.

The value of θ for which this holds is θ = −π3 . Similarly, when x = 1 we have θ = π
3 . Proceeding, we
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have ∫ 1

x=−1

1

1 + 3x2
=

1√
3

∫ π/3

θ=−π/3

sec2 θ dθ

1 + 3( 1√
3

tan θ)2

=
1√
3

∫ π/3

θ=−π/3

sec2 θ dθ

1 + tan2 θ

=
1√
3

∫ π/3

θ=−π/3

sec2 θ

sec2 θ
dθ

=
1√
3

∫ π/3

θ=−π/3

dθ

=
1√
3
θ

∣∣∣∣π/3

−π/3

=
1√
3

(
π

3
−
−π

3

)
=

2π

3
√

3

(Return)
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27 Improper Integrals

An improper integral is a definite integral which cannot be evaluated using the Fundamental Theorem of Integral

Calculus (FTIC). This situation arises because the integral either

1. has a point in its interval of integration which is not in the domain of the integrand (the function being

integrated) or

2. has ∞ or −∞ as a bound of integration.

As an example of the first type, consider ∫ 2

0

dx

x
.

This integral is improper because the left endpoint, 0, is not in the domain of 1
x .

Another example of the first type is ∫ 4

0

dx
3
√
x − 2

.

This is improper because the point 2 is in the interval of integration but is not in the domain of 1
3√x−2

.

For an example of the second type, consider ∫ ∞
0

dx

1 + x2
.

This is improper because the upper bound is ∞.

For an example of the danger of trying to apply the Fundamental Theorem of Integral Calculus when it does

not apply, consider ∫ 1

x=−1

1

x2
dx.

This is an improper integral (hence FTIC does not apply) because the point x = 0 is not in the domain of 1
x2 .

If we were to try to apply FTIC anyway, we would find∫ 1

x=−1

1

x2
dx = −

1

x

∣∣∣∣1
x=−1

= −1− 1

= −2.

This is problematic since 1
x2 > 0 for all x (hence should have a positive integral by the dominance property).
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27.1 Dealing with improper integrals

To deal with an improper integral of the first type, first consider the integral
∫ b
a f (x) dx , where a is not in the

domain of f (x), but f is continuous on the rest of the interval (a, b]. In this situation, one replaces the lower

bound with a variable T which is slightly larger than a, and then takes the limit as T approaches a from the

right (this is denoted by T → a+). ∫ b

a

f (x) dx = lim
T→a+

∫ b

T

f (x) dx.

This replacement allows the integral
∫ b
T f (x) dx to be computed using FTIC, since f is continuous on that

interval. After that integral is computed (in terms of T ), the limit is computed. If the limit exists, then the

original integral exists and equals the result. If the limit does not exist or is infinite, then the original integral

does not exist either.

Example

Determine whether the integral ∫ 2

0

dx

x

exists, and if it exists, what its value is. (See Answer 1)

If the right endpoint, b, of the integral
∫ b
a f (x) dx is not in the domain of f , then b gets replaced with a variable

T slightly smaller than b, and again the integral is replaced with a limit, this time as T → b− (that is, the limit

as T approaches b from the left). ∫ b

a

f (x) dx = lim
T→b−

∫ T

a

f (x) dx.

Again, the integral equals this limit, if it exists. If the limit does not exist, then the integral does not exist.

Example

Determine whether the integral ∫ 3

1

dx

(x − 3)2

exists. If it exists, find its value. (See Answer 2)

For integrals where a point inside the interval of integration is not in the domain of the integrand, the integral

is first split at the bad point, and then each integral is evaluated separately using the above techniques. So,

consider
∫ b
a f (x) dx where the point c is not in the domain of f and a < c < b. Then∫ b

a

f (x) dx =

∫ c

a

f (x) dx +

∫ b

c

f (x) dx

= lim
T→c−

∫ T

a

f (x) dx + lim
U→c+

∫ b

U

f (x) dx.

Both of the resulting limits must exist for the original integral to exist.
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Example

Determine if the integral ∫ 1

−1

dx

x4/5

exists. (See Answer 3)

27.2 Bounds at infinity

For integrals with one bound at infinity, the integral is defined as follows.∫ ∞
a

f (x) dx = lim
T→∞

∫ T

a

f (x) dx.

Similarly, ∫ a

−∞
f (x) dx = lim

T→−∞

∫ a

T

f (x) dx.

In the case of bounds of ∞ and −∞, one can first split the integral at any real number c , and then compute

each integral as above: ∫ ∞
−∞

f (x) dx =

∫ c

−∞
f (x) dx +

∫ ∞
c

f (x) dx

= lim
T→−∞

∫ c

T

f (x) dx + lim
U→∞

∫ U

c

f (x) dx.

As before, both of these limits must exist for the original integral to exist. It is not equivalent to computing a

single limit such as

lim
T→∞

∫ T

−T
f (x) dx.

Example

Determine if the integral ∫ ∞
0

dx

1 + x2

exists. If it exists, find its value. (See Answer 4)

27.3 The p-integral

One class of improper integrals is common enough to get its own name: the p-integral. This is the name given

to integrals of the form ∫
1

xp
dx =

∫
x−p dx.

There are two versions of this integral that are of interest to us. First, with a limit at infinity, and second with

a limit at 0.
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Example

Show that ∫ ∞
x=1

x−p dx =

{
1
p−1 if p > 1

∞ if p ≤ 1.

(See Answer 5)

Example

Consider the p-integral with a limit at 0: ∫ 1

x=0

x−p dx.

This integral is improper because 0 is not in the domain of x−p. Show that∫ 1

x=0

x−p dx =

{
∞ if p ≥ 1

1
1−p if p < 1.

(See Answer 6)

27.4 Converge or diverge

In some contexts, it is enough to know whether an integral converges (has a finite answer) or diverges (goes

to infinity or does not exist). Using the knowledge of the above p-integrals, and some asymptotic tools from

earlier in the course, can help quickly determine whether certain improper integrals converge or diverge.

Example

Determine if ∫ 1

x=0

dx√
x2 + x

converges or diverges. (See Answer 7)

Example

Determine if ∫ ∞
x=1

dx√
x2 + x

converges or diverges. (See Answer 8)

Example

Determine if ∫ ∞
x=−∞

2x

1 + x2
dx

converges or diverges. (See Answer 9)
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27.5 EXERCISES

• Use a Talyor expansion of the integrand at x = 0 to determine whether the following integrals converge

or diverge:

∫ 1

x=0

e−x

x
dx

∫ 1

x=0

cos2 x√
x

dx

• Use the asymptotics of the integrand as x →∞ to determine whether the following integrals converge or

diverge:

∫ +∞

x=1

3
√
x + 3

x3
dx

∫ +∞

x=1

1− 5−x

x
dx

• Compute the following integrals, if they converge, by evaluating a limit.

∫ +∞

x=0

e−x sin x dx

∫ 2

x=1

dx√
x − 1∫ 4

x=0

2 dx√
16− x2

• The following integral is improper both at x = 1 and at x →∞:

∫ +∞

x=1

1√
x3 − 1

dx

First, as x →∞, show that the integrand is x−3/2 +O(x−9/2), so that it converges at this limit.

Next, as x → 1+, show that the integrand is (3(x − 1))−1/2 +O((x − 1)1/2), so that it converges at this

limit also.

• Consider the following two integrals:

I1 =

∫ +∞

x=2

dx√
x3 − 8

, I2 =

∫ +∞

x=2

1√
(x − 2)3

dx

One converges and one does not. Which is which and why?
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• Until now we have used asymptotic analysis to relate an improper integral to a p-integral. But sometimes

the leading order term is not a power. Identify the leading order term as x → +∞ of the integrand of∫ +∞

x=1

1

sinh x
dx

and determine whether the integral converges or diverges.

• For p ≥ 0 an integer, consider the following integral:

Ip =

∫ +∞

x=1

dx

lnp x

Show that this diverges for any value of p.

Hint 1: think about the growth of lnp x as x → +∞ as compared to polynomial growth.

Hint 2: recall from Lecture 25 that if g(x) ≥ f (x) for every x ∈ [a, b], then

∫ b

x=a

g(x) dx ≥
∫ b

x=a

f (x) dx

This is also true if the domain of integration is unbounded and the integrals are defined...

• Determine whether the following integral converges or diverges.∫ ∞
2

1

(x5 − 4x3)1/4
dx

27.6 Answers to Selected Examples

1. Since the left endpoint is not in the domain of 1
x , the integral becomes∫ 2

0

dx

x
= lim

T→0+

∫ 2

T

dx

x

= lim
T→0+

ln x

∣∣∣∣2
T

= lim
T→0+

(ln(2)− ln(T )) .

This limit does not exist because limT→0+ ln(T ) diverges. Hence, the original integral does not exist.

(Return)

2. The integral becomes ∫ 3

1

dx

(x − 3)2
= lim

T→3−

∫ T

1

dx

(x − 3)2

= lim
T→3−

−
1

x − 3

∣∣∣∣T
1

= lim
T→3−

−
1

T − 3
− (−

1

−2
).

This limit does not exist since limT→3−
1

T−3 diverges. Hence, the integral does not exist.

(Return)
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3. The only point not in the domain of the function 1
x4/5 is 0. Thus, the integral becomes∫ 1

−1

dx

x4/5
=

∫ 0

−1

dx

x4/5
+

∫ 1

0

dx

x4/5

= lim
T→0−

∫ T

−1

dx

x4/5
+ lim
U→0+

∫ 1

u

dx

x4/5

= lim
T→0−

5x1/5

∣∣∣∣T
−1

+ lim
U→0+

5x1/5

∣∣∣∣1
u

= lim
T→0−

(
5T 1/5 − 5(−1)1/5

)
+ lim
U→0+

(
5− 5u1/5

)
= 0 + 5 + 5− 0

= 10.

So the integral exists and equals 10.

(Return)

4. Because the top bound is ∞, the integral becomes∫ ∞
0

dx

1 + x2
= lim

T→∞

∫ T

0

dx

1 + x2

= lim
T→∞

arctan(x)

∣∣∣∣T
0

= lim
T→∞

arctan(T )− arctan(0)

= lim
T→∞

arctan(T )

=
π

2
.

So the integral exists and equals π
2 .

(Return)

5. First, if p 6= 1, then we can use the power rule on x−p. Here we find∫ ∞
x=1

x−p dx = lim
T→∞

x−p+1

−p + 1

∣∣∣∣T
x=1

= lim
T→∞

T−p+1

1− p −
1

1− p .

Note that T−p+1 diverges to infinity if p < 1, since in this case we have a positive power of T , which goes

to infinity as T goes to infinity. On the other hand, T−p+1 goes to 0 if p > 1, since in that case it is a

negative power of T . Putting this together with the above equations, we have∫ ∞
x=1

x−p dx =

{
1
p−1 if p > 1

∞ if p < 1.

Finally, consider the case p = 1. In this case,∫ ∞
x=1

1

x
dx = lim

T→∞
ln x

∣∣∣∣T
1

= lim
T→∞

lnT

=∞.
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And so the cases are as claimed above.

(Return)

6. As in the previous example, we first consider when p 6= 1 and use the power rule:∫ 1

x=0

x−p dx = lim
T→0+

x1−p

1− p

∣∣∣∣1
x=T

= lim
T→0+

1

1− p −
T 1−p

1− p .

Now, note that the limit is as T → 0+. So we have T 1−p diverges if p > 1 (since a negative power of T

diverges as T → 0+), and converges to 0 if p < 1. Putting this together with the previous computation

gives ∫ 1

x=0

x−p dx =
{

1
1−p if p1.

Finally, if p = 1, then ∫ 1

x=0

1

x
dx = lim

T→0+
ln x

∣∣∣∣1
x=T

= lim
T→0+

0− lnT

which diverges to infinity. Thus, the original integral diverges for all p ≥ 1, as claimed.

(Return)

7. This is not a function for which we can easily find an antiderivative. However, since we are interested in

the behavior of the function near 0 (that is where the blow-up occurs), we can do a little bit of algebra

to see that

1√
x2 + x

=
1√
x
·

1√
x + 1

=
1√
x
· (1 + x)−1/2

=
1√
x

(1 +O(x)) ,

by the binomial expansion. Therefore, the leading order term of this function as x → 0 is 1√
x

. This is a

convergent p-integral, because p = 1
2 and from the above example∫ 1

x=0

dx

xp

converges when p < 1.

(Return)

8. We must do a slightly different analysis for this integral, since we are interested in the behavior as x →∞.

Because we want to take advantage of the binomial series again (which requires its argument to be less
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than 1), we do the following algebra:

1√
x2 + x

=
1√
x2
·

1√
1 + x−1

=
1

x

(
1 +

1

x

)−1/2

=
1

x

(
1 +O

(
1

x

))
.

So for this integral, the leading order term is 1
x , which is the p-integral with p = 1. This diverges, as the

above example shows, and so the original integral diverges.

(Return)

9. As mentioned above, it is not valid to do this with a single limit such as

lim
T→∞

∫ T

x=−T

2x

1 + x2
dx.

The integral must be split and treated as two separate integrals with limits at infinity:∫ ∞
x=−∞

2x

1 + x2
dx = lim

S→−∞

∫ 0

x=S

2x

1 + x2
dx + lim

T→∞

∫ T

x=0

2x

1 + x2
dx.

Again, a little bit of asymptotic analysis with the help of the geometric series helps determine the behavior

of this function:

2x

1 + x2
=

2x

1 + x2
·
x−2

x−2

=
2

x
·

1

1 + x−2

=
2

x

(
1 +O(x−2)

)
.

Here, the geometric series was used to write

1

1 + x−2
= 1− x−2 + x−4 − · · · = 1 +O(x−2),

which is justified since x → ∞ and so x−2 is very small. So the original integrand behaves like 2
x , which

diverges when integrated to infinity. Therefore

lim
T→∞

∫ T

x=0

2x

1 + x2
dx

diverges, and (but for a sign change) the same reasoning shows

lim
S→−∞

∫ 0

x=S

2x

1 + x2
dx

diverges too, so the original integral diverges.

(Return)
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28 Trigonometric Integrals

A trigonometric integral is an integral involving products and powers of trigonometric functions: cosine, sine,

tangent, secant, cosecant, and cotangent. Many of these integrals can be handled with u-substitution, but

there are other methods which are outlined in this module. The three families of integrals discussed in this

module are ∫
sinm θ cosn θ dθ∫
tanm θ secn θ dθ∫
sin(mθ) cos(nθ) dθ.

28.1 Product of sines and cosines

Consider the integral ∫
sinm θ cosn θ dθ.

There are several cases to consider based on whether m and n are odd and even.

m is odd

If m is odd, then one factor of sin θ can be set aside. This leaves behind an even power of sin θ, which can be

expressed in terms of cos θ using the Pythagorean identity. Then the substitution u = cos θ can be made.

Example

Find ∫
sin3(x) cos(x) dx.

(See Answer 1)

n is odd

If n is odd, the procedure is very similar. This time, we set aside a factor of cos θ. This leaves an even power

of cos θ which can be expressed in terms of sin θ using the Pythagorean identities.

102



Example

Find ∫
sin2(x) cos3(x) dx.

(See Answer 2)

Both m and n are even

If neither m nor n is odd, then both are even. This is a bit more difficult and requires using the power reduction

formulas:

Power reduction

sin2(θ) = 1−cos(2θ)
2

cos2(θ) = 1+cos(2θ)
2

Example

Find ∫
sin2 x dx.

(See Answer 3)

Example

Find ∫
sin2 θ cos2 θ dθ.

(See Answer 4)

Example

Find ∫
cos4(x) dx.

(See Answer 5)

28.2 Product of tangents and secants

Next consider the integral ∫
tanm θ secn θ dθ.

As with the product of sines and cosines, the method will depend on whether m and n are odd or even.
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m is odd

If m is odd, we will set aside a factor of tan θ sec θ. Note that this is the derivative of sec θ and so this sets up

a substitution of u = sec θ. After setting aside these factors, we are left with an even power of tan θ, which can

be expressed in terms of sec θ using the Pythagorean identity

tan2 θ = sec2 θ − 1.

Now, the integral can be computed using the substitution u = sec θ.

Example

Compute ∫
tan3 θ sec θ dθ.

(See Answer 6)

n is even

If n is even, then we can set aside a factor of sec2 θ. Note that this is the derivative of tan θ and therefore sets

up the substitution u = tan θ. Setting aside sec2 θ leaves an even power of sec θ, which can be expressed in

terms of tan θ using the Pythagorean identity

sec2 θ = 1 + tan2 θ.

Then the substitution u = tan θ allows the computation of the integral.

Example

Compute ∫
tan2 θ sec6 θ dθ.

(See Answer 7)

m is even, n is odd

If neither of the above cases holds, then the integral is a bit more difficult. It typically requires a bit of algebra

and several applications of a reduction formula (or integration by parts). A general method is to rewrite the

even power of tangent entirely in terms of secant by using the Pythagorean identity

tan2 θ = sec2 θ − 1.

This gives an integral which is sums of powers of sec θ. Each of these can be solved using the reduction formula

for secant: ∫
secn θ dθ =

1

n − 1
secn−2 θ tan θ +

n − 2

n − 1

∫
secn−2 θ dθ,

along with the fact that ∫
sec θ dθ = ln | sec θ + tan θ|+ C.
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Example

Compute ∫
tan2 θ sec θ dθ.

(See Answer 8)

28.3 Product of sine and cosine with constants

Finally, consider the integral ∫
sin(mθ) cos(nθ) dθ.

This integral requires some algebra to simplify the integrand. One can verify using the sum and difference

formulas for sine that

sin(mθ) cos(nθ) =
1

2
(sin((m + n)θ) + sin((m − n)θ)) .

This expression can be integrated term by term to find∫
sin(mθ) cos(nθ) dθ =

∫
1

2
(sin((m + n)θ) + sin((m − n)θ)) dθ

=
1

2

(
−

cos((m + n)θ)

m + n
−

cos((m − n)θ)

m − n

)
+ C.

There are similar formulas for related integrals:∫
sin(mθ) sin(nθ) dθ = −

sin((m + n)θ)

2 (m + n)
+

sin((m − n)θ)

2 (m − n)
+ C∫

cos(mθ) cos(nθ) dθ =
sin((m + n)θ)

2 (m + n)
+

sin((m − n)θ)

2 (m − n)
+ C.

These formulas need not be memorized, but be aware they exist and look them up when necessary.

Example

Compute ∫
sin(3θ) cos(4θ) dθ.

(See Answer 9)

28.4 Additional examples

Example

Compute ∫ π/2

θ=−π/2

cosn θ dθ.
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Use the fact (which is proven using integration by parts) that∫
cosn θ dθ =

cosn−1 θ sin θ

n
+
n − 1

n

∫
cosn−2 θ dθ.

(See Answer 10)

Example

Compute ∫
tan3 θ dθ

(See Answer 11)

28.5 EXERCISES

Compute the following indefinite integrals. You may need to use reduction formulae or coordinate changes.

•
∫

sin2 x cos2 x dx

•
∫

sin3 x

2
cos3 x

2
dx

•
∫

x3 dx√
9− x2

•
∫

5 tan5 x sec3 x dx

•
∫

7 tan4 x sec4 x dx

•
∫

9 sin3 3x dx

•
∫

cos4 x dx

•
∫

sin x sec x tan x dx

•
∫

tan5 2x sec4 2x dx

•
∫

cos x
√

1− sin x dx

•
∫

x2 dx√
1 + x2

•
∫

tan4(2x) sec4(2x) dx
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28.6 Answers to Selected Examples

1. Following the above outline, set aside one factor of sin x , which gives∫
sin3 x cos x dx =

∫
(sin2 x)(cos x)(sin x) dx.

Now, there is an even power of sine remaining, which can be rewritten using the Pythagorean identity

sin2 x = 1− cos2 x.

This gives ∫
sin3 x cos x dx =

∫
(sin2 x)(cos x) sin(x) dx

=

∫
(1− cos2 x)(cos x) sin(x) dx.

Now, the integral can be handled by letting u = cos(x) (and du = − sin(x)dx).∫
(1− cos2 x)(cos x)(sin x) dx =

∫
(1− u2)u(−du)

=

∫
(u3 − u) du

=
u4

4
−
u2

2
+ C

=
cos4 x

4
−

cos2 x

2
+ C.

(Return)

2. Following the procedure outlined above, we set aside a factor of cosine and use the Pythagorean identity,

which gives ∫
sin2(x) cos3(x) dx =

∫
sin2(x) cos2(x) cos(x) dx

=

∫
sin2(x)(1− sin2 x) cos(x) dx.

Now, we are ready to make the substitution u = sin(x), du = cos(x) dx . This gives∫
sin2(x)(1− sin2 x) cos(x) dx =

∫
u2(1− u2) du

=

∫
u2 − u4 du

=
u3

3
−
u5

5
+ C

=
sin3 x

3
−

sin5 x

5
+ C.

(Return)
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3. Using the first power reduction formula gives∫
sin2 x dx =

∫
1

2
(1− cos(2x)) dx

=
1

2

(
x −

sin(2x)

2

)
+ C.

(Return)

4. Using both the power reduction formulas and doing some algebra gives∫
sin2 θ cos2 θ dθ =

∫
1

2
(1− cos 2θ)

1

2
(1 + cos 2θ) dθ

=
1

4

∫
(1− cos 2θ)(1 + cos 2θ) dθ

=
1

4

∫
(1− cos2 2θ) dθ

=
1

4

∫
sin2 2θ dθ

=
1

4

∫
1

2
(1− cos 4θ) dθ

=
1

8

(
θ −

sin 4θ

4

)
+ C.

(Return)

5. Using the second power reduction formula (and then again in a later step) gives∫
cos4(x) dx =

∫
(cos2(x))2 dx

=

∫
(

1

2
(1 + cos(2x))2 dx

=
1

4

∫ (
1 + 2 cos(2x) + cos2(2x)

)
dx

=
1

4

∫ (
1 + 2 cos(2x) +

1

2
(1 + cos(4x))

)
dx

=
1

4

(
x + sin(2x) +

1

2
x +

1

8
sin(4x)

)
+ C

(Return)

6. Since the power of tangent is odd, we set aside a factor of tan θ sec θ, and use the Pythagorean identity

to find ∫
tan3 θ sec θ dθ =

∫
tan2 θ(tan θ sec θ) dθ

=

∫
(sec2 θ − 1)(tan θ sec θ)dθ.

Now, we can make the substitution

u = sec θ

du = sec θ tan θ dθ,
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which gives ∫
(sec2 θ − 1)(tan θ sec θ)dθ =

∫
(u2 − 1) du

=
1

3
u3 − u + C

=
1

3
sec3 θ − sec θ + C.

(Return)

7. Because the power of secant is even, we set aside sec2 θ and use the Pythagorean identity to find∫
tan2 θ sec6 θ dθ =

∫
tan2 θ sec4 θ(sec2 θ) dθ

=

∫
tan2 θ(1 + tan2 θ)2(sec2 θ) dθ.

Now, we are prepared for a substitution of

u = tan θ

du = sec2 θ dθ.

Making this substitution and simplifying gives∫
tan2 θ(1 + tan2 θ)2(sec2 θ) dθ =

∫
u2(1 + u2)2 du

=

∫
u2(1 + 2u2 + u4) du

=

∫
(u2 + 2u4 + u6) du

=
1

3
u3 +

2

5
u5 +

1

7
u7 + C

=
1

3
tan3 θ +

2

5
tan5 θ +

1

7
tan7 θ + C.

(Return)

8. Using the Pythagorean identity gives∫
tan2 θ sec θ dθ =

∫
(sec2 θ − 1) sec θ dθ

=

∫
(sec3 θ − sec θ) dθ

=

∫
sec3 θ dθ −

∫
sec θ dθ.

Now, using the reduction formula on the first of these integrals gives∫
sec3 θ dθ =

1

2
sec θ tan θ +

1

2

∫
sec θ dθ.
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Combining this with the above expression and using the integral of secant, we find∫
tan2 θ sec θ dθ =

∫
sec3 θ dθ −

∫
sec θ dθ

=

(
1

2
sec θ tan θ +

1

2

∫
sec θ dθ

)
−
∫

sec θ dθ

=
1

2
sec θ tan θ −

1

2

∫
sec θ dθ

=
1

2
sec θ tan θ −

1

2
ln | sec θ + tan θ|+ C.

(Return)

9. Using the formula given, we have∫
sin(3θ) cos(4θ) dθ = −

cos(7θ)

14
−

cos(−θ)

−2
+ C

= −
cos(7θ)

14
+

cos θ

2
+ C,

where we have used the fact that cosine is even to simplify the final expression.

(Return)

10. Applying the limits of integration in the above reduction formula gives∫ π/2

θ=−π/2

cosn θ dθ =
cosn−1 θ sin θ

n

∣∣∣∣π/2

−π/2

+
n − 1

n

∫ π/2

θ=−π/2

cosn−2 θ dθ.

Now, notice that

cosn−1 θ sin θ

n

∣∣∣∣π/2

−π/2

= 0

because cosine is 0 at ±π/2. Therefore,∫ π/2

θ=−π/2

cosn θ dθ =
n − 1

n

∫ π/2

θ=−π/2

cosn−2 θ dθ.

This is itself a reduction formula. By computing the base cases n = 0 and n = 1, respectively, we find∫ π/2

θ=−π/2

dθ = θ

∣∣∣∣π/2

−π/2

= π,

and ∫ π/2

θ=−π/2

cos θ dθ = sin θ

∣∣∣∣π/2

−π/2

= 2.
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Now the value of the integral for any higher value of n can be found by repeatedly using the above formula

until the integral reduces to one of the base cases above. Using induction, one finds∫ π/2

θ=−π/2

cosn θ dθ =

{
1·3·5···(n−1)

2·4·6···n π if n is even
2·4·6···(n−1)

3·5·7···n · 2 if n is odd.

(Return)

11. Here the power of tangent is odd, so the method calls for setting aside a factor of sec θ tan θ. However,

there is no factor of secant in this integral! It turns out that this is not a problem; we can multiply the

top and the bottom by secant to introduce a factor of secant, and the algebra works out:∫
tan3 θ dθ =

∫
tan2 θ

sec θ
(sec θ tan θ) dθ

=

∫
sec2 θ − 1

sec θ
(sec θ tan θ) dθ

=

∫ (
sec θ −

1

sec θ

)
(sec θ tan θ) dθ.

Now, proceed as usual with the substitution

u = sec θ

du = sec θ tan θ dθ.

Thus, ∫ (
sec θ −

1

sec θ

)
(sec θ tan θ) dθ =

∫ (
u −

1

u

)
du

=
1

2
u2 − ln |u|+ C

=
1

2
sec2 θ − ln | sec θ|+ C.

(Return)
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29 Tables And Computers

This module discusses some of the shortcuts available by using tables of integrals and mathematical software.

Many integrals can be easily computed by a computer algebra system, but it is still important to know the

underlying concepts so as to be able to use these tools efficiently and accurately.

29.1 Tables of integrals

Most calculus textbooks have an appendix containing one hundred or more integral formulas. All of these

formulas can be derived using the techniques of the previous modules (possibly with some additional technical

algebra), and it is a good exercise to try to derive some of them.

Using the table is sometimes difficult, because finding the correct form can be tricky. And even with the correct

form, an integral may not match the form precisely. It may take some algebra and a u-substitution to match

the form.

Example

Use the formula ∫
dx

x2
√
x2 − a2

=

√
x2 − a2

a2x
+ C

to evaluate the integral ∫
dx

(4x2 + 4x + 1)
√

4x2 + 4x − 3
.

(See Answer 1)

Other table entries are more inductive in nature, like the reduction formulas mentioned in the integration by

parts module.

Example

Use the formulas ∫
sec ax dx =

1

a
ln | sec ax + tan ax |+ C,

and (for n ≥ 2) ∫
secn ax dx =

secn−2 ax tan ax

a(n − 1)
+
n − 2

n − 1

∫
secn−2 ax dx + C
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to find ∫
sec3(x) dx.

(See Answer 2)

29.2 Mathematical software

Expensive computer algebra systems such as Maple and Mathematica can quickly and accurately dispense with

most integrals that can be done by hand. One free alternative, from the makers of Mathematica, is Wolfram

Alpha, which for most purposes is as good as its more costly relatives, and in many cases it can explain the

intermediate steps of longer computations (though it now only provides three such explanations per day for a

user without a paid subscription).

Note that the form of the answer given by computer systems may look different from what one gets by hand

or by a table, so care should be taken when comparing answers.

Example

Compute
∫

sec3(x) dx using Wolfram Alpha, or other computer algebra system. Note the syntax of the entry

(though it is pretty good at parsing other forms of entry). Also note that the answer given is in a different form

than that found in the earlier example.

Answer

Example

There are limits to what a computer algebra system can do. Consider the integral∫ π/2

x=0

sinn x

sinn x + cosn x
dx.

It turns out that the value of this integral is π
4 for all n, although Wolfram Alpha is not able to compute it.

But if we enter small particular values of n into Wolfram Alpha, then it does give the answer, although sometimes

only in decimal form.

29.3 Answers to Selected Examples

1. Although it is not exactly in the correct form, completing the square should get it closer. Indeed, factoring

and completing the square gives∫
dx

(4x2 + 4x + 1)
√

4x2 + 4x − 3
=

∫
dx

(2x + 1)2
√

(2x + 1)2 − 4
.

Now, making the u-substitution u = 2x + 1 (hence dx = 1
2 du) gives∫

dx

(2x + 1)2
√

(2x + 1)2 − 4
=

1

2

∫
du

u2
√
u2 − 4

=
1

2

√
u2 − 4

4u
+ C

=
1

2
·

√
(2x + 1)2 − 4

4 (2x + 1)
+ C.
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(Return)

2. Reducing using the second formula, and then using the first formula gives∫
sec3x =

sec x tan x

2
+

1

2

∫
sec x dx

=
sec x tan x

2
+

1

2
ln | sec x + tan x |+ C.

(Return)
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30 Simple Areas

We know the basic standard formulae for the area of basic shapes, but why are they true? From the point of

view of calculus, area A is the integral of dA, the area element.

In this chapter, we will use the following procedure to determine a quantity U:

1. Determine the differential element dU.

2. Integrate to compute U =
∫
dU.

30.1 Length of an interval

Before getting to areas, first consider how this method works for computing the length L of the interval from

a to b. If the length is denoted L, then the length element will be denoted dL, and L =
∫
dL. In this context,

the appropriate length element would be dx if we’re working along the x-axis.

So, we want to integrate dx as x goes from a to b.

The length,

L =

∫
dL

=

∫ b

x=a

dx

= x

∣∣∣∣b
x=a

= b − a

30.2 Parallelogram

The formula for the area of a parallelogram is base × height (bh). Consider the following rearrangement into

differential elements, where we carve the parallelogram into parallel horizontal strips of width b and height dy ,

where y is the y -axis.
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In this case, the area element, dA = b dy , is the area of this infinitesimal rectangle. The limits on y should go

from 0 to the height, h of the parallelogram.

The area,

A =

∫
dA

=

∫ h

y=0

b dy

= by

∣∣∣∣h
y=0

= bh

We have our familiar answer bh. This means that we’ve done a rearrangement in terms of infinitesimal strips.

Shearing that parallelogram preserves the area element and hence, the area. That is why a parallelogram has

the same area as the corresponding rectangle.

30.3 Triangle

The formula for the area of a triangle is 1
2× base × height ( 1

2bh). Let’s think in terms of a differential area

element. Given the fact that we can shear and preserve the area element, and thus the area, let’s present our

triangle as having a hypotenuse modeled by the line y = h
bx .
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To compute the area element, let’s use a vertical strip.

dA =
h

b
x dx

where the height of that vertical strip is h
bx and the width is the length element dx .

The area,

A =

∫
dA

=

∫ b

x=0

h

b
x dx

=
h

b

x2

2

∣∣∣∣b
x=0

=
hb2

2b

=
1

2
bh

30.4 Disc

We will use three ways to find the area of a circular disc of radius r :

1. Using an angular area element.

2. Using a radial variable.

3. Using a lateral, or a vertical rectangular strip.

1. Angular In this case, we’ll use an angular area element. We will take a wedge with angle dθ. If we look at

that close up, it’s modeled fairly well as a triangle. It’s not a perfect triangle, there’s a bit of curvature at

the end. This is a triangle with two sides of length r whose included angle is dθ. Such a triangle has area
1
2 r

2 sin(dθ) ≈ 1
2 r

2dθ, since dθ is very small. If we model that as a triangle with height r , and width r dθ,

we can ignore the higher order terms in the Taylor expansion of that area. We obtain an area element

dA = 1
2 r(r dθ).

Integrating to get the area, θ has to spin all the way around the circle from 0 to 2π.
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The area,

A =

∫
dA

=

∫ 2π

θ=0

1

2
r2 dθ

=
1

2
r2

∫ 2π

θ=0

dθ

=
1

2
r2θ

∣∣∣∣2π
θ=0

=
1

2
r2(2π)

= πr2.

2. Radial Let’s consider a radial variable. We can sweep out the area of the circular disk using annuli with a

radial coordinate t. Then, we’re looking at an annular strip of width dt. The corresponding area element

is the circumference (2πt) × thickness (dt).

dA = 2πt dt

Integrating this from 0 to the radius r gives us the area.

A =

∫
dA

=

∫ r

t=0

2πt dt

= πt2

∣∣∣∣r
t=0

= πr2.

3. Lateral We will use a vertical rectangular strip. Again, it is not a perfect rectangle and there’s a little

bit of curvature at the end. But, these are higher order terms, and we just care about the differential

element. So, using a vertical strip with width dx , and knowing that the formula for the boundary circle is

x2 + y2 = r2, we solve for y along the upper and lower branches.

y = ±
√
r2 − x2

We then obtain an area element that is the area of this rectangular strip.

dA = 2
√
r2 − x2 dx

In the case of strips, assume the circle is centered at the origin, and let x keep track of where the strip

intersects the x-axis. Thus, x ranges from −r to r . Integrating, and using a trigonometric substitution
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x = r sin u gives

A =

∫
dA

=

∫ r

−r
2
√
r2 − x2 dx

= 2

∫ π/2

−π/2

√
r2(1− sin2 u) r cos u du

= 2r2

∫ π/2

−π/2

cos2 u du

= 2r2

∫ π/2

−π/2

1

2
(1 + cos(2u))du

= r2(u +
1

2
sin 2u)

∣∣∣∣π/2

−π/2

= πr2

30.5 The area between two curves

Let’s say the f is on top and the g is below. Then as we sweep a vertical strip from left to right, we obtain the

area. In this case, the area element is a vertical rectangle of width dx and of height f (x)− g(x), the length of

the interval between the two.

dA = (f (x)− g(x))dx
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The general formula for the area between two curves f (x) and g(x),

A =

∫
dA

=

∫ b

x=a

(f (x)− g(x))dx

Example

Find the area of the region bounded above by f (x) = 4 + x − x2 and below by g(x) = 1− x . (See Answer

1)

30.6 Gini Index (An application of area formula)

In economics, this ratio is used to quantify income inequality in a population.

Let f (x) = Fraction of total income earned by the lowest x fraction of the populace, 0 < x < 1.

The Gini index quantifies how far f is from a “flat” distribution. This means that f(0) = 0, f(1) = 1.

f

is probably going to be below the flat distribution where y = x , the lowest x fraction earns the lowest x fraction.

The Gini index, G(f ) is measuring the difference between these two distributions, in terms of area. It’s the ratio

of the area between the flat distribution y = x and the given population’s income distribution y = f (x). One

normalizes that by the area between the flat distribution y = x and y = 0, namely the area of that triangle, or

120



1
2 .

G(f ) =
Area between the y = x and y = f (x)

Area between y = x and y = 0

= 2

∫ 1

x=0

(x − f (x)) dx.

Example

Compute G for a power law distribution f (x) = xn. (See Answer 2)

The Gini Index doesn’t tell you the income distribution, but we could approximate it in the assumption of a

power law. For example, in the year 2010, in the state of New York in USA, the Gini Index was very close to
1
2 . If we assume that it went by a power law distribution, that would imply a cubic distribution of income.

30.7 EXERCISES

• What is the area between the curve f (x) = sin3 x and the x-axis from x = 0 to x =
π

3
?

• Find the area of the bounded region enclosed by the curves y =
√
x and y = x2.

• What is the area between the curve y = sin x and the x-axis for 0 ≤ x ≤ π ?

• Calculate the Gini index of a country where the fraction of total income earned by the lowest x fraction

of the populace is given by

f (x) =
2

5
x2 +

3

5
x3.

• Compute the area between the curves f (x) = ex sec2 x and g(x) = ex tan2 x for 0 ≤ x ≤ π.

• Consider a cone of height h with base a circular disc of radius r . Let’s compute the “surface area” – the

area of the “outside” of the cone, not including the bottom. Following how we computed the area of a

circular disc (which is, indeed, such a cone with h = 0 ), we can decompose its area into infinitesimal

triangles with base rdθ and height the slant length L =
√
h2 + r2. The area element dA is then the area

of this infinitesimal triangle. Integrating dA from θ = 0 to θ = 2π gives the “surface area” of the cone.

What is its value?

• Compute the area between the curves sin(x) and cos(x) from x = 0 to x = π/2.

• Compute the area of a triangle with vertices at (0,0), (2,1), (3,6)

30.8 Answers to Selected Examples

1. The logical choice for area element is a vertical strip:
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The height of this strip is f (x) − g(x) = 3 + 2x − x2, and the width of the strip is dx . So the area

element is dA = (3 + 2x − x2)dx . To find the intersection points, set the curves equal, which gives

1 − x = 4 + x − x2. This implies x2 − 2x − 3 = 0, which factors to (x + 1)(x − 3) = 0. Thus, the

intersections are x = −1 and x = 3. It follows that

A =

∫
dA

=

∫ 3

−1

(3 + 2x − x2)dx

=

(
3x + x2 −

1

3
x3

) ∣∣∣∣3
−1

= (9 + 9− 9)−
(
−3 + 1 +

1

3

)
=

32

3
.

(Return)

2.

G(f ) = 2

∫ 1

x=0

(x − f (x)) dx

= 2

∫ 1

x=0

(x − xn) dx

= 2(
x2

2
−
xn+1

n + 1
)

∣∣∣∣1
x=0

= 1−
2

n + 1

=
n − 1

n + 1

(Return)
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31 Complex Areas

31.1 Complex regions

Some regions in the plane are more complicated and cannot be evaluated with a single integral. This happens

when the area element is not bounded by the same curves throughout the region. For instance, consider the

region bounded by a parabola and two lines:

In this case, the only way to find the area of the region is to divide it into regions which can be integrated

separately:
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31.2 Horizontal strips

Other regions are difficult to integrate using vertical strips as the area element, but work well with horizontal

strips as the area element. For example, consider the following region bounded on the left by x = g(y) and on

the right by x = f (y):

In this case, the area of a horizontal strip is a function of y , namely (f (y) − g(y))dy , where x = f (y) is the

curve on the right and x = g(y) is the curve on the left.

Example

Find the area between the curves

y − x = 0

y2 + x = 2.

(See Answer 1)

Example

Find the area of the region bounded by x = 3y and x = y2 − 4. (See Answer 2)

Example

Find the area of the region bounded by y = ln(x) and the lines y = 0, y = 1, and x = 0. (See Answer 3)

31.3 Polar shapes

A polar shape is the graph of a polar function r = f (θ). Here, the input to the function is θ, which is the angle

formed with the positive x-axis (known as the pole). The output r is the distance from the origin (or radial
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distance). For example, the following shows the graph of the polar function r = 1 + cos θ, which is known as a

cardioid :

The area of such a region is not usually easy to compute by integrating with respect to x or y (for one thing,

the polar equation would need to be expressed in terms of x and y first!). Instead, the way to integrate over

such regions is to use a polar area element, which is a wedge shaped region. Here are several examples of the

polar area element for various values of θ:

To compute what the polar area element is in terms of θ, r , and dθ, note that the region is roughly triangular

(the curved portion at the base of the triangle can be ignored since it is a higher order term). The angle at the

tip of the triangle is dθ, the height of the triangle is r , and the base of the triangle is r dθ:
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Thus, the polar area element is

dA =
1

2
(r)(r dθ) =

1

2
(f (θ))2 dθ,

since r = f (θ). Thus, the area of a polar region defined by r = f (θ), where a ≤ θ ≤ b, is

A =

∫ b

θ=a

1

2
(f (θ))2 dθ.

Example

Compute the area of the cardioid r = 1 + cos θ. (See Answer 4)

Example

Find the area of a single petal of the polar curve r = sin(3θ):

Hint: To find the bounds on θ, compute when r = 0. (See Answer 5)

Example

Find the area inside the circle r = 2 sin θ and outside the circle r = 1:
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(See Answer 6)

31.4 EXERCISES

• Find the area enclosed by the curves y = 1, x = 1, and y = ln x .

• Find the area of the bounded region enclosed by the x-axis, the lines x = 1 and x = 2 and the hyperbola

xy = 1.

• Compute the area in the bounded (i.e., finite) regions between y = x(x − 1)(x − 2) and the x-axis.

• Find the area of the sector of a circular disc of radius r (centered at the origin) given by 1 ≤ θ ≤ 3 (as

usual, θ is in radians).

• Use polar coordinates to find an area within r = 3− 2cos(θ) and outside r = 3.

• Find the area of the overlap between two circles of radius 2 that pass through each others’ centers. You

can do so with either cartesian or polar coordinates (though one might be easier than the other!).

• Find the area bound by the curves y = cos2 x and y =
8x2

π2
.

• Kepler’s First Law states that the orbit of every planet is an ellipse with the Sun at one of its two foci. If

we think of the Sun as being situated at the origin, we can describe the orbit with the equation:

r =
p

1 + ε cos θ

The point at which the planet is closest to the Sun (the perihelion) corresponds to θ = 0, while the planet

is furthest away from the Sun at θ = π (the aphelion). Knowing the distance between the Sun and the

planet at these two points would allow you to fix the values of the constants p and ε. Notice that ε = 0

describes a perfect circle, so that the “eccentricity” ε measures how far the orbit is from being a circle.
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Kepler’s Second Law states that the line joining a planet and the Sun sweeps out equal areas during equal

intervals of time. Another way of expressing this fact is by saying that the “areal velocity”

vA =
dA

dt

of that line is constant in time.

Express the area element dA in terms of the angle element dθ and use Kepler’s Second Law to deduce

the differential equation governing the time evolution of θ.

• Let C1 be the circle given by r = sin(θ). Let C2 be the circle given by r = cos(θ). Find the area of region

in C2 that is not in C1.

31.5 Answers to Selected Exercises

1. Expressing these curves as functions of y , we find

x = y

x = 2− y2.

Graphing these curves, one finds the bounded region:

To find the intersections, set the curves equal to one another. This gives

y = 2− y2.

A rearranging and factoring gives

y2 + y − 2 = (y − 1)(y + 2) = 0,

and so we find that the intersection points are at y = 1 and y = −2 (the x-coordinates are the same,

since they are on the line x = y). Note that using a vertical rectangle as the area element here would

not be so easy, because the area element depends on the value of x . Sometimes the strip goes from

the parabola below to the line above, as shown in blue, and sometimes the strip goes from parabola to

parabola, shown in red:
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In particular, the area element for a vertical strip is

dA =

{
(x +

√
2− x) dx if − 2 ≤ x ≤ 1

2
√

2− x dx if 1 ≤ x ≤ 2

But using a horizontal strip as the area element works much better because throughout the region the

strip is always going from the line on the left to the parabola on the right. So using a horizontal strip

gives the area element

dA = ((2− y2)− y) dy.

Integrating this over the range of −2 ≤ y ≤ 1 gives the area:

A =

∫
dA

=

∫ 1

y=−2

2− y2 − y dy

= 2y −
y3

3
−
y2

2

∣∣∣∣1
y=−2

=

(
2−

1

3
−

1

2

)
−
(
−4 +

8

3
− 2

)
=

9

2
.

(Return)

2. The region looks roughly as in the following:

129



By setting 3y = y2 − 4, collecting like terms, and factoring, one finds the intersection points at y = −1

and y = 4, as indicated in the figure. The area element is a horizontal rectangle, which has area

dA = (3y − (y2 − 4))dy .

Thus, the area between the curves is

A =

∫
dA

=

∫ 4

−1

(3y − y2 + 4)dy

=
3

2
y2 −

1

3
y3 + 4y

∣∣∣∣4
−1

=
125

6

(Return)

3. The region looks roughly like the following:

Note that using vertical rectangles would not be ideal because this would require two integrals (for x from

0 to 1 and from 1 to e). Instead, one can express the curve y = ln x as x = ey . Now, using horizontal

rectangles gives an area element of dA = eydy . Thus

A =

∫
dA

=

∫ 1

0

eydy

= ey
∣∣∣∣1
0

= e − 1.

(Return)

4. In this case, f (θ) = 1 + cos θ, and so the area element is

dA =
1

2
(1 + cos θ)2 dθ

=
1

2
(1 + 2 cos θ + cos2 θ) dθ
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Because θ ranges from 0 to 2π to trace out the entire cardioid, it follows that the area is

A =

∫
dA

=
1

2

∫ 2π

θ=0

(1 + 2 cos θ + cos2 θ) dθ

=
1

2

∫ 2π

θ=0

(1 + 2 cos θ +
1

2
(1 + cos(2θ))) dθ

=
1

2

(
θ + 2 sin θ +

1

2
θ +

1

4
sin(2θ)

) ∣∣∣∣2π
θ=0

=
3π

2
.

(Return)

5. The area element is dA = 1
2 sin2(3θ) dθ. To find the bounds on θ, set r = 0, which gives sin(3θ) = 0.

The smallest values of θ for which this occurs is θ = 0 and θ = π
3 :

Thus, the area of a single petal is

A =

∫
dA

=

∫ π/3

θ=0

1

2
sin2(3θ) dθ

=
1

2

∫ π/3

θ=0

1

2
(1− cos(6θ)) dθ

=
1

4

(
θ −

1

6
sin(6θ)

) ∣∣∣∣π/3

θ=0

=
π

12

(Return)

6. First, we find the intersections by setting the curves equal, which gives

2 sin θ = 1 ⇒ sin θ =
1

2
,
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and so the intersections are at π
6 and 5π

6 . The area element of the region is the polar area element of the

circle r = 2 sin θ minus the polar area element of the circle r = 1:

So we have that

dA =

(
1

2
(2 sin θ)2 −

1

2
(1)2

)
dθ.

Thus, the area is

A =

∫
dA

=
1

2

∫ 5π/6

θ=π/6

(4 sin2 θ − 1) dθ

=
1

2

∫ 5π/6

θ=π/6

2(1− cos(2θ))− 1 dθ

=
1

2
(θ − sin(2θ))

∣∣∣∣5π/6

π/6

=
π

3
+

√
3

2
.

From the second to the third line above, we used the power reduction formula for sine:

sin2 θ =
1

2
(1− cos(2θ)).

(Return)
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32 Volumes
32.1 Finding the volume element

Just as area was computed by finding the area element and integrating, volume is computed by determining the

volume element (i.e. the volume of a slice) and then integrating:

V =

∫
dV.

The difficulty is in finding a suitable volume element dV . Once that is chosen, the rest is a matter of evaluating

the integral.

Example

Compute the volume of a cylinder of radius R and height H using several different volume elements dV :

(See Answer 1)
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Example

Find the volume of a sphere of radius R. First, by using discs as the volume element (shown on left below).

Then use cylindrical shells as the volume element (shown in the middle below). Finally, use a spherical shell

for the volume element, as shown in the third diagram.

(See Answer 2)

Example

Find the volume of a cone of base radius R and height H.

(See Answer 3)

Example

Find the volume of a square pyramid of base edge S and height H.
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(See Answer 4)

Example

Show that the volume of a generalized cone of base area B and height H is 1
3BH. Explain the reason for

the factor of 1
3 .

(See Answer 5)
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32.2 EXERCISES

• Find the volume of the following solid: for 1 ≤ x < ∞, the intersection of the this solid with the plane

perpendicular to the x-axis is a circular disc of radius e−x .

• The base of a solid is given by the region lying between the y-axis, the parabola y = x2, and the line

y = 16 in the first quadrant. Its cross-sections perpendicular to the y-axis are equilateral triangles. Find

the volume of this solid.

• The base of a solid is given by the region lying between the y-axis, the parabola y = x2, and the line

y = 4. Its cross-sections perpendicular to the y-axis are squares. Find the volume of this solid.

• Find the volume of the solid whose base is the region enclosed by the curve y = sin x and the x-axis from

x = 0 to x = π and whose cross-sections perpendicular to the x-axis are semicircles.

• Consider a cone of height h over a circular base of radius r . We computed the volume by slicing parallel to

the base. What happens if instead we slice orthogonal to the base? What is the volume element obtained

by taking a wedge at angle θ of thickness dθ ?

• Consider the following solid, defined in terms of polar coordinates: 0 ≤ r ≤ R; 0 ≤ θ ≤ 2π; 0 ≤ z ≤ r .

Can you describe this shape? Compute its volume.

• Consider the following solid, defined in terms of polar coordinates: 0 ≤ r ≤ R; 0 ≤ θ ≤ 2π; 0 ≤ z ≤ θ.

Can you describe this shape? Compute its volume.

• Challenge: compute the volume intersection of the (infinite) cylinders of radius R centered along the x

and y axes in 3-d. That is, compute the volume of intersection of

x2 + z2 ≤ R2

x2 + z2 ≤ R2

in the 3-dimensional (x, y , z) space.

32.3 Answers to Selected Examples

1. First, consider making a slice perpendicular to the base of the cylinder:
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This gives a rectangular slice whose height is H, the same as the cylinder. The width of the rectangle

can be determined by looking at an overhead view of the cylinder. Let x be the distance of the slice from

the center of the cylinder (so x ranges from −R to R as the slice sweeps across the cylinder):

Doing a little algebra, we find that the width of the rectangle is 2
√
R2 − x2. Finally, the thickness of the

slice is dx , and so the volume element in this case is

dV = 2H
√
R2 − x2 dx.

Integrating this requires the trigonometric substitution x = R sin θ. There are easier volume elements we

could choose, as we shall see.

Another way to slice is to make cuts parallel to the base of the cylinder. Let y denote the distance of the

slice from the base of the cylinder:

Then each slice is a circle of radius R and thickness dy . Thus

dV = πR2 dy,

137



and y ranges from 0 to H, so the volume is

V =

∫
dV

=

∫ H

y=0

πR2 dy

= πR2y

∣∣∣∣H
y=0

= πR2H.

Another possible choice is a wedge shaped volume element. Let θ be the angle that the wedge forms with

a fixed axis (so θ ranges from 0 to 2π):

Here, the area of the sector of the circle is 1
2R

2 dθ. Thus the volume of the wedge is

dV =
1

2
R2H dθ.

Thus the volume is

V =

∫
dV

=

∫ 2π

θ=0

1

2
R2H dθ

=
1

2
R2Hθ

∣∣∣∣2π
θ=0

= πR2H.

One final option is to use cylindrical shells. Let t be the radius of the shell, so that t ranges from 0 to R

as the shells sweep through the cylinder.
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The height of the cylindrical shell is H and the thickness of the shell is dt. Recalling that the lateral

surface area of a cylinder is 2πRH, we have

dV = 2πtH dt.

Integrating gives that the volumes is

V =

∫
dV

=

∫ R

t=0

2πtH dt

= 2πH
t2

2

∣∣∣∣R
t=0

= πR2H.

(Return)

2. Let x be the distance from the center of the disc to the center of the sphere (so x ranges from −R to R

as the discs sweep across the sphere). Then drawing a right triangle shows that the radius of the disc is√
R2 − x2 (since the radius of the sphere is R). See the diagram below:
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The thickness of the disc is dx , and so the volume of the disc is π(
√
R2 − x2)2dx (the area of the disc

times its thickness), and so the volume of the sphere is

V =

∫
dV

=

∫ R

x=−R
π(R2 − x2)dx

= π

(
R2x −

x3

3

) ∣∣∣∣R
x=−R

= π

((
R3 −

R3

3

)
−
(
−R3 +

R3

3

))
=

4

3
πR3.

For the cylindrical shell, let t be the radius of the cylinder (so t ranges from 0 to R as the cylinders

sweep out the sphere). Then by drawing in a right triangle, one finds that the height of the cylinder is

2
√
R2 − t2:

Recall that the lateral surface area of a cylinder with radius r and height h is 2πrh. Thus, the lateral

surface area of the cylinder is 4πt
√
R2 − t2. The thickness of the shell is dt, and so the volume element

is 4πt
√
R2 − t2dt. It follows (after making the u-substitution u = R2−t2) that the volume of the sphere

is

V =

∫
dV

=

∫ R

t=0

4πt
√
R2 − t2dt

= 4π

∫ 0

u=R2

−1

2

√
udu

= −2π

(
2

3
u3/2

∣∣∣∣0
u=R2

)

= −2π

(
0−

2

3
R3

)
=

4

3
πR3.
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Finally, for the spherical shell, let ρ denote the radius of the spherical shell:

Recall that the surface area of a sphere of radius ρ is 4πρ2. Therefore, the volume of the spherical shell

(i.e. our volume element) is

dV = 4πρ2 dρ.

Note that to sweep over the entire sphere, ρ must range from 0 to R. Therefore,

V =

∫
dV

=

∫ R

ρ=0

4πρ2 dρ

= 4π
1

3
ρ3

∣∣∣∣R
ρ=0

=
4

3
πR3.

(Return)

3. The easiest choice for volume element is a slice parallel to the base of the cone, which gives a disc. Let

y be the distance from the tip of the cone to the center of the disc (so y ranges from 0 to H as the disc

sweeps across the cone), and x be the radius of the disc:
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The volume element is the area of the disc, πx2, times the thickness of the disc, dy . It remains to find x

in terms of y . In the cutaway in the figure on the right above, one sees that by similar triangles, x
y = R

H ,

and so x = R
H y . Thus, the volume element is

dV = πx2dy

= π

(
R

H
y

)2

dy.

Thus, the volume of the cone is

V =

∫
dV

=

∫ H

y=0

π
R2

H2
y2dy

=
πR2

H2

(
y3

3

∣∣∣∣H
y=0

)

= π
R2

H2
·
H3

3

=
1

3
πR2H.

(Return)

4. Again, use slices parallel to the base. Let y be the distance from the tip of the cone to the center of the

slice (so y ranges from 0 to H), and let x be half of the side length of the slice.

As shown in the above cutaway, one finds by similar triangles that x
y = S/2

H , and so x = S
2H y . Therefore,

the area of a slice is (2x)2 = S2

H2 y
2, and the thickness of a slice is dy , so the volume element is

dV =
S2

H2
y2dy.
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And so the volume of the pyramid is

V =

∫
dV

=

∫ H

y=0

S2

H2
y2dy

=
S2

H2

(
y3

3

∣∣∣∣H
y=0

)

=
S2

H2
·
H3

3

=
S2H

3
.

(Return)

5. Let y be the distance from the tip of the cone to the slice.

Because the linear dimensions of the slice grow proportionally with y (e.g. the length of the slice is y
H

times the length of the base), the area of the slice will grow proportionally with the square of y . This

means that

Area of the slice =
( y
H

)2

B

Thus, the volume element is dV = B y2

H2 dy , and it follows that the volume of the cone is

V =

∫
dV

=

∫ H

y=0

B
y2

H2
dy

=
B

H2

(
y3

3

∣∣∣∣H
y=0

)

=
B

H2
·
H3

3

=
1

3
BH.

The factor of 1
3 comes from the fact that the volume element is proportional to the square of y , hence

the integral has a y2, which produces a factor of 1
3 by the power rule.

(Return)
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33 Volumes Of Revolution

33.1 Volume element for solid of revolution

Consider a region R in the plane and a line L. The solid of revolution of R about the axis L is the solid which

results from taking the region R and revolving it around the line L:

(Solid of Revolution Animated GIF)

The result is typically something doughnut shaped. The question of this module is to find the volume of the

solid:

The method is the same as the previous modules: find the volume element (the contribution of a small slice of

the region to the total volume) and integrate. Just as area can be computed using vertical or horizontal slices,

volume can be computed using corresponding methods: shells or washers, respectively.

The basic outline of finding the volume element for a solid of revolution is

1. Find a convenient area element for the region R in the plane

2. Determine the volume as that area element gets revolved around the axis L.
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33.2 Cylindrical shells

When the area element is parallel to the axis of rotation, the volume element is a cylindrical shell. Here, the

region is bounded by two parabolas. The natural area element for such a region is a vertical rectangle (shown

in red). As the region is revolved about the y -axis, the volume element traces out a cylindrical shell, whose

volume becomes the volume element of the solid of revolution.

Recall that a cylinder has lateral surface area 2πrh. The thickness of the cylindrical shell is dx (if the axis of

rotation is a vertical line) or dy (if the axis of rotation is a horizontal line). Here r and h will generally be

functions of x or y (again, depending on whether the axis of rotation is vertical or horizontal).

If a horizontal rectangle is the natural area element (for instance, the region between two horizontal parabolas),

and the axis of revolution is the x-axis, then cylindrical shells again arise naturally as the volume element:
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Example

Suppose the region bounded by y = 3x − x2 and y = x is revolved about the y -axis. What is the volume of

the resulting solid? (See Answer 1)

33.3 Washers

When the area element is perpendicular to the axis of rotation, the volume element is a washer. So when the

area element is a horizontal rectangle (as in a region bounded by horizontal parabolas) and the axis of revolution

is vertical, the region traced out by the rectangle is a washer:

A washer is just an annulus (a circle with a circle cut out of it) which has been thickened. The volume of the

washer is the area of the annulus times the thickness of the washer. The area of the annulus is πR2 − πr2,

where R is the radius of the outer circle and r is the radius of the inner circle. The thickness of the washer is

dx or dy (depending on the orientation of the washer. Thus, the volume element when using washers is

dV = π(R2 − r2) dx or dy.

Example

Given the region bounded by y = 3x − x2 and y = x , find the volume of the solid resulting from revolving

the region about the x-axis. (See Answer 2)

33.4 Additional Examples

Example

Find the volume of a doughnut formed by rotating a disc of radius a about the y-axis. Let the radius of the

doughnut be R, as shown in this cutaway:
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Use a vertical area element (which leads to a cylindrical shell). (See Answer 3)

Example

Compute the volume of the doughnut again, this time using a horizontal area element (which leads to a

washer). (See Answer 4)

33.5 EXERCISES

• Let D be the region bounded by the curve y = x3, the x-axis, the line x = 0 and the line x = 2. Find the

volume of the region obtained by revolving D about the x-axis.

• Let D be the same region as above. What is the volume of the region formed by rotating this D about

the line x = 3?

• Let D be the region between the curve y = −(x − 2)2 + 1 and the x-axis. Find the volume of the region

obtained by revolving D about the y-axis.

• Find the volume obtained by revolving the region between the curves y = x3 and y = 3
√
x in the first

quadrant about the x-axis.

• Let D be the region under the curve y = ln
√
x and above the x-axis from x = 1 to x = e. Find the

volume of the region obtained by revolving D about the x-axis.

• Let D be the region bounded by the graph of y = 1− x4, the x-axis and the y-axis in the first quadrant.

Which of the following integrals can be used to compute the volume of the region obtained by revolving

D around the line x = 5?

• Challenge: compute the volume of the region obtained by rotating the disc x2 + y2 ≤ ε2 about the axis

given by y = 1− x for ε ≤ 1
2 .

• Let D be the region under the curve
√
x − 1 above the x-axis from x = 1 to x = 2. Compute the volume

of solid obtained by rotating D about the x-axis. Compute the volume twice, using both methods.

33.6 Answers to Selected Examples

1. The first step in such a calculation is to draw a decent picture of the region. Then determine whether a

vertical or horizontal rectangle would make the best area element. In this case, a vertical rectangle is the

best choice.

Since a vertical rectangle is being revolved about a vertical axis, the result is a cylindrical shell:
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The radius of the shell is x (the distance from the y -axis), and the height of the shell is the distance

from the top curve to the bottom curve: h = (3x − x2)− x = 2x − x2. The thickness of the shell is dx .

Recalling that the surface area of a cylinder is 2πrh, it follows that the volume element is just the surface

area multiplied by the thickness dx :

dV = 2πrh dx

= 2πx(2x − x2) dx.

A little algebra shows that the intersections occur at x = 0 and x = 2, so the volume is

V =

∫
dV

=

∫ 2

x=0

2πx(2x − x2) dx

= 2π

∫ 2

x=0

(2x2 − x3) dx

= 2π

(
2

3
x3 −

1

4
x4

) ∣∣∣∣2
x=0

=
8

3
π.

(Return)

2. As in the previous example, the optimal area element is a vertical rectangle. A vertical rectangle revolved

about a horizontal axis results in a washer:

148



The outer radius R is the upper curve: R = 3x − x2, and the inner radius r is the inner curve: r = x .

The thickness of the washer is dx , and so

dV = π(R2 − r2) dx

= π((3x − x2)2 − x2) dx.

As in the last example, the intersections are at x = 0 and x = 2, so

V =

∫
dV

=

∫ 2

x=0

π(9x2 − 6x3 + x4 − x2) dx

= π

(
8

3
x3 −

3

2
x4 +

1

5
x5

) ∣∣∣∣2
x=0

=
56

15
π.

(Return)

3. First, suppose we use a vertical area element. Since we are rotating about a vertical axis, the area element

and axis of rotation are parallel, and so the resulting volume element is a cylindrical shell. Let x be the

distance of the area element (the rectangle) from the y-axis. This also happens to be the radius of the

cylindrical shell:
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The equation of the circle is

(x − R)2 + y2 = a2,

and solving for y gives

y = ±
√
a2 − (x − R)2.

Therefore, the height of the area element (and hence the height of the cylindrical shell) is

2
√
a2 − (x − R)2.

Now, the volume of the cylindrical shell (our volume element) is

dV = 2πrh dx

= 2πx(2
√
a2 − (x − R)2) dx

= 4πx
√
a2 − (x − R)2 dx.

Note that x ranges from R − a to R + a as it sweeps across the circle. Therefore the volume is

V =

∫
dV

=

∫ R+a

x=R−a
4πx

√
a2 − (x − R)2 dx.

This is a bit messy, but with a substitution of

u = x − R
du = dx,

we find ∫ R+a

x=R−a
4πx

√
a2 − (x − R)2 dx =

∫ a

u=−a
4π(u + R)

√
a2 − u2 du

=

∫ a

u=−a
4πu

√
a2 − u2 du +

∫ a

u=−a
4πR

√
a2 − u2 du.

Here, we have used linearity to split the integral into two integrals. Notice that the first integrand is an

odd function of u, and since it is integrated over a symmetric interval, the first integral is 0:∫ a

u=−a
4πu

√
a2 − u2 du = 0.

The second integral can be found by noting that∫ a

u=−a
2
√
a2 − u2 du

gives the area of a disc of radius a (this was an integral done in the simple areas module). Therefore, the

volume is ∫ a

u=−a
4πR

√
a2 − u2 du = 2πR

∫ a

u=−a
2
√
a2 − u2 du

= 2πR(πa2)

= 2π2Ra2.

(Return)
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4. Carefully drawing and labeling the outer and inner radii of the washer gives the following diagram:

The outer and inner radii can be found by solving the equation of the circle for x :

(x − R)2 + y2 = a2 ⇒ x = R ±
√
a2 − y2.

Thus, the volume element is the area of the washer times its thickness, dy . Computing this and doing a

little algebra gives

dV =
[
π(R +

√
a2 − y2)2 − π(R −

√
a2 − y2)2

]
dy

= 4πR
√
a2 − y2 dy.

Note that y ranges from −a to a, and so the volume integral is the same one arrived at above:

V =

∫
dV

=

∫ a

y=−a
4πR

√
a2 − y2 dy

= 2πR(πa2)

= 2π2Ra2.

(Return)
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34 Volumes In Arbitrary Dimension

The motivation for this module is to find the volume (often referred to as hypervolume) of an object in dimension

n. This has physical meaning for n ≤ 3, but what happens for n ≥ 4?

34.1 The cube in dimension n

Consider the unit cube (i.e. the cube of side length 1) in n dimensions, sometimes called the n-hypercube or

just the n-cube. Formally, this is defined to be the set of n-tuples (i.e. lists of length n) (x1, x2, . . . , xn) such

that 0 ≤ xi ≤ 1 for all 1 ≤ i ≤ n. For n = 0, 1, 2, 3, these are familiar figures: the point, line segment, square,

and cube, respectively.

Now, consider some of the various measurements for each of these cubes.

Volume of the cube

For n = 0, the cube is just a point, and volume is defined to just be the number of points. So a single point

has volume 1.

For n = 1, the cube is a line segment. The volume in one dimension is just length, so the one dimension cube

has volume 1.

For n = 2, the cube is a square of side length 1. In two dimensions, volume is area, so the cube in two dimensions

has volume w × h = 1× 1 = 1.

For n = 3, the cube is a (traditional) cube of side length 1, which has (traditional) volume l×w×h = 1×1×1 = 1.

For higher values of n, this pattern continues. The intuition is that each additional dimension adds an extra

factor of 1, thus the volume of each unit n-cube is 1.
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Surface area of cubes

Consider the surface area of the cube in dimension n. As with volume, this has physical meaning for n = 2 and

n = 3.

For n = 2, the surface area of a square is really its perimeter, which is 4.

For n = 3, the surface area is the total area of the faces which bound the cube. There are 6 faces each with

area 1, so the surface area is 6.

In general, the n dimension cube will have 2n boundary faces, and each face is a cube of dimension n − 1, so

the surface area (really the hypervolume of the boundary) is 2n.

Other features

The diagonal of the n-cube can be defined to be the distance from (0, 0, . . . , 0) to (1, 1, . . . , 1). Using the

distance formula, one finds that the diagonal of the n-cube is
√
n.

The number of corners is fairly easy to count. For n = 0, 1, 2, 3, the number of corners is 1, 2, 4, and 8

respectively. Since the n-cube can be thought of as two copies of the (n− 1)-cube, one can show by induction

that there are 2n corners in the n-cube.

34.2 Simplex

A simplex is a generalization of a triangle or a pyramid. In dimension n, the simplex is defined to be the set

of n-tuples (x1, x2, . . . , xn) such that 0 ≤ xi ≤ 1 and
∑
xi ≤ 1. This can be thought of as the corner of

the n dimension cube where the sum of the coordinates is less than 1. Here are the simplices of dimension

n = 0, 1, 2, 3:

34.3 Volume of spheres in arbitrary dimension

Now, consider a sphere of radius r in n dimensions. This is the set of points (x1, x2, . . . , xn) such that x2
1 +

x2
2 + . . . + x2

n ≤ r2. Let Vn(r) be the volume of the sphere of radius r in n dimensions (as above, volume

means length, area, volume, hypervolume for n = 1, 2, 3, . . ., respectively). With some careful integration and

induction, one finds that

Vn(r) =

{
πk

k! r
n if n = 2k

2nπkk!
n! rn if n = 2k + 1

.

Now, note that as n → ∞ (and r stays fixed), the volume goes to 0 (since factorial grows faster than

exponentials).

153



34.4 EXERCISES

• Consider a four-dimensional box (or “rectangular prism”) with side-lengths 1, 1/2, 1/3, and 1/4. What

is the 4-dimensional volume of this box?

• What is the “diameter” – i.e., the farthest distance between two points – in this 4-d box? Hint: think in

terms of diagonals.

• High-dimensional objects are everywhere and all about. Let’s consider a very simple model of the space

of digital images. Assume a planar digital image (such as that captured by a digital camera), where each

pixel is given values that encode color and intensity of light. Let’s assume that this is done via an RGB

(red/green/blue) model. Though there are many RGB model specifications, let us use one well-suited for

mathematics: to each pixel on associates three numbers (R,G,B), each taking a value in [0, 1].

Since the red/green/blue values are independent, each pixel has associated to it a 3-d cube of possible

color values. Consider a (fairly standard) 10-megapixel camera. If I were to consider the “space of all

images” that my camera can capture, what does the space look like? How many dimensions does it have?

Note: there’s no calculus in this problem...just counting!

• Consider an n-dimensional “hypercube” C of all side-lengths equal to 1. Its n-dimensional volume is, clearly,

1. Now consider what happens when you shrink the hypercube’s side-lengths by 1 percent (concentrically,

so that the shrunken cube has the same center as the original) and remove it from the original cube.

By subtracting the n-dimensional volume of this slightly smaller hypercube, conclude how much volume

remains in the 1-percent outer “shell.”

• In the previous question, what happens to the volume of the 1-percent shell as n →∞?

• We have seen that the n-dimensional volume of a unit radius ball in dimension n converges to zero as

n →∞. But what about a really large ball? For a ball of radius R = 1010 meters in dimension n, what is

the limit as n →∞ of its volume? (in unit of meters-to-the-nth)

• For the brave: so, as n →∞, the volume of the n-ball all concentrates near the surface shell. OK, you’ve

got that. Now answer this: what proportion of the volume is concentrated along the “equatorial plane”?

Let’s make that specific. Recall, we computed the volume Vn as In · Vn−1, where

In =

∫ π
2

θ=− π
2

cosn θ dθ.

We can compute the volume of the equatorial slice of thickness 2ε (for some small but fixed ε > 0) as

Vn,2ε = Vn−1

∫ ε

−ε
cosn θ dθ.

So, here is the (hard!) problem. Compute the limit as n →∞ of the ratio of Vn,2ε to Vn:

lim
n→∞

Vn,2ε
Vn

= lim
n→∞

1

In

∫ ε

−ε
cosn θ dθ.

If you can do this (a very big if...) you will get a surprise...
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35 Arclength

Consider the graph of a function y = f (x) for a ≤ x ≤ b. The purpose of this module is to find the length of

this piece of the curve, known as the arclength of the function f from a to b.

As in previous modules, the basic method is to find the arclength element dL and then integrate it:

L =

∫
dL.

By zooming in on a portion of the curve, it begins to look like a straight line. Then one can express dL in terms

of the infinitesimal horizontal change dx and vertical change dy :

Now, by the Pythagorean theorem one finds that dL =
√
dx2 + dy2. A little algebra and the chain rule gives

that

dL =
√
dx2 + dy2

=

√
dx2 +

(
dy

dx
dx

)2

=

√
1 +

(
dy

dx

)2

dx

=
√

1 + (f ′(x))2dx.

So the arclength of the function f from a to b is given by

L =

∫ b

a

√
1 + (f ′(x))2dx.
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Example

Find the arclength of the curve

y = ln sin x ;
π

4
≤ x ≤

π

2
.

Hint: recall the facts that

1 + cot2 x = csc2 x∫
csc x dx = − ln | csc x + cot x |+ C.

(See Answer 1)

Example

Find the arclength of the curve

y = x2 −
1

8
ln(x); 1 ≤ x ≤ 4.

(See Answer 2)

35.1 Parametric curves

If a curve is defined parametrically, i.e. x = x(t) and y = y(t) for a ≤ t ≤ b, then the arclength element can

be written as

dL =
√
dx2 + dy2

=

√(
dx

dt
dt

)2

+

(
dy

dt
dt

)2

=

√(
dx

dt

)2

+

(
dy

dt

)2

dt

=
√
x ′(t)2 + y ′(t)2dt.

So the arclength of a parametric curve (x(t), y(t)) for a ≤ t ≤ b is given by

L =

∫ b

a

√
x ′(t)2 + y ′(t)2dt.

Example

Find the arclength for a circle of radius r . (See Answer 3)

Example

Find the arclength for the spiral x(t) = t cos(t), y(t) = t sin(t) for 0 ≤ t ≤ 2π. (See Answer 4)
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35.2 Additional Examples

Example

Compute the arclength of the curve

y =
2

3
x3/2; 0 ≤ x ≤ 3

(See Answer 5)

Example

A catenary is the curve that is formed by hanging a cable between two towers. It is a fact that the rate of

change of the slope of a hanging cable is proportional to the rate of change of arclength with respect to x .

Mathematically,
d

dx

(
dy

dx

)
= κ ·

dL

dx
,

for some constant κ. Use this fact to find the equation of the catenary. Then find the length of the catenary

for −l ≤ x ≤ l . (See Answer 6)

Example

Show that the spiral

x =
1

t
cos t

y =
1

t
sin t

for 2π ≤ t has infinite arclength. (See Answer 7)

35.3 EXERCISES

• Compute the arclength of y = x3

3 + 1
4x , from x = 1 to x = 2.

35.4 Answers to Selected Exercises

1. Computing the arclength element from the above formula gives

dL =

√
1 +

(
dy

dx

)2

dx

=

√
1 +

(
1

sin x
cos x

)2

dx

=
√

1 + cot2 x dx

=
√

csc2 x dx

= csc x dx.
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Therefore, we find that the arclength is

L =

∫
dL

=

∫ π/2

x=π/4

csc x dx

= − ln | csc x + cot x |
∣∣∣∣π/2

x=π/4

= − ln(1 + 0) + ln(
√

2 + 1)

= ln(1 +
√

2).

(Return)

2. First, one finds dy
dx = 2x − 1

8x . So, with some careful algebra one sees that√
1 +

(
dy

dx

)2

=

√
1 +

(
2x −

1

8x

)2

=

√
1 + (2x)2 − 2

2x

8x
+

1

(8x)2

=

√
1 + (2x)2 −

1

2
+

1

(8x)2

=

√
(2x)2 +

1

2
+

1

(8x)2

Now note that by reversing the cancellation done in an earlier step when simplifying −2 2x
8x = − 1

2 , one

finds that 1
2 = 2 2x

8x . And so, continuing the computation, one finds√
1 +

(
dy

dx

)2

=

√
(2x)2 + 2

2x

8x
+

1

(8x)2

=

√(
2x +

1

8x

)2

= 2x +
1

8x
.

Thus, dL =
(

2x + 1
8x

)
dx , and it follows that

L =

∫
dL

=

∫ 4

x=1

(
2x +

1

8x

)
dx

=

(
x2 +

1

8
ln(x)

) ∣∣∣∣4
x=1

= (16 +
1

8
ln(4))− (1 +

1

8
ln(1))

= 15 +
ln(4)

8
.
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(Return)

3. A simple parametrization for the circle of radius r is

x = r cos t

y = r sin t.

Note that t ranges from 0 to 2π. Using the above formula, we find that the arclength element is

dL =

√(
dx

dt

)2

+

(
dy

dt

)2

dt

=
√

(−r sin t)2 + (r cos t)2 dt

=

√
r2(sin2 t + cos2 t) dt

=
√
r2 dt

= r dt.

(we used the Pythagorean identity sin2 t + cos2 t = 1 from line three to line four). Therefore,

L =

∫
dL

=

∫ 2π

t=0

r dt

= r · t
∣∣∣∣2π
t=0

= 2πr,

as desired.

(Return)

4. First, compute x ′(t) = cos(t)− t sin(t) and y ′(t) = sin(t) + t cos(t). Then√
x ′(t)2 + y ′(t)2 =

√
(cos(t)− t sin(t))2 + (sin(t) + t cos(t))2

=

√
cos2(t)− 2t cos(t) sin(t) + t2 sin2(t) + sin2(t) + 2t cos(t) sin(t) + t2 cos2(t)

=
√

1 + t2.

Thus, dL =
√

1 + t2dt. So one finds that

L =

∫ 2π

0

√
1 + t2dt.

This integral was computed in the Trigonometric Substitution module. The answer becomes

L =

(
1

2
sinh−1(t) +

1

2
t
√

1 + t2

) ∣∣∣∣2π
0

=
1

2
sinh−1(2π) + π

√
1 + 4π2.

(Return)
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5. Computing the arclength element, we find

dL =

√
1 +

(
dy

dx

)2

dx

=

√
1 +
√
x

2
dx

=
√

1 + x dx.

Therefore, the arclength is

L =

∫
dL

=

∫ 3

x=0

√
1 + x dx

=
2

3
(1 + x)3/2

∣∣∣∣3
x=0

=
16

3
−

2

3

=
14

3
.

(Return)

6. Using the formula for the arclength element, the fact tells us that

d

dx

(
dy

dx

)
= κ

√
1 +

(
dy

dx

)2

Now, making a substitution of

u =
dy

dx

simplifies the equation to become
du

dx
= κ

√
1 + u2.

This is a separable differential equation. Separating and integrating gives∫
du√

1 + u2
=

∫
κdx.

The left side can be handled with either a trigonometric or hyperbolic trigonometric substitution. We take

the latter approach, and let

u = sinh t

du = cosh t dt.
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So we have (remembering the Pythagorean identity for hyperbolic trigonometric functions from the

trigonometric substitution module) ∫
du√

1 + u2
=

∫
cosh t√

1 + sinh2 t
dt

=

∫
cosh t√
cosh2 t

dt

=

∫
cosh t

cosh t
dt

=

∫
dt

= t

= arcsinh u

(we leave the constant of integration off for now since we will be integrating on the right side as well).

On the right side, we have ∫
κdx = κx + C.

Putting it together, we have

u = sinh(κx + C).

If we pick our coordinates so that x = 0 occurs at the low point of the catenary, then note that at this

point, we have

u =
dy

dx
= 0,

since the slope of the catenary is 0 at the low point. Using this fact and plugging in x = 0 into the earlier

equation gives

u = sinh(C) = 0

and so C = 0. This gives

u =
dy

dx
= sinh(κx).

Now integrating both sides gives

y =
1

κ
cosh(κx) + C,

where C = y0 is the y value of the low point of the catenary.
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To find the length of the catenary, we have

L =

∫
dL

=

∫ l

x=−l

√
1 +

(
dy

dx

)2

dx

=

∫ l

x=−l

√
1 + sinh2 κx dx

=

∫ l

x=−l
coshκx dx

=
1

κ
sinhκx

∣∣∣∣l
x=−l

=
1

κ
(sinhκl − sinhκ(−l))

=
2

κ
sinhκl.

since hyperbolic sine is an odd function. This grows very quickly as l increases, because

2

κ
sinhκl ≈

1

κ
eκl .

(Return)

7. Computing

dx

dt
=
−t sin t − cos t

t2

dy

dt
=
t cos t − sin t

t2
.

Plugging these into the formula for the arclength of a parametric curve and noting the cancellation of

cross terms, we have

dL =

√(
dx

dt

)2

+

(
dy

dt

)2

dt

=

√(
−t sin t − cos t

t2

)2

+

(
t cos t − sin t

t2

)2

dt

=

√
t2 ·

sin2 t + cos2 t

t4
+

cos2 t + sin2 t

t4
dt

=

√
1

t2
+

1

t4
dt

=

√
t2 + 1

t2
dt.

Therefore, the arclength is ∫ ∞
t=2π

√
t2 + 1

t2
dt.
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This integral is difficult to compute exactly, but we only want to show it diverges, which is not as difficult.

Note that √
t2 + 1

t2
≥
√
t2

t2
=
t

t2
=

1

t
.

And so by the dominance of definite integrals,∫ ∞
t=2π

√
t2 + 1

t2
dt ≥

∫ ∞
t=2π

1

t
dt

but the integral on the right diverges to infinity by our earlier discussions of p-integrals. Thus, our integral

on the left, being larger, also diverges to infinity.

(Return)
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36 Surface Area
This module deals with the surface area of solids of revolution. Consider the portion of a curve y = f (x) for

a ≤ x ≤ b revolved about a horizontal axis to create a solid. In earlier modules the goal was to find the volume

of such a solid, but now the focus is on finding the surface area. As always, the method will be to find the

surface area element and integrate it. The surface area element which works well is the thin band shown here:

36.1 Surface area of a cone

The first step towards finding the surface area element is to find the lateral surface area of a more simple solid:

the cone. Consider a cone whose base has radius r and lateral height R (the lateral height is the distance from

the tip of the cone to a point on the circumference of the base; see the left diagram below).
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To find the area, consider cutting the cone along the straight dotted line from base circumference to tip and

unrolling the cone. The result is a portion of a circle whose radius is R, as shown on the right in the diagram

above. Note that the circumference of the base of the cone, 2πr , becomes the length of arc of the unrolled

cone. This means that the unrolled cone is a fraction of the full circle of radius R, and that fraction is 2πr
2πR (the

ratio of the circumference of the partial circle to the circumference of the whole circle). Thus the surface area

of the cone is 2πr
2πRπR

2 = πrR.

The surface area of a cone can be used to find the area of a frustum of a cone whose top radius is r1, bottom

radius is r2, and lateral height l (as in the below diagram). The area of this frustum is π(r1 + r2)l . Expressed

another way, the area is 2πr l , where r = r1+r2
2 is the average of the two radii of the frustum.

36.2 Surface area element

Now, the surface area element can be found. When the curve is partitioned into sufficiently small pieces, the

surface area element is just the area of the frustum formed by rotating the arclength element about the axis

(see the diagram):

Thus, the surface area element is dS = 2πrdL, where r is the distance from the curve to the axis of rotation,

and dL is the arclength element (i.e. dL =
√

1 + (f ′(x))2dx). In the (common) case where the axis of rotation

is the x-axis, one finds that r = f (x).
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Thus, the surface area resulting from revolving the curve y = f (x) for a ≤ x ≤ b about the x-axis is given by

S =

∫ b

a

2πrdL

= 2π

∫ b

a

f (x)
√

1 + (f ′(x))2dx.

Example

Consider the sphere of radius r . If the sphere is cut into slices of equal width, which slice has the most

surface area?

(See Answer 1)

Example

Consider the surface generated by revolving the curve y = 1
xp for x ≥ 1 about the x-axis.

Find the values of p for which the surface has finite surface area. Then find the values of p for which the

solid of revolution has finite volume. (See Answer 2)
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36.3 Rotations about the y-axis

Suppose we want to know the surface area which results from revolving the curve

y = f (x); a ≤ x ≤ b

about the y -axis. There are two main ways one can go about finding this surface area:

1. Express everything as a function of y (including range of inputs), and then use the above formula but

with the roles of x and y switched.

2. Leave things in terms of x , but adjust the formula slightly.

The first method expresses the curve as

x = f −1(y); c ≤ y ≤ d,

where c = f −1(a) and d = f −1(b). Then express the surface area element as

dS = 2πr dL

= 2πf −1(y)

√
1 +

(
dx

dy

)2

dy.

Putting it together, the surface area can be expressed as

S =

∫
dS

= 2π

∫ d

y=c

f −1(y)

√
1 +

(
dx

dy

)2

dy.

Again, this is really just a reuse of the original formula, with the roles of x and y flipped.

The second method is sometimes simpler to apply because it involves less algebra. The main observation to

make is that the radius in the surface area element is simply x when the curve is revolved around the y -axis:
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So the surface area element can be written

dS = 2πr dL

= 2πx

√
1 +

(
dy

dx

)2

dx.

This integral is with respect to x , and so it should be integrated over the original range of x :

S = 2π

∫ b

x=a

x

√
1 +

(
dy

dx

)2

dx.

Example

Compute the surface area of the surface resulting from revolving the curve

y =
1

2
x2; 0 ≤ x ≤ 4.

about the y -axis:

(See Answer 3)
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36.4 EXERCISES

• Compute the surface area resulting from revolving the curve f (x) = cosh(x), 0 ≤ x ≤ 2 about the x-axis.

36.5 Answers to Selected Examples

1. If we center the sphere at the origin, we can think of the sphere as the surface of revolution obtained by

revolving the curve

y =
√
r2 − x2; −r ≤ x ≤ r

about the x-axis. First, we compute the arclength element:

dL =

√
1 +

(
dy

dx

)2

dx

=

√
1 +

(
−x√
r2 − x2

)2

dx

=

√
1 +

x2

r2 − x2
dx

=

√
r2

r2 − x2
dx

=
r√

r2 − x2
dx.

Plugging this into the surface area element, we find

dS = 2πy dL

= 2π
√
r2 − x2 ·

r√
r2 − x2

dx

= 2πr dx.

Note that this is independent of x! This means that every slice of the sphere has equal surface area.

For example, if we were to slice the sphere into four slices of equal thickness, then a middle slice goes

from x = 0 to x = r
2 , and its surface area∫ r/2

x=0

2πr dx = 2πrx

∣∣∣∣r/2

x=0

= 2πr ·
r

2

= πr2.

The end-cap slice, on the other hand, goes from x = r
2 to x = r , so its surface area is∫ r

x=r/2

2πr dx = 2πrx

∣∣∣∣r
x=r/2

= 2πr
(
r −

r

2

)
= 2πr ·

r

2

= πr2.
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So we see that the pieces have equal surface area.

(Return)

2. The surface area, in terms of p, is

S = 2π

∫ ∞
1

1

xp

√
1 + (−px−p−1)2dx

= 2π

∫ ∞
1

1

xp

√
1 +

p2

x2p+2
dx

Unfortunately, this integral is not computable using standard methods, but we can use a binomial expansion

to determine the leading order term of the integrand, which will tell us whether the integral converges or

not. We see that

1

xp

√
1 +

p2

x2p+2
=

1

xp

(
1 +

p2

x2p+2

)1/2

=
1

xp

(
1 +

1

2
·
p2

x2p+2
+O

(
1

x4p+4

))
=

1

xp
+O

(
1

x3p+2

)
.

Therefore, the leading order term in this integral is 1
xp , which we know converges for p > 1 and diverges

for p ≤ 1 (from our study of p-integrals). So this surface of revolution has finite area if and only if p > 1.

Turning to the volume of this solid, it is best to use slices perpendicular to the x-axis, which leads to discs

whose radius is y :

The volume element is therefore

dV = πy2 dx

= π

(
1

xp

)2

dx

= π ·
1

x2p
dx.
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Thus, the volume is

V =

∫
dV

= π

∫ ∞
x=1

1

x2p
dx.

We know this is convergent if 2p > 1, i.e. p > 1
2 . So the volume of the solid is finite if p > 1

2 .

This leads to the surprising fact that for
1

2
< p ≤ 1,

the volume of the solid is finite, but the surface area is infinite.

(Return)

3. Using the first method requires some algebra. The curve becomes

x =
√

2y ; 0 ≤ y ≤ 8.

So the area element is

dS = 2πr dL

= 2πr

√
1 +

(
dx

dy

)2

dy

= 2π
√

2y

√
1 +

(
1√
2y

)2

dy

= 2π
√

2y + 1 dy.

So the surface area is

S =

∫
dS

= 2π

∫ 8

y=0

√
2y + 1 dy

= 2π(2y + 1)3/2 ·
1

3

∣∣∣∣8
y=0

=
2

3
π
(

173/2 − 1
)
.

Using the second method, we have

dS = 2πr dL

= 2πx

√
1 +

(
dy

dx

)
dx

= 2πx
√

1 + x2 dx.
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So the surface area is

S =

∫
dS

= π

∫ 4

x=0

2x
√

1 + x2 dx

= π(1 + x2)3/2 ·
2

3

∣∣∣∣4
x=0

=
2

3
π
(

173/2 − 1
)
.

So we get the answer with (perhaps) slightly less algebra involved.

(Return)
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37 Work
Recall that work is the amount of energy required to perform some action. When the amount of force is

constant, work is simply

work = force × distance.

For example, if a book weighing 22 Newtons (about 5 pounds) is lifted 2 meters, the total work done is

22N × 2m = 44J (J is the Joule, which equals one Newton-meter).

Consider a situation where the force is not constant. For instance, if one were to lift a weight using a non-

negligible rope, there is less rope being pulled up (and hence less force) as the weight goes further up. It is in

situations like these that we need a better formula to compute work.

37.1 Work element

Computing work when the force is not constant requires integration. As in previous sections, the first step is

to determine the work element dW , and then integrate:

W =

∫
dW.

Because work arises in a variety of situations, there is not one simple formula for the work element. For different

applications the work element will look different. In some situations, it is best to consider a small movement

dx , where the force can be thought of as constant for that small movement, which allows the work element to

be expressed as dW = F · dx .

Springs

The force required to displace a spring varies with the displacement. The further the spring is stretched, the

more resistant it becomes to being stretched further. Consider three types of springs:

• Linear. A spring is linear if the force of resistance grows linearly with the displacement. That is,

F (x) = κx.

for some constant κ, which represents the stiffness of the spring.

• Hard. A spring is hard if the force of resistance grows faster than linearly with the displacement:
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F (x) = κx +O(x2).

• Soft. A spring is soft if the force of resistance grows slower than linearly with the displacement:

F (x) = κx −O(x2).

Consider for any of these springs what the work element dW is. When the spring is stretched to x , the force

of resistance is F (x). For the next infinitesimal amount of stretching dx , the force can be presumed to be

constant:

(Stretching Spring Animated GIF)

Therefore, the work element (i.e. the amount of work to stretch the spring the additional amount dx) is

dW = F (x) dx.

Example

Compute the amount of work it takes to stretch a linear spring from rest (when x = 0) to x = a. (See

Answer 1)

Example

Consider a nonlinear, soft spring which exerts a force of F (x) = 3x−x2 Newtons when the spring is stretched

to x meters. Determine how much work is required to stretch the spring from 1 meter to 3 meters. (See

Answer 2)

Pulling up a rope

In some situations, one must do a little work to determine what F (x) is, and then one can integrate, as in the

above examples.

Example

Consider a rope which is 100 feet long and density 1 pound/foot. It hangs from a wall which is 50 feet high

(so 50 feet of rope runs down the length of the wall and the remaining 50 feet is coiled at the bottom of

the wall). How much work (in foot-pounds) is required to pull the rope to the top of the wall?
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(See Answer 3)

37.2 Work element by slices

In other situations, such as pumping liquid, digging a hole, or piling gravel, a fruitful method for determining

the work involved is to consider a slice of the material which is being moved. Determining the weight of the

slice, and multiplying by the distance the slice has to be lifted gives the amount of work required for that slice.

That is precisely the work element. Integrating over all the slices in the object gives the total amount of work

to move that object.

Example

Pumping Liquid Consider an inverted conical tank (so the tip of the cone points downward) with base

radius 5 feet and height 10 feet. Water is pumped into the tank through a valve at the tip of the cone:

How much work is required to fill the tank with water? Leave the weight density of water as the constant

ρ. (See Answer 4)

Example

Digging a Hole Consider two workers digging a hole. How deep should the first worker dig so that each

does the same amount of work? Let the weight density of the dirt be the constant ρ, the depth of the hole

is D, and the cross-sectional area of the hole is the constant A (so we assume that the hole does not get

any wider or narrower as the workers dig). (See Answer 5)

Example

Gravel Pyramid Compute the amount of work required to build a pyramid of gravel. Assume the gravel is

infinitesimal with weight density ρ, and that the pyramid has a square base of side length s, and height h:
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(See Answer 6)

Example

Rope Revisited Consider the rope example from above, but this time suppose l total feet of rope are hanging

from a h foot building, where l ≥ h, and let ρ be the weight density of the rope. Compute the work required

to lift the rope to the top of the building.

For a different perspective, this time, use a work element which equals the amount of work required to lift

an infinitesimal length of rope to the top of the building (this will depend on whether the infinitesimal length

of rope is hanging at the beginning or is part of the coil at the bottom of the building). Then integrate

along the entire length of rope. (See Answer 7)

37.3 EXERCISES

• Consider a conical tank of height 10m. The vertex of the cone is at the bottom, and the base of cone

(which is at height 10m) has radius 2m. Let ρ denote the weight density of water. The water inside the

tank has height 4m. How much work would it take to pull all the water to the top of the tank?

37.4 Answers to Selected Examples

1. As shown above, the work element (i.e. the amount of work to stretch the spring a short distance dx) is

dW = F (x) dx = κx dx.

It follows that

W =

∫
dW

=

∫ a

x=0

κx dx

= κ
x2

2

∣∣∣∣a
x=0

= κ
a2

2
.

(Return)

2. The work element is

dW = F (x) dx

= (3x − x2) dx.
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Thus, the total work to stretch the spring from 1 meter to 3 meters is

W =

∫
dW

=

∫ 3

x=1

(3x − x2) dx

=
3

2
x2 −

1

3
x3

∣∣∣∣3
x=1

=

(
27

2
− 9

)
−
(

3

2
−

1

3

)
=

10

3
Joules.

(Return)

3. As the first 50 feet of rope are brought up, there is always precisely 50 feet of rope hanging from the

building (because every foot of rope brought onto the top of the building is replaced by a rope which is

coiled below). These 50 feet of rope weigh 50 lbs, so that is the force required to support them. If x

denotes the amount of rope which has been taken onto the roof, then

F (x) = 50; 0 ≤ x ≤ 50.

After the first 50 feet of rope have been brought to the roof, there is now 50 feet of rope dangling with

nothing left coiled below. Therefore, as we bring up these last 50 feet, there is less and less rope hanging,

and so the weight of the rope (and hence the force we exert) is decreasing. It decreases linearly, since the

rope has constant density. Each foot of rope we bring up decreases the weight by 1 lb, and so

F (x) = 100− x ; 50 ≤ x ≤ 100

(to see that this is right, note that it is linear and matches at the endpoints). We can graph the force as

a function of the amount of rope we have brought up:

Now, we can find the work by integrating the work element

W =

∫
dW

=

∫ 100

x=0

F (x) dx.
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Note that this is the area under the graph of the force (highlighted above), which is easier to compute

than to do it algebraically. Splitting it into a square and a triangle, the area (and hence the work) is

50 lb× 50 ft +
1

2
50 lb× 50 ft = 3750 ft-lb.

(Return)

4. Consider a slice of the water in the tank. Let x be the distance of the slice from the tip of the tank. That

is, x is the distance that the slice of water has to be lifted. Let r be the radius of the slice:

Above, we said that it is the weight of the slice multiplied by the distance the slice had to be moved. But

the weight of a slice is just the volume of the slice times the density of the slice. Letting ρ denote the

weight density of the substance (in this case water), we have

dW = weight of slice × distancesl icetravels
= ρ · dV · distance slice travels .

In the problem at hand, we have

dV = πr2 dx,

and the distance the slice is lifted is x , by the way we labeled our diagram. To finish, we must get r in

terms of x , which requires a little bit of geometry. If we flatten our cone and look at it from the side, we

get similar triangles:
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Therefore,
r

x
=

5

10
=

1

2
,

and so r = x
2 . Putting this together, we have

dW = ρ · dV · distance slice travels

= ρ(πr2 dx)x

= πρ
1

4
x3 dx.

Note that x ranges from 0 to 10, so the work required to fill the tank is

W =

∫
dW

=

∫ 10

x=0

πρ
1

4
x3 dx

=
πρ

4

x4

4

∣∣∣∣10

x=0

= 625πρ.

(Return)

5. Let x be the distance down to to the layer of dirt currently being dug:

This is convenient because this is the distance that the current slice of dirt has to be lifted to get out of

the hole. The area of the slice of dirt is A, its thickness is dx , and the density is ρ, so we have

dW = weight of slice × distance slice moves

= (ρ · dV ) · x
= (ρA dx) · x
= ρAx dx.
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Note that x varies from 0 to D as the hole gets dug. Thus, the total work required to dig the hole is

W =

∫
dW

=

∫ D

x=0

ρAx dx

=
1

2
ρAD2.

To find the depth D̃ where the work done is half, we set∫ D̃

x=0

ρAx dx =
1

2
W =

1

4
ρAD2.

Computing the integral on the left, we find

1

2
ρAD̃2 =

1

4
ρAD2.

Solving for D̃ gives

D̃ =
1√
2
D.

(Return)

6. If we think of building the pyramid slice by slice, let y be the distance from the base of the pyramid to

the slice. This is convenient because this is the distance that the slice must be lifted to be put in place.

Also, let x be the side length of the slice:

Then using similar triangles, as shown on the right above, we find that

x

s
=
h − y
h

.

So we find that

x =
h − y
h

s.
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Thus, the volume of a slice is just the area x2 multiplied by the thickness dy , and so we have

dW = ρdV y

= ρ(x2 dy) y

= ρ

(
h − y
h

s

)2

y dy

=
ρs2

h2
(h − y)2y dy .

Because y ranges from 0 to h, we have

W =

∫
dW

=
ρs2

h2

∫ h

y=0

(h − y)2y dy

=
ρs2

h2

∫ h

y=0

(h2y − 2hy2 + y3) dy

=
ρs2

h2

(
1

2
h2y2 −

2

3
hy3 +

1

4
y4

) ∣∣∣∣h
y=0

=
ρs2

h2

(
1

2
h4 −

2

3
h4 +

1

4
h4

)
=
ρs2

h2
·

1

12
h4

=
ρs2h2

12
.

(Return)

7. Let L be the distance along the rope of the infinitesimal piece being considered:

So L is the distance that the infinitesimal piece must be lifted to get to the top of the building. The

weight of the infinitesimal piece is density multiplied by length, and so the work element for a piece of

rope which is hanging is

dW = ρL dL; 0 ≤ L ≤ h.
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For a piece of rope which is part of the coil at the bottom, the distance it must be lifted is always h, so

the work element there is

dW = ρh dL; h ≤ L ≤ l .

So the work can be computed by integrating these work elements over their respective ranges and then

adding:

W =

∫
dW

=

∫ h

L=0

ρL dL+

∫ l

L=h

ρh dL

= ρ
1

2
L2

∣∣∣∣h
L=0

+ ρhL

∣∣∣∣l
L=h

=
ρh2

2
+ ρh(l − h).

Another way to think about this is to treat the coiled rope at the bottom of the wall as a single solid

object. The rope in the coil has length l − h, and so its weight is ρ(l − h). The distance the coil (as a

unit) must be lifted is h. It follows that the work to lift the coiled portion of the rope is ρh(l − h), the

result of the second integral above.

(Return)

182



38 Elements
This module deals with various problems that can be modeled using integral calculus. As in the previous sections,

the problem will be to find the total accumulation of some quantity U, and the method will be to determine a

slice of the quantity, the U element dU, and integrate.

38.1 Mass

Mass of a rod

Consider the problem of determining the mass of a rod. Suppose the rod’s density varies along the length of

the rod (but the rod is uniform in cross section). Let ρ(x) denote the linear density (i.e. the mass per unit of

length) of the rod at position x :

Then the mass element dM is the density ρ(x) times the thickness of the slice dx , as shown above, and it

follows that the mass of the rod is

M =

∫
dM

=

∫ L

x=0

ρ(x)dx.

Mass of the earth

Consider the problem of finding the mass of the earth. Suppose the density of the earth ρ(r) is given as a

function of the distance from the center of the earth. Assume that there are just three layers (inner core, outer

core, and mantle) and that the density is constant within each layer.
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What is the mass element in this case? It is important to note that in this example we are measuring the

contribution of a spherical shell to the mass of the earth. This contribution is the volume of the spherical shell

multiplied by the density of the shell. Mathematically,

dM = ρ(r) · dV.

Recalling that the surface area of a sphere of radius r is 4πr2, we have that the volume element is

dV = 4πr2 dr,

and so the mass element is

dM = 4πρ(r)r2 dr.

Example

Using the approximate graph of density above, estimate the mass of the earth. (See Answer 1)

38.2 Torque

Imagine a rod of variable density which is attached to a hinge. The torque at the hinge depends not just on the

weight of the rod but on the distribution of the weight.

If there were just a mass-less rod with a single point mass, the torque would be Force × Distance . This can

be used to determine the torque element dT by thinking of each slice of the rod as a point mass. What is the

torque on such a slice?

184



First, the torque element is the distance from the hinge, x , times the force element dF (the force on the slice).

The force element is the mass of the slice dM times the gravitational constant g. Finally, as in the previous

example, the mass element dM = ρ(x) dx . Putting it all together, one finds

dT = x · g · ρ(x) dx.

Integrating this over the length of the rod gives the torque.

38.3 Hydrostatic force

The next application is to compute the total force exerted by a tank of fluid on a surface submerged in the

tank, often called the hydrostatic force. For a tangible example, consider a large aquarium with a circular glass

viewing window (see the diagram below). If the viewing window has radius r , and the top of the viewing window

is at depth h, then the problem is to find the total force of the water on the viewing window.

As always, the method will be to find the force element dF (the force on a small strip of the window), and then

use integration to find the total force.

Recall that if pressure is constant across a surface, the force on the surface is area × pressure. Hydrostatic

pressure is given by

P = weight density of fluid × depth.

Note the units: N
m3 ·m = N

m2 , which is the correct unit for pressure (force per unit of area). Since the density of

the fluid is assumed to be constant, the pressure only depends on the depth.Therefore, the most logical choice

for the force element is a horizontal strip, since the depth, and hence the pressure, will be constant across the

strip. Letting dA denote the area of the strip, we find that the force element is given by

dF = P dA = ρx dA,

where ρ is the weight density of the fluid and x is the depth of the strip.
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Example

Compute the total force exerted on the circular viewing window in the aquarium shown above. (See Answer

2)

Example

Compute the force on the endcap of a full cylindrical tank of radius R on its side.

(See Answer 3)

Example

Consider a dam in the shape of a trapezoid with height h, top edge l1 and bottom edge l2. Find the total

force exerted on the dam by the water:

(See Answer 4)

38.4 Present value

Consider the problem of determining the present value of some amount of money at a future time. Turning the

problem around, first consider the value of an initial amount of money P0 at a future time t. Assuming a constant
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annual nominal interest rate r and continuous compounding, this problem was an example of exponential growth,

and had solution

P (t) = P0e
r t ,

where t is the time in years. Given some amount of money, P , at time t, finding its present value is a matter

of solving P = P0e
r t for P0. In other words, solving for present value in this simple case is the same as finding

the initial investment P0 which yields P after t years of continuous compounding interest. Solving this equation

gives that the present value of a future amount P at time t is given by

P0 = Pe−r t .

Example

Find the present value of $1000000 in 30 years, assuming an interest rate of r = .08. (See Answer 5)

Now consider an income stream, say from a job. If I(t) is the rate of income at time t, what is the present

value of that income stream? Let PV be the present value. Then consider the income earned over a small

amount of time t years in the future:

dI = I(t) dt

(the income element). This small bit of income at time t contributes e−r t I(t)dt to the present value of the

income stream. Thus the present value element is given by

dPV = e−r t I(t)dt.

Integrating this over the range of values of t (the time period of the income stream) gives the present value of

that income stream.

Example

The Bigbucks lottery has an option of either a single lump sum payment today or an annuity which pays a

constant amount each year for 20 years. Suppose the annuity pays $3 million a year (for 20 years), and that

the interest rate will remain steady at r = .05. What is the fair lump sum payout today? (See Answer 6)

38.5 EXERCISES

• Consider a dam with the shape of an isosceles triangle. The base of the triangle, which is parallel to the

ground, is 5m long, and the height of the triangle is 10m. The weight density of water is given by ρ.

Compute the force exerted on the dam by water.

38.6 Answers to Selected Examples

1. Note that our volume is being measured in cubic kilometers, but the density ρ(r) is in grams per cubic

centimeter. We need a conversion factor C to make sure the units come out correctly. A little unit

conversion gives us that

C = 1
g

cm3
= 1012 kg

km3 .

So we need to multiply by this so that the units are correct (and the final answer will be in kilograms).
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Splitting the integral based on the values of r for which ρ(r) is constant, we find

M =

∫
dM

= C

∫ 6400

r=0

4πr2ρ(r) dr

= 4πC

(∫ 1200

r=0

r2ρ(r) dr +

∫ 3400

r=1200

r2ρ(r) dr +

∫ 6400

r=3400

r2ρ(r) dr

)
= 4πC

(
13 ·

r3

3

∣∣∣∣1200

0

+ 10 ·
r3

3

∣∣∣∣3400

1200

+ 5 ·
r3

3

∣∣∣∣6400

3400

)
≈ 6.3 · 1024 kilograms

According to Wolfram Alpha, the mass of the earth is approximately 5.97 · 1024 kilograms, so our rough

estimate is not too far off.

(Return)

2. As mentioned above, we will use horizontal strips of the window as the area element. The force element

is the amount of force on that strip of the window. Let x be the distance from the center of the window

to the horizontal strip. Let up be negative, down be positive (so the top of the window is x = −r and

the bottom of the window is x = r :

Then the depth of the strip is h+ r +x , and the area of the strip is 2
√
r2 − x2 dx . Thus the force element

in this example is

dF = (h + r + x)ρ · 2
√
r2 − x2 dx
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where ρ is the weight density of water. So

F =

∫
dF

= 2ρ

∫ r

−r
(h + r + x)

√
r2 − x2 dx

= 2ρ

∫ r

−r
(h + r)

√
r2 − x2 dx + 2ρ

∫ r

−r
x
√
r2 − x2 dx.

Now, notice that x
√
r2 − x2 dx is an odd function, so its integral from −r to r is 0. Thus

F = 2ρ(h + r)

∫ r

−r

√
r2 − x2 dx

= 2ρ(h + r)
πr2

2

= ρ(h + r)πr2,

since
∫ √

r2 − x2 dx gives half the area of a circle of radius r .

It is worth observing that with a very symmetric window such as the circle in this example, one can take

the area of the window, πr2, and multiply by the pressure at the center of the window ρ(h + r), to find

the hydrostatic force:

F = ρπr2(h + r).

The reason this works is that the pressure on a horizontal strip above the center of the window averages

with the pressure on the strip’s mirror image below the center to give the pressure at the center of the

window.

(Return)

3. Using the knowledge gleaned from the previous example, we can take the area of the endcap, πR2, and

multiply by the hydrostatic pressure at the center of the endcap, which is ρR, to find that the force is

F = πR2 · ρR = ρπR3.

We could also note that this is really a special case of the aquarium window example above, by setting

h = 0 in that example.

(Return)

4. As above, the force element dF is the force exerted on a horizontal strip. Let x be the distance of the

horizontal strip from the top of the dam, and l(x) be the length of the strip
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Since the shape is a trapezoid, l(x) is a linear function of x , and from the top and the bottom of the

dam, one finds that l(0) = l1 and l(h) = l2. It follows from the slope intercept form of a line that

l(x) = l1 + l2−l1
h x .

So the force acting on the strip is dF = ρx dA, where ρ is the weight density of the water, x is the depth

of the strip, and dA = (l1 + l2−l1
h x) dx is the area of the strip. Putting it all together, one finds

F =

∫
dF

=

∫ h

0

ρx

(
l1 +

l2 − l1
h

x

)
dx

= ρ

(
l1x

2

2
+
l2 − l1

3h
x3

) ∣∣∣∣h
0

= ρ

(
l1h

2

2
+
l2 − l1

3h
h3

)
=
ρh2

6
(l1 + 2l2).

(Return)

5. From the above equation one finds that

P0 = Pe−r t

= 1000000e(−.08)·30

≈ 90717.

(Return)

6. The income stream I(t) is constant at 3 · 106. Thus,

PV =

∫
dPV

=

∫ 20

t=0

e−r t I(t)dt

= 3 · 106

∫ 20

t=0

e−.05tdt

= 3 · 106

(
1

−.05
e−.05t

∣∣∣∣20

t=0

)
= 3 · 106 · (−20)(e−1 − 1),

which is approximately $38 million.

(Return)
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39 Averages

Consider the problem of finding the average test score in a class of 100 students. The answer is to add up all

the scores and divide by 100. But what would happen if there were infinitely many students? This module deals

with the problem of finding the average value of a function.

39.1 Average value of a function

The definition of the average value of a function f (x) over the interval [a, b], denoted f , is

f =

∫ b
a f (x) dx

b − a .

One way to interpret the average value is to find the rectangle of length b− a whose area equals the area under

the curve f over the interval [a, b]. The height of this rectangle is f . Put another way, f is the height of the

horizontal line such that the area above the line and below f (x) equals the area which is below the line and

above f (x). These areas are shown in red and blue, respectively, in the following diagram:

A better formulation of the average value, which will be useful in other situations and higher dimensions, is

f =

∫ b
x=a f dx∫ b
x=a dx

.

This emphasizes that the average value over a region is the integral of the function over the region divided

by the volume of that region (in this case, the 1-dimensional volume is just the length of the interval). This

generalizes nicely to higher dimensions.
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If we go down a dimension to the discrete average, if fi denotes the ith data point out of n, then the average

value of the data is

f =

∑n
i=1 fi
n

=

∑n
i=1 fi∑n
i=1 1

.

This shares a common feature with the earlier formula for average value. Namely, it is the sum (integral) of

the function values over a range of inputs divided by the sum (integral) of 1 over that range of inputs.

Example

Compute the average value of sin2 x over the interval [0, 2π]. (See Answer 1)

Example

Compute the average of xn and ex over 0 ≤ x ≤ T . Compute the average of ln x over 1 ≤ x ≤ T . (See

Answer 2)

Example

Suppose we are given the density function ρ(r) for the density of the earth at a distance r from the center.

Find a formula for the average density of the earth, but do not try to evaluate the integral. (See Answer

3)

39.2 Root mean square

There is another type of average of a function called the root mean square. The root mean square of f , denoted

fRMS is defined by

fRMS =
√
f 2.

So the root mean square is the square root of the average value of the square of the function. This is a useful

metric when the average value of f is uninteresting.

Example

Compute and compare the average value and the root mean square of f (x) = sin x on the interval [0, 2π].

(See Answer 4)

39.3 EXERCISES

• Consider the polar function f (θ) = cos2(θ). Compute the average value of f from θ = 0 to θ = 2π.
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39.4 Answers to Selected Exercises

1. From the definition,

f =

∫ 2π

0 sin2 xdx

2π

=
1

2π

∫ 2π

0

1

2
(1− cos(2x)) dx

=
1

2π

(
x

2
−

1

4
sin(2x)

) ∣∣∣∣2π
0

=
1

2π
·

2π

2

=
1

2
.

(Return)

2. For f (x) = xn, one finds

f =
1

T

∫ T

0

xn dx

=
1

T

xn+1

n + 1

∣∣∣∣T
0

=
T n

n + 1
.

For f (x) = ex , the average value is

f =
1

T

∫ T

0

ex dx

=
eT − 1

T

For f (x) = ln x , recalling the integral using integration by parts, one finds

f =
1

T − 1

∫ T

1

ln x dx

=
1

T − 1
(x ln x − x)

∣∣∣∣T
1

=
1

T − 1
(T lnT − T + 1).

(Return)

3. Note that we cannot simply integrate the density function and divide by the radius of the earth, for the

same reason that we could not integrate the density function to find the mass of the earth in the previous

module.

One way to logically think about it is to note that the average density times the volume of the earth

should give the mass of the earth. That is,

ρ · V = M.
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Remember that when we found the mass of the earth, we had dM = ρ dV , where the volume element

dV is a spherical shell. So we can write

ρ =
M

V
=

∫
ρ dV∫
dV

.

Then, remembering that the volume of the spherical shell (i.e. the volume element) is 4πr2 dr , we have

ρ =

∫ R

r=0

4πr2ρ(r) dr∫ R

r=0

4πr2 dr

.

(Return)

4. The average value of sin x is

f =

∫ 2π

x=0

sin x dx

2π

=
1

2π
(− cos x)

∣∣∣∣2π
x=0

=
1

2π
(−1− (−1))

= 0.

Using the result of an example from above, the root mean square of sin x is

fRMS =

√√√√√∫ 2π

x=0

sin2 x dx

2π

=

√
1

2

=
1√
2
.

(Return)
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40 Centroids And Centers Of Mass
The motivation for this module are the questions:

• what is the average of several locations (e.g. cities on a map)?

• what is the average of an entire region?

The centroid and center of mass give answers to these questions. The formulas for the centroid and the center

of mass of a region in the plane seem somewhat mysterious for their apparent lack of symmetry. So before

giving the formulas, a brief aside is helpful.

40.1 The area element revisited

In future courses, the area element of a region will not be a strip of area but a small rectangle with width dx

and height dy :

The area of the region, then, is the limit of the sum of the areas of all these small rectangles as the rectangles

get infinitely small. The notation used to express this is called a double integral, written

Area =

∫∫
R

dx dy.

Think of the double integral as a nested integral:
∫∫
dx dy =

∫
(
∫
dx) dy . The inner integral is performed first,

with respect to x (since the dx is left of the dy). Then the result is integrated with respect to y . Conceptually,
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the inner integral is adding up the contribution of a row of boxes, and then the outer integral is adding up the

rows:

Double integrals can be computed in the other order too:
∫∫
dy dx . First the inner integral is performed

with respect to y , which adds up the contribution of a column of boxes. Then the outer integral adds up the

contribution of the columns:

Example

Express the area of the region bounded by the curves y = x2 − 4x + 5 and y = x + 1 as a double integral

and evaluate the integral. (See Answer 1)

40.2 Centroid

The centroid of a region R in the plane is defined to be the point (x, y), where x is the average x-coordinate

of R and y is the average y -coordinate of R. One interpretation is that if the region were cut out of a sheet

of uniform density metal and a pin were placed at its centroid, the region would balance on the pin.

196



The centroid is best expressed mathematically using double integrals:

x =

∫∫
R x dx dy∫∫
R dx dy

y =

∫∫
R y dx dy∫∫
R dx dy

.

Suppose the region R is bounded above by the curve y = f (x) and below by the curve y = g(x), and the

intersection points are at x = a and x = b. Then integration is easier in the dy dx order, and the centroid can

be written more explicitly as

Centroid of a region

The centroid of the region bounded above by y = f (x) and below by y = g(x) is given by

x =

∫ b
a

∫ f (x)

g(x) xdydx∫ b
a

∫ f (x)

g(x) dydx

=

∫ b
a x(f (x)− g(x))dx∫ b
a (f (x)− g(x))dx

.

Similarly,

y =

∫ b
a

∫ f (x)

g(x) y dy dx∫ b
a

∫ f (x)

g(x) dy dx

=

∫ b
a

1
2 (f (x)2 − g(x)2) dx∫ b
a (f (x)− g(x)) dx

.

Note that the denominator in each case is the area of the region.
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Example

Find the centroid of a triangle with vertices at (a, 0), (b, 0), and (0, c). (See Answer 2)

Example

Compute the centroid of the upper half circle of radius R.

(See Answer 3)

Example

Compute the centroid of the quarter circle of radius R:

(See Answer 4)

Symmetry

It is important to note that centroids respect symmetry. What that means is that if there is an axis of symmetry

(i.e. a line where if we reflect the region about the line we get the same region back), then the centroid must lie

on the axis of symmetry. If there is more than one axis of symmetry, then the centroid will lie at the intersection

of these axes:
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40.3 Center of mass

Now consider a region R of the plane cut from a sheet of metal of variable density ρ(x, y). Again, the problem

is to find the balancing point (x, y), but in this context it is called the center of mass. Again, it is expressed as

a double integral:

x =

∫∫
R ρ(x, y)x dx dy∫∫
R ρ(x, y) dx dy

y =

∫∫
R ρ(x, y)y dx dy∫∫
R ρ(x, y) dx dy

.

The only difference between these and the centroid formulas is that instead of the area element dA = dx dy ,

the mass element dM = ρ(x, y) dx dy is used (multiplying the area element by the density of that point gives

the mass contributed by that small rectangle). Indeed, if the density is constant, then ρ(x, y) = ρ factors out

of both the numerator and denominator and cancel, leaving the formula for centroid.

Note that the denominator for both x and y is the mass of the region.

Example

Compute the center of mass of the region bounded above by y = 4x − x2 and below by the x-axis, where

the density function is given by ρ(x, y) = 2x :

199



(See Answer 5)

40.4 Centroids using point masses

Given a complex region which consists of the union of simpler regions, there is a method for finding the centroid:

1. Find the centroid of each simple region.

2. Replace each region with a point mass at its centroid, where the mass is the area of the region.

3. Find the centroid of these point masses (this is done by taking a weighted average of their x and y

coordinates).

(Centroids and Point Masses Animated GIF)

This is easiest to see with an example:

Example

Find the centroid of a region consisting of a rectangle of width 2R and height H which has a semicircle of

radius R on one end:

(See Answer 6)

40.5 Application: Pappus’ theorem

One application of the centroid is known as Pappus’ theorem, after the Greek mathematician Pappus of Alexan-

dria. It uses the centroid to find the volume and surface area of a solid of revolution.
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Pappus’ theorem

Consider the solid which results from rotating the plane region R about the axis L.

The volume of this solid is equal to the area of R times the distance the centroid travels (as it gets revolved

around the axis).

The surface area of the solid is equal to the perimeter of R times the distance the centroid travels.

Example

Find the volume and surface area of a torus (i.e. a doughnut) with cross sectional radius r and main radius

R:

(See Answer 7)

40.6 EXERCISES

• Compute the area of region bounded by curves x = (y − 2)2 + 2 and y = x − 2 using double integrals.

• Consider the region under the graph y = x2, above the x-axis, from x = 0 to x = 1. Let S be the solid

obtained by revolving this region about the y-axis. Compute the average height (average y-coordinate) of

S.

• Let R1 denote the region inside the triangle with vertices at (0,1), (-2,0), (0,-1). Given a unit circle

centered at the origin, let R2 denote the region inside the semicircle for x ≥ 0. Let R denote the union

R1 and R2. compute the centroid of R.

40.7 Answers to Selected Exercises

1.
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The easier order of integration is dy dx because every vertical strip is bounded on top by y = x + 1 and

bounded below by y = x2 − 4x + 5; whereas a horizontal strip would sometimes be bounded on the left

by y = x + 1, and other times be bounded by y = x2 − 4x + 5.

Setting the curves equal gives the intersections at x = 1 and x = 4. So the area can be found by

computing ∫ x=4

x=1

∫ y=x+1

y=x2−4x+5

dy dx =

∫ x=4

x=1

(
y

∣∣∣∣x+1

x2−4x+5

)
dx

=

∫ x=4

x=1

(x + 1− (x2 − 4x + 5)) dx

=

∫ x=4

x=1

(−x2 + 5x − 4) dx

= −
x3

3
+

5

2
x2 − 4x

∣∣∣∣4
1

=
9

2
.

(Return)

2. The easier order of integration is dx dy because a horizontal strip is always bounded on the left by

x = −b
c y + b and on the right by x = −a

c y + a (see the diagram below). So one finds that

x =

∫ y=c

y=0

∫ x=−a
c
y+a

x=−b
c
y+b

x dx dy∫ y=c

y=0

∫ x=−a
c
y+a

x=−b
c
y+b

dx dy

=

∫ y=c

y=0

∫ x=−a
c
y+a

x=−b
c
y+b

x dx dy

Area

Noting that the area of the triangle is 1
2 (a − b)c , one finds

x =
2

(a − b)c

∫ y=c

y=0

∫ x=−a
c
y+a

x=−b
c
y+b

x dx dy

=
2

(a − b)c

∫ y=c

y=0

1

2

(
(
−a
c
y + a)2 − (

−b
c
y + b)2

)
dy

=
1

(a − b)c
·

1

3

(
(
−a
c
y + a)3−c

a
− (
−b
c
y + b)3−c

b

) ∣∣∣∣c
0

=
1

3(a − b)c
(a2c − b2c)

=
1

3(a − b)c
c(a + b)(a − b)

=
1

3
(a + b).

A similar computation gives that y = c
3 .
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More generally, the centroid of a triangle with coordinates (x0, y0), (x1, y1), and (x2, y2) is

(x, y) =

(
x0 + x1 + x2

3
,
y0 + y1 + y2

3

)
.

In other words, the centroid of a triangle is the average of the x coordinates and the average of the y

coordinates.

(Return)

3. By the symmetry about the y -axis, the x-coordinate of the centroid is 0.

To find the y -coordinate, note that the equation of the curve is y =
√
R2 − x2. Also, note that the area

of the region is 1
2πR

2. Thus,

y =
2

πR2

∫ R

x=−R

1

2
(
√
R2 − x2)2 dx

=
1

πR2

(
R2x −

1

3
x3

) ∣∣∣∣R
x=−R

=
1

πR2
·

4R3

3

=
4R

3π
.

(Return)

4. We know that the area of the region is 1
4πR

2. So we have that

x =
1

A

∫
x(f (x)− g(x)) dx

=
4

πR2

∫ R

x=0

x(
√
R2 − x2 − 0) dx.

Making a substitution of

u = R2 − x2

du = −2x dx
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gives

4

πR2

∫ R

x=0

x
√
R2 − x2 dx =

4

πR2

∫ 0

u=R2

−
1

2

√
u du

=
−2

πR2

2

3
u3/2

∣∣∣∣0
u=R2

=
2

πR2
·

2

3
R3

=
4R

3π
.

Because the region is symmetric about the line y = x , we predict that y = 4R
3π as well. We can verify this

by integrating:

y =
1

A

∫
1

2
(f (x)2 − g(x)2) dx

=
2

πR2

∫ R

x=0

(R2 − x2) dx

=
2

πR2

(
R2x −

1

3
x3

) ∣∣∣∣R
x=0

=
2

πR2

(
R3 −

1

3
R3

)
=

2

πR2
·

2

3
R3

=
4R

3π
,

as claimed.

(Return)

5. Setting y = 0, we find that the curve intersects the x-axis at x = 0 and x = 4. First, we compute the

mass of the region, which is the denominator for both x and y . It is easier to integrate in the dy dx order,

so we will do that here, and in the integrals that follow.

M =

∫∫
R

ρ(x, y) dy dx

=

∫ 4

x=0

∫ 4x−x2

y=0

2x dy dx

=

∫ 4

x=0

(
2xy

∣∣∣∣4x−x2

y=0

)
dx

=

∫ 4

x=0

2x(4x − x2) dx

=

∫ 4

x=0

(8x2 − 2x3) dx

=
8

3
x3 −

1

2
x4

∣∣∣∣4
x=0

=
512

3
− 128 =

128

3
.
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So to compute x , we find

x =
1

M

∫∫
R

ρ(x, y)x dy dx

=
3

128

∫ 4

x=0

∫ 4x−x2

y=0

(2x)x dy dx

=
3

128

∫ 4

x=0

(
2x2y

∣∣∣∣4x−x2

y=0

)
dx

=
3

128

∫ 4

x=0

2x2(4x − x2) dx

=
3

128

(
2x4 −

2

5
x5

) ∣∣∣∣4
x=0

=
3

128
512−

2048

5

=
3

128
·

512

5
=

12

5
.

Similarly,

y =
1

M

∫∫
R

ρ(x, y)y dy dx

=
3

128

∫ 4

x=0

∫ 4x−x2

y=0

(2x)y dy dx

=
3

128

∫ 4

x=0

xy2

∣∣∣∣4x−x2

y=0

dx

=
3

128

∫ 4

x=0

x(4x − x2)2 dx

=
3

128

∫ 4

x=0

(16x3 − 8x4 + x5) dx

=
3

128

(
4x4 −

8

5
x5 +

1

6
x6

) ∣∣∣∣4
x=0

=
3

128
· 1024

(
1−

8

5
+

2

3

)
=

8

5
.

(Return)

6. From an earlier example, the centroid of the semicircle is (0, 4R
3π ), and the weight (the area of the

semicircle) is 1
2πR

2.

The rectangle is symmetric, so its centroid (as it is drawn in the coordinate plane) is (0,−H2 ), and its

weight is 2RH:
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By symmetry,

x = 0.

Taking the weighted average of the y-coordinates of the points gives

y =
1
2πR

2 · 4R
3π + 2RH ·

(
−H2

)
1
2πR

2 + 2RH

=
2
3R

3 −H2R
1
2πR

2 + 2RH

=
4R2 − 6H2

3πR + 12H
.

We can check that this is reasonable by noting that if H = 0 we get the y-coordinate of the centroid of

the semicircle, and when R = 0 we get the y-coordinate of the centroid of the line segment from (0, 0)

to (0,−H).

(Return)

7.

Here, the region being rotated is a circle, which is easy to work with because a circle’s centroid is just

its center. For convenience, center the circle at (R, 0) and revolve around the y -axis. Then the distance

which the centroid travels is 2πR (the path of the centroid is just a circle of radius R).
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Therefore the surface area of the torus is

Surface area = Perimeter · Centroid travel distance

= (2πr) · (2πR)

= 4π2r · R.

And the volume of the torus is

Volume = Area · Centroid travel distance

= (πr2) · (2πR)

= 2π2r2R.

(Return)
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41 Moments And Gyrations

This module deals with the moment of inertia and the radius of gyration, which are two properties of an object

with physical interpretations.

41.1 Moment of inertia

The moment of inertia of an object, usually denoted I, measures the object’s resistance to rotation about an

axis. To get an intuitive understanding of moment of inertia consider swinging a hammer by its handle (higher

moment of inertia, harder to swing) versus swinging a hammer by its head (lower moment of inertia, easier to

swing). So moment of inertia depends on both the object being rotated and the axis about which it is being

rotated.

(Hammer Animated GIF)

Consider first a particle of mass. The bigger the mass, the more resistant it will be to rotation about an axis.

Similarly, the further the particle is from the axis, the more resistant it will be to rotation. For a point mass,

the moment of inertia is given by

I = r2M,

where r is the distance of the particle from the axis of rotation, and M is the mass of the particle:

(Particle Animated GIF)

The next question is how to calculate the moment of inertia when all the mass is not at a single point. As in

previous modules, the method will be to break the object into slices of mass, and consider the contribution of

each slice to the moment of inertia:
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Each slice can be thought of as an individual particle of mass which contributes to the moment of inertia. The

contribution of the slice becomes the moment of inertia element dI:

dI = r2 dM.

Example

Consider a solid disc of radius R and constant density ρ rotated about its central vertical axis:

(Disk Rotating Around Diameter Animated GIF)

Compute its moment of inertia. (See Answer 1)

Example

Consider a solid disc of radius R and constant density ρ rotated about its center:

(Disk Rotating Around Center Animated GIF)

Compute its moment of inertia. (See Answer 2)

Example

Consider a rectangle of length l and height h. Compute the moment of inertia about the vertical axis

through its center. Then compute the moment of inertia about the horizontal axis through its center. Hint:

use symmetry to find the second answer from the first.

(See Answer 3)
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41.2 Radius of gyration

Another property of an object, radius of gyration, denoted Rg, can be expressed in terms of the moment of

inertia. Imagine replacing the object being rotated about an axis by a single point mass being rotated about

that same axis. The radius of gyration is the radius at which the point mass has the same moment of inertia

as the object. More specifically, I = MR2
g, and solving for Rg gives

Rg =

√
I

M
.

Note that because

I =

∫
r2 dM

we can write

Rg =

√∫
r2 dM∫
dM

=
√
r2

= rRMS

So the radius of gyration is really the root mean square of the radius.

41.3 Higher mass moments

In the centroid module, we computed
∫
x dM as part of computing the x-coordinate of the center of mass,

x .The moment of inertia I from this module is given by
∫
x2 dM. These are respectively known as the first

mass moment and the second mass moment (first and second referring to the powers of x).

There are higher mass moments:
∫
xn dM, for n ≥ 3, as well as the lower mass moment

∫
x0dM, which is just

mass. These moments each give more information about how the mass of the object is distributed.

This is similar, in a sense, to how knowledge of the derivative of a function at a point leads to an approximation

of the function using the Taylor series. The more derivatives one knows, the better the approximation. A logical

question, then, is if one knows all the mass moments of an object, can one perfectly describe the distribution

of mass?

41.4 Additivity of moments

One nice feature of moments is that, being integrals, they are additive. This means that a complex region can

be split into simpler regions for which we already know the moment of inertia, and these moments can be added

to find the moment of inertia for the entire region.

Example

Compute the moment of inertia for each of the following figures about a horizontal axis through their centers.
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Which has the greater moment of inertia, the I-shaped figure or the H-shaped figure? (See Answer 4)

41.5 EXERCISES

• Consider a right triangle with vertices at (0,0), (5,0), (0,10). Consider rotating the triangle about the

y-axis. The density is given by ρ(x, y) = x . Compute the moment of inertia. Compute the radius of

gyration.
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41.6 Answers to Selected Examples

1. Because the distance to the axis is part of the inertia element, a good area element to use is a vertical

rectangle, where every point has the same distance to the center axis. Let x be the distance from the

central axis to the rectangle (thus, r = x):

The area of this rectangle, as has been computed several times previously, is dA = 2
√
R2 − x2 dx . Then

the mass element dM = ρ dA, and it follows that

dI = r2 dM

= 2x2ρ
√
R2 − x2 dx.

so integrating the inertia element gives

I =

∫
dI

=

∫ R

x=−R
2ρx2

√
R2 − x2 dx

= 4ρ

∫ R

x=0

x2
√
R2 − x2 dx

(using the fact that the integrand is an even function allows the final step). Now the substitution

x = R sin θ, and some of the trig integral methods gives the answer ρπ
4 R

4, which can also be written
1
4MR

2, where M = πR2ρ is the mass of the disc.

(Return)

2. In this example, a good area element to use is a ring (also called an annulus), because every point in a

ring has the same distance to the origin, which is the axis of rotation (one can imagine the axis sticking

out of the page perpendicular to the center of the disc):
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As before, dM = ρ dA. In this case, dA is the area of the ring, which is 2πr dr (the circumference of the

ring times the width of the ring). It follows that

I =

∫
dI

=

∫ R

r=0

r2ρ2πr dr

= 2πρ

∫ R

r=0

r3 dr

= 2πρ
r4

4

∣∣∣∣R
r=0

=
πρR4

2
.

This can be expressed as 1
2MR

2, where M is again the mass of the disc. Note that the answer in this

example is twice that of the previous example. This can be explained (using the answer from the previous

example) by noting that r2 = x2 + y2 in this example. Therefore,

I =

∫
r2 dM

=

∫
(x2 + y2) dM

=

∫
x2 dM +

∫
y2 dM,

and these two integrals are, respectively, the moment of inertia about a vertical axis (from the previous

example) and the moment of inertia about a horizontal axis. By symmetry, these are equal, which explains

why this answer is twice the answer of the previous example.

(Return)

3. Center the rectangle at the origin. About the vertical axis, it is again best to use vertical rectangles. Let

r denote the distance of this rectangle from the y -axis:
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Then r = x , and dM = ρh dx . Thus

I =

∫
dI

= ρh

∫ l/2

x=−l/2

x2 dx

= ρh
x3

3

∣∣∣∣l/2

x=−l/2

=
1

12
ρhl3

=
1

12
Ml2,

where M = ρlh is the mass of the rectangle. By symmetry, the moment of inertia about a horizontal axis

through the center is 1
12Mh

2.

(Return)

4. For the first figure, we can divide it into two rectangles (in light blue) and a square which are all being

rotated about their horizontal center axis:
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From the above example, we know that the moment of inertia for a rectangle about its horizontal axis is

1

12
Mh2 =

1

12
lh3,

where l is the length and h is the height of the rectangle. So for each of the tall rectangles we have

I = 1
12a

3 a−b
2 and for the square in the middle we have I = 1

12b
4. Putting it together, we have the moment

of inertia for the entire region is

I = 2 ·
1

12
a3 a − b

2
+

1

12
b3b

=
1

12
(a4 − a3b) +

1

12
b4

=
1

12

(
a4 + b4 − a3b

)
.

For the other region, we cannot divide it up into rectangles in the same exact way, because we do not

know the moment of inertia for a rectangle rotated about an axis other than one through its center.

Instead, we can take the entire square of side length a, and compute its moment of inertia. Then we can

subtract off the inertia for the small rectangles we do not want to include, shown in red:
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Again, using the fact from the previous example, the moment for the whole square is 1
12a

4, and the

moment for each of the smaller rectangles (which we will subtract) is 1
12 ·

a−b
2 · b

3, so the moment of

inertia for the whole region is

I =
1

12
a4 − 2 ·

1

12
·
a − b

2
· b3

=
1

12
a4 −

1

12
(ab3 − b4)

=
1

12
(a4 + b4 − ab3).

So the I-shaped figure has the greater moment of inertia.

This is important when considering whether to use an H-beam or and I-beam in construction. According

to a fact mentioned in higher derivatives, the deflection u(x) (the amount the beam sags at location x)

satisfies the equation

EI
d4u

dx4
= q(x),

where E is the elasticity of the material (a constant), and q(x) is a static load at location x along the

beam. Because the I-beam has the greater moment of inertia, it follows that their deflection will be less,

and so I-beams are more common in building construction.

(Return)
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42 Fair Probability

Probability is the study of the likelihood of certain events occurring in a random experiment. A simple example

is a coin flip. There are two outcomes: heads (H) or tails (T). If the coin is fair, then the probability of each

outcome is 1
2 , written P (H) = P (T ) = 1

2 . Another example is a roll of a standard die. There are six outcomes:

1 through 6. If the die is fair then the probability of each outcome is 1
6 .

In these types of problems, one can find the probability of an event occurring by counting the number of desired

outcomes and dividing by the total number of outcomes.

Example

What is the probability that a pair of dice sums to seven or eleven? (See Answer 1)

Example

Alice and Bob play a game where they take turns flipping a fair coin, with Alice going first. The first player

to get heads wins. What is the probability that Alice wins?

Hint: find the probability that Alice wins on her first flip, and the probability that she wins on her second

flip, and the probability that she wins on her third flip, etc. Add up all these (infinitely many) probabilities

to find the probability that she wins.

Second hint: For Alice to win on her second flip, it means that both Alice and Bob got tails on their

respective first flips (otherwise the game would have ended in the first round). So the probability of Alice

winning on her second flip is

P (A got tails) · P (B got tails) · P (A got heads) =
1

2
·

1

2
·

1

2
=

(
1

2

)3

.

(See Answer 2)

42.1 Uniform distribution

The above examples refer to a fair coin and a fair die. A discrete experiment (i.e. the possible outcomes can

be listed) is said to have the uniform distribution if the experiment is fair in the sense that every outcome is

equally likely.

What about experiments which are not discrete? For instance, a spinner gives a point along the circumference

of a circle, and the individual points of the circle cannot be enumerated. Throwing a dart at a circular dartboard

likewise has as many outcomes as there are points in the interior of the disk. What does it mean for such an
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experiment to be fair, i.e., what does the uniform distribution mean in an experiment with continuous outcomes?

To answer this question, consider the probability of a range of outcomes of the experiment. So, for instance,

what is the probability of the spinner landing in the first quarter of the circle? If the experiment is fair, then

this probability should be the same as landing in any other quarter of the circle: 1
4 :

(Spinner Animated GIF)

Thus an experiment is fair (i.e. has the uniform distribution) if for any set of outcomes D,

P (D) =
volume of D

total volume of all outcomes
.

Here “volume” depends on the dimension of the experiment. For instance, the spinner has dimension 1 (where

volume is really just the length) since any point on the circumference can be specified by a single value (say,

the angle of the arrow relative to the positive x-axis). So a spinner is considered fair if the probability of the

arrow landing in a certain range along the circumference equals the length of that range divided by the total

circumference of the circle.

Length

Example

Find the probability that a randomly chosen angle θ has sin θ > 1
2 ? (See Answer 3)

Example

Find the probability that a randomly chosen angle θ has tan θ > 0. (See Answer 4)

Area

In two dimensions, volume is really area, and so when computing the probability that a randomly chosen point

in a region R in the plane lies within the region D, we have

P =
Area of D

Area of R
.
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Example

A dartboard is circular with radius 9 inches:

The bullseye is a small circle at the center of the board. Find the radius of the bullseye so that the probability

of hitting it is 1
100 (assuming a throw hits the board uniformly at random). (See Answer 5)

Example

Find the probability that a randomly chosen point in a square lies within the circle inscribed in the square:

(See Answer 6)
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Example

Find the probability that a randomly chosen point in a circle lies in the equilateral triangle inscribed in the

circle:

Hint: the area of an equilateral triangle of side length s is

A =
s2
√

3

4
.

(See Answer 7)

There are some probability problems that do not seem geometric in nature but can be solved by graphing the

possible outcomes and taking the ratio of the areas.

Example

Xander and Yolanda want to meet up to study calculus. Each friend will arrive at the library at some random

time between 5 pm and 6pm, wait 20 minutes for the other person, and then leave if the other person does

not arrive in that time. Find the probability that the friends successfully meet up.

Hint: Let x be the number of minutes after 5 pm that Xander arrives and y be the number of minutes after

5 pm that Yolanda arrives. Now plot the possible arrival times as a region in the plane and determine the

region which corresponds to them successfully meeting up. (See Answer 8)

Volume

Finally, in dimension 3, volume is volume as we traditionally know it. In this case, we imagine picking a point

from within a 3D region and know the probability that the point lies within some subset of that region.

Example

Find the probability that a randomly chosen point from within a cube lies within the inscribed sphere:
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(See Answer 9)

Example

What is the probability that a randomly chosen point in a ball lies within 10% of the boundary (as measured

by radius)? (See Answer 10)

42.2 Buffon needle problem

The Buffon needle problem, named after the Count of Buffon, asks for the probability that a needle of length

l , dropped uniformly at random onto a sheet with parallel lines spaced l units apart, will cross a line.

To simplify the problem, consider two parameters which determine whether the needle crosses:

1. h, the distance from the left tip of the needle to the next line to its right

2. θ, the angle that the needle makes with a vertical line:

221

http://en.wikipedia.org/wiki/Georges-Louis_Leclerc,_Comte_de_Buffon


Note that 0 ≤ h ≤ l and 0 ≤ θ ≤ π. Now, for what values of h and θ is there a crossing? Note that by right

triangle trigonometry, the horizontal distance from the left end of the needle to the right end of the needle is

l sin θ:

Thus, there is a crossing if h ≤ l sin θ, and there is no crossing if h > l sin θ. Graphing this inequality shows that

the region below the curve (shown in purple) is where a crossing occurs. The region above the curve is where

a crossing does not occur.
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Dropping a needle at random is like randomly picking a point in this rectangle. Thus, the probability of a

random needle creating a crossing equals the probability of randomly picking a point below the curve in the

above rectangle. That probability is given by dividing the area under the curve by the area of the entire rectangle.

P (crossing) =

∫ π
0 l sin θ dθ

lπ

=
1

π

(
− cos θ

∣∣∣∣π
0

)
=

2

π
.

42.3 Answers to Selected Examples

1. By listing the desired outcomes, one finds that (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1) are the possible

pairings which give 7, and (6, 5) and (5, 6) are the possible pairings which give 11. So there are 8 desired

outcomes. The total number of outcomes is 6× 6 (six outcomes for the first die paired with each of the

six outcomes for the other die). So the probability is

# desired

# total
=

8

36
=

2

9
.

(Return)

2. Proceeding as the hint suggests, we look for a pattern.

P (A wins on 1st flip) = P (A gets heads) =
1

2
.

And then

P (A wins on 2nd flip)

= P (A gets tails) · P (B gets tails) · P (A gets heads)

=
1

2
·

1

2
·

1

2

=

(
1

2

)3

.

Next,

P (A wins on 3rd flip)

= P (A gets tails) · P (B gets tails) · P (A gets tails) · P (B gets tails) · P (A gets heads)

=
1

2
·

1

2
·

1

2
·

1

2
·

1

2

=

(
1

2

)5

.

In general, for Alice to win on the nth flip, she must get a head on that flip, and both Alice and Bob must

have gotten tails on each of their previous n − 1 flips. Thus, there are a total of 2(n − 1) + 1 = 2n − 1

coin flips that must come out in a precise way, and the probability of each of these is 1
2 , so we have

P (A wins on nth flip) =

(
1

2

)2n−1

.
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Adding these up for all n, and using the geometric series, gives

P (A wins) =

∞∑
n=1

(
1

2

)2n−1

=
1

2
+

(
1

2

)3

+

(
1

2

)5

+ · · ·

=
1

2
·

(
1 +

(
1

2

)2

+

(
1

2

)4

+ · · ·

)

=
1

2
·

(
1 +

1

4
+

(
1

4

)2

+ · · ·

)

=
1

2
·

1

1− 1/4

=
2

3
.

(Return)

3. We can visualize the sine of the angle by considering a unit circle, and noting that sine is the y -coordinate

of a point on the circle:

Then one finds that the angles for which sin θ > 1
2 are

π

6
< θ <

5π

6
.

The length of this portion of the circumference of the circle is 4π
6 , and so the probability of a random

angle θ satisfying sin θ > 1
2 is

P =
4π/6

2π

=
1

3
.
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(Return)

4. Note that tangent is positive when sine and cosine have the same sign, i.e. if sine and cosine are both

positive or if sine and cosine are both negative. This corresponds to the first and third quadrants of the

unit circle:

The length of each these arcs is π
2 , and so the probability that tan θ > 0 is

P =
2 · π/2

2π

=
1

2

(Return)

5. Ignoring the unnecessary detail of the dartboard, let the radius of the bull’s eye be r . Then

P (( bullseye ) =
A( bullseye )

A( board )

=
πr2

π · 92

=
r2

81
.

Setting equal to 1
100 and solving gives r = 0.9 inches. (In reality, the bullseye is much smaller, but the

numbers worked out nicer in this example).

(Return)

6. If the radius of the circle is r , then the side length of the square is 2r . Thus, the area of the circle is πr2

and the area of the square is (2r)2 = 4r2. And so the probability that a point chosen at random within

the square also lies within the circle is

P =
πr2

4r2

=
π

4
.
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(Return)

7. By doing a little bit of right triangle trigonometry:

we find that the side length of the triangle is

s = r
√

3.

Therefore, the area of the triangle is

A =
s2
√

3

4

=
3r2
√

3

4
.

And so the probability of a point within the circle being within the triangle is the ratio of the areas:

Area of triangle

Area of circle
=

1

πr2

3r2
√

3

4

=
3
√

3

4π

(Return)

8. The possible outcomes form a square for 0 ≤ x ≤ 60 and 0 ≤ y ≤ 60. For the friends to meet, we must

have that Yolanda arrives no later than 20 minutes after Xander and that Xander arrives no later than 20

minutes after Yolanda arrives. Mathematically,

y ≤ x + 20

x ≤ y + 20

The two will successfully meet if and only if these two conditions are met. Graphing these inequalities,

the points they have in common are shown below in dark blue:
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So the probability of them meeting is the area of the dark blue region divided by the total area of the

square. It is easier to determine the area of the region we do not want and subtract. There are two

isosceles right triangles of side length 40, so the area of the region we do not want is

bad area = 2 ·
1

2
· 40 · 40 = 1600

Therefore, the probability of the friends meeting is

P =
area of dark blue region

total area

=
total area− light blue area

total area

=
3600− 1600

3600

=
2000

3600

=
5

9
.

(Return)

9. If r is the radius of the inscribed sphere, then the side length of the cube is 2r . Therefore, the volume

of the sphere is 4
3πr

3 and the volume of the cube is (2r)3 = 8r3. So the probability that a random point

within in the cube lies within the sphere is

P =
(4/3)πr3

8r3

=
π

6
.

(Return)

10. Let r be the radius of the ball. Then the volume of the ball (the volume of all the possible outcomes) is
4
3πr

3.

To find the volume of the desired outcomes, consider the volume of the undesired outcomes: those

points which lie within 90% of the center. These points form a ball of radius 9
10 r , hence their volume is
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4
3π
(

9
10 r
)3

. So the desirable outcomes have the complementary volume

volume of desired outcomes = total volume− volume of undesired outcomes

=
4

3
πr3 −

4

3
π(

9

10
r)3

=
4

3
πr3

(
1− (9/10)3

)
.

Thus, the probability of a point being within 10% of the boundary is

volume of desired outcomes

total volume
=

4
3πr

3(1− (9/10)3)
4
3πr

3

= 1− (9/10)3

= 0.271

(Return)
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43 Probability Densities

The last module dealt with the uniform distribution, where any one outcome is as likely as another. This module

deals with experiments whose outcomes have different probabilities. For example, consider an unfair coin which

has a 2
3 probability of landing heads and a 1

3 probability of landing tails. Another example is time spent on hold

with customer service, where it is more likely that the call is answered in the first hour than in the second hour.

43.1 Random variable and probability density function (PDF)

A random variable X is a function whose output should be thought of as the outcome of an experiment.

Associated with a random variable is a probability density function (PDF) ρ(x), which is defined by P (a ≤ X ≤
b) =

∫ b
a ρ(x)dx . That is, the probability that the random variable falls in a certain range of values is given by

integrating the PDF over that range of values.

Phrased another way, we can think of probability P as the quantity we want to compute over a certain range

of values, and the probability element is given by

dP = ρ(x) dx.

Example

Consider the spinner from the last module. The outcome of a spin is some angle (relative to the positive

x-axis) between 0 and 2π. If X is the random variable which gives the output of a spin, then

P (a ≤ X ≤ b) =
b − a

2π
,

since the spinner was assumed to be fair. This holds for all 0 ≤ a ≤ b ≤ 2π. Then the associated PDF is

ρ(x) =

{
1

2π if 0 ≤ x ≤ 2π

0. otherwise

Note

Sometimes a PDF ρ(x) is only defined on a certain domain D. D can be thought of as the set of all possible

outcomes of the experiment X. In this case, it is assumed that ρ(x) = 0 for x not in that domain. So another

way of defining the PDF for the spinner is ρ(x) = 1
2π for 0 ≤ x ≤ 2π.
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43.2 Properties of a probability density function

The following are defining properties of a PDF. In other words, a function ρ(x) is a PDF on the domain D if

and only if it satisfies these properties.

1. ρ(x) ≥ 0 for all x ∈ D.

2.
∫
D ρ(x) dx = 1.

The first property is necessary since probabilities must be non-negative. The second property reflects the fact

that the random variable X associated with ρ(x) must have some outcome in the domain D (since D is the set

of all possible outcomes), and so integrating over all of these outcomes should give 1.

Note

If ρ(x) is defined on some specific domain D, then the integral over that specific domain should equal 1. This

is because ρ(x) = 0 outside of that domain, as mentioned in the above note.

Example

Find the value of the constant c so that ρ(x) = c
1+x2 for all x is a PDF. (See Answer 1)

43.3 Several specific density functions

Uniform density

Hinted at above and in the previous module, the uniform density function (or uniform distribution) on [a, b] is

given by ρ(x) = 1
b−a (and ρ(x) = 0 if x is not in [a, b]):

More generally, the uniform distribution on the domain D (whatever the dimension) is given by

ρ(x) =
1

Volume of D
.

In dimension 0, where outcomes are discrete (as in the rolling of a die or the flipping of a coin), remember that

volume is just counting. So in this case the probability of a particular outcome is

ρ(x) =
1

n
,

where n is the number of outcomes in the domain D (e.g. n = 6 for the roll of a die; n = 2 for a coin flip).
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Exponential density

Another density function used to model many common experiments is the exponential density function. This is

actually a whole family of density functions given by ρ(t) = αe−αt for t ≥ 0 and α > 0 some constant. The

reason a parameter t is used is that the exponential density is often used to model experiments with a time

outcome.

Example

Show that the exponential density ρ(t) = αe−αt (for t ≥ 0) satisfies the properties of a density function.

(See Answer 2)

Example

Consider a call made to customer service at Acme company. The number of minutes spent on hold before

the call is answered is often modeled with an exponential density function

ρ(t) = αe−αt .

Find, in terms of α, the probability that the waiting time for a call is less than 30 minutes. (See Answer 3)

Example

Again consider customer service call waiting time at Acme company, and again assume an exponential density

function

ρ(t) = αe−αt .

Suppose half of all customers are answered within 5 minutes. Find α and then find the probability that a

call takes more than 10 minutes to be answered. (See Answer 4)

Gaussian density

The last probability density function is the ’Gaussian, or normal, density function. This is an important density

function and is expanded on in the next module. Like the exponential, the Gaussian density function usually has

parameters (see the next module), but in its simplest form, the Gaussian is given by

ρ(x) =
1√
2π
e−x

2/2.
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The Gaussian has all real x as its domain, but because it tails off so quickly in both directions, the probability

of getting values far from the center (in this case x = 0) is very small.

43.4 EXERCISES

• Which of the following are probability density functions?

a. f (x) =1/2 on D = [0, 2]

b. f (x) =
sin(x)

2
on D = [0, 3π]

c. f (x) =5e−2x on D = [0,∞)

d. f (x) =
1

π(1 + x2)
on D = (−∞,∞)

e. f (x) =
x

2
for 0 ≤ x ≤ 1

1

2
for 1 ≤ x ≤ 2

3

2
−
x

2
for 2 ≤ x ≤ 3

43.5 Answers to Selected Examples

1. As long as c ≥ 0, the first property for a PDF will be met, since 1 + x2 > 0 for all x . To satisfy the

second property, compute ∫ ∞
−∞

c

1 + x2
dx = c

(
arctan(x)

∣∣∣∣∞
−∞

)
= c

(π
2
− (−

π

2
)
)

= cπ.

Since this integral is supposed to be 1, we find that c = 1
π .

(Return)
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2. The exponential function is never negative, so one need only check the integral. One finds∫ ∞
t=0

αe−αt dt = α
1

−αe
−αt
∣∣∣∣∞
t=0

= −(0− 1)

= 1,

as desired. So the exponential density is in fact a density.

(Return)

3. To find the probability that 0 ≤ X ≤ 30, use the relationship between probability and the PDF, which is

P (0 ≤ X ≤ 30) =

∫ 30

0

ρ(x) dx

=

∫ 30

0

λe−λx dx

= −e−λx
∣∣∣∣30

0

= −e−30λ − (−1)

= 1− e−30λ.

(Return)

4. Since half of all customers are answered within 5 minutes, we have that

P (0 ≤ X ≤ 5) =
1

2
.

On the other hand, we know that this can be expressed as the integral of the density function, so we have

1

2
=

∫ 5

t=0

ρ(t) dt

=

∫ 5

t=0

αe−αt dt

= −e−αt
∣∣∣∣5
t=0

= −e−5α − (−1)

= 1− e−5α.

So we have that

e−5α =
1

2
.

Taking the log of both sides, dividing by −5 and simplifying, we have

α =
1

−5
ln

(
1

2

)
=

1

−5
(− ln 2)

=
1

5
ln 2.
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For the second part, we want to know the probability of waiting more than 10 minutes. This is (leaving

α as a constant for now)

P (X ≥ 10) =

∫ ∞
t=10

ρ(t) dt

=

∫ ∞
t=10

αe−αt dt

= −e−αt
∣∣∣∣∞
t=10

= 0−
(
−e−α·10

)
.

Now plugging in the value of α, we have

P (X ≥ 10) = e−(ln 2/5)·10

= e−2 ln 2

= 2−2

=
1

4
.

(Return)
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44 Expectation And Variance

When performing an experiment, it is useful to know what the expected outcome will be as well as how much

variation one can expect among the outcomes. The notions of expected outcome and variation are made formal

in this module by the terms expectation,variance, and standard deviation.

This module will also show some of the connections of these statistical metrics with the applications of the

previous modules.

44.1 Expectation

Consider a random variable X with probability density function (PDF) ρ(x) defined on some domain D. The

expectation of X, denoted by E, is defined by

E =

∫
D

xρ(x) dx

=

∫
D

x dP,

where dP is the probability element. The expectation of X is sometimes called the mean of X, the expected

value, or the first moment. In some books it is denoted µX . It is best to think of the expectation as the number

one gets by repeating the experiment many times and taking the average of the outputs.

The notion of expectation is more general than the mean because one can also take the expectation of a

function of X. The expectation of f (X) is defined by

E[f (X)] =

∫
D

f (x)ρ(x) dx.

Example

Find the expectation of X, where X is uniformly distributed on the interval [a, b]. (See Answer 1)

Example

Recall that the random variable X is said to have the exponential distribution if the PDF associated with

X is ρ(t) = αe−αt for t ≥ 0, where α > 0 is some constant. Find the expectation of the exponential

distribution (in terms of α). (See Answer 2)
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44.2 Variance

Consider a random variable X with PDF ρ(x). The variance of X, denoted V, is defined by

V = E
[

(X − E[X])2
]

= E[X2]− E[X]2.

In the notation of the lecture,

V =

∫
D

(x − E)2 dP

=

∫
D

x2 dP − E2.

Note: it requires some calculation to show the second equality above holds. Either of the above expressions may

be taken as the definition of variance, and the second one might be slightly simpler for the sake of computation.

(See Justification 3)

Example

Compute the variance of the exponential density function ρ(x) = αe−αx . (See Answer 4)

44.3 Standard deviation

Consider a random variable X with PDF ρ(x). Then the standard deviation of X, denoted σX , is defined by

σX =
√
V [X]

=
√
E[X2]− E[X]2

=

√∫
D

x2ρ(x) dx −
(∫

D

xρ(x) dx

)2

.

Example

Find the standard deviation of X, where X is uniformly distributed over [a, b]. (See Answer 5)

44.4 Interpretations

If one interprets the PDF ρ(x) as the density of a rod at location x , then:

1. The mean, µ =
∫
xρ(x) dx , gives the center of mass of the rod.

2. The variance, V =
∫

(x − µ)2ρ(x) dx , gives the moment of inertia about the line x = µ.

3. The standard deviation, σ =
√
V , gives the radius of gyration about the line x = µ.
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44.5 The normal distribution

A random variable X is said to have the normal distribution, or to be normally distributed, with mean µ and

standard deviation σ if its PDF is of the form

ρ(x) =
1

σ
√

2π
e−

1
2 ( x−µ

σ )
2

.

Due to its ubiquity throughout the sciences, the normal distribution is one of the most well-known probability

distributions. However, because its PDF does not have an elementary anti-derivative, it is not easy to calculate

exact probabilities associated with the normal distribution. Instead, there are is a rule of thumb which can be

used.

The 68-95-99.7 rule

Given a random variable X which is normally distributed with mean µ and standard deviation σ, the following

hold:

1. P (µ− σ ≤ X ≤ µ+ σ) ≈ .68.

2. P (µ− 2σ ≤ X ≤ µ+ 2σ) ≈ .95.

3. P (µ− 3σ ≤ X ≤ µ+ 3σ) ≈ .997.

In other words, 68% of samples will fall within 1 standard deviation of the mean. 95% of samples will fall within

2 standard deviations of the mean. And 99.7% of samples will fall within 3 standard deviations. These rules,

along with the symmetry of the normal PDF, can be used to approximate many probabilities relating to the

normal distribution:
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Example

The height of men in a certain population is normally distributed with mean µ = 70 inches and standard

deviation σ = 2 inches. If a man is chosen at random from the population, what is the probability that he

is taller than 72 inches? (See Answer 6)

44.6 EXERCISES

• Compute the expected value of normally distributed random variable with probability density function

ρ(x) = 1√
2π
e−

x2

2 on −∞ < x <∞.

44.7 Answers to Selected Examples

1. Recall that the PDF associated with X is given by ρ(x) = 1
b−a for a ≤ x ≤ b. Thus, the mean is given by

E =

∫ b

a

x ·
1

b − a dx

=
1

b − a
x2

2

∣∣∣∣b
a

=
1

b − a ·
1

2
(b2 − a2)

=
1

b − a ·
1

2
(b + a)(b − a)

=
1

2
(a + b).

(Return)
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2. From the definition of expectation, one finds

E =

∫ ∞
0

tαe−αt dt

= α

∫ ∞
0

te−αt dt.

Using integration by parts, with

u = t du = dt

dv = e−αt v =
1

−αe
−αt ,

we find that

α

∫ ∞
0

te−αt dt = α

(
t

−αe
−αt −

∫ ∞
0

1

−αe
−αt dt

)
=

(
−te−αt −

1

α
e−αt

) ∣∣∣∣∞
0

= (0− 0)− (0−
1

α
)

=
1

α
.

(Return)

3. Expanding out the expression and using the linearity of the integral, we find∫
D

(x − E)2 dP =

∫
D

(x − E)2ρ(x) dx

=

∫
D

x2 dP −
∫
D

2xE dP +

∫
E2 dP

=

∫
D

x2 dP − 2E
∫
D

x dP + E2

∫
dP

=

∫
D

x2 dP − 2E · E+ E2

=

∫
D

x2 dP − E2.

because
∫
x dP = E and

∫
dP = 1, by the definition of expectation and the definition of the probability

density function, respectively.

(Return)

4. The variance requires us to compute

E(X2) =

∫
D

x2 dP

=

∫ ∞
x=0

x2αe−αx dx.
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Using integration by parts, with

u = x2 du = 2x dx

dv = αe−αx dx v = −e−αx ,

we find ∫ ∞
x=0

x2αe−αx dx = −x2e−αx
∣∣∣∣∞
x=0

+

∫ ∞
x=0

2xe−αx dx.

This second integral can be done with integration by parts again, or we can use the fact that this is almost

the integral for the expectation. Namely, we know∫ ∞
x=0

xαe−αx dx =
1

α
,

and so by dividing through by α, we have∫ ∞
x=0

xe−αx dx =
1

α2
.

Putting this together, we have ∫ ∞
x=0

x2αe−αx dx = −x2e−αx
∣∣∣∣∞
x=0

+
2

α2

= (0− 0) +
2

α2

=
2

α2
.

Finally, then, the variance is

V =

∫
D

x2 dP − E2

=
2

α2
−
(

1

α

)2

=
1

α2
.

(Return)

5. Again, recall that the PDF for the uniform distribution is ρ(x) = 1
b−a for a ≤ x ≤ b. Thus,

E[X2] =

∫ b

a

x2 1

b − a dx

=
1

b − a
x3

3

∣∣∣∣b
a

=
1

b − a ·
1

3
(b3 − a3)

=
1

b − a ·
1

3
(b − a)(b2 + ba + a2)

=
b2 + ab + a2

3
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From the previous example, E[X] = µX = a+b
2 . Thus,

σX =
√
E[X2]− E[X]2

=

√
b2 + ba + a2

3
−
b2 + 2ba + a2

4

=

√
b2 − 2ab + a2

12

=
b − a√

12
.

(Return)

6. Let X be the height of a randomly chosen man. Then P (68 ≤ X ≤ 72) = .68 by the above rule. By

symmetry P (68 ≤ X ≤ 70) = P (70 ≤ X ≤ 72) = .34. Also, by symmetry, P (X ≤ 70) = .5. Thus,

P (X ≤ 72) = P (X ≤ 70) + P (70 ≤ X ≤ 72)

= .5 + .34

= .84.

It follows that

P (X > 72) = 1− P (X ≤ 72)

= 1− .84

= .16.

This is best visualized by labeling the various regions under the normal curve with their areas:

So the probability that a randomly chosen man from the population is taller than 72 inches is .16.

(Return)
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