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45 Sequences

The remainder of the course is a look at discrete calculus, which is a study of all the previous sections (functions,

derivatives, integrals) applied to a different kind of function: sequences. A sequence is a function, but instead

of taking any real number as input, a sequence takes an integer as input.

45.1 Sequence

A sequence a is a function from the non-negative integers 0, 1, 2, 3, . . . to the real numbers R. The usual

functional notation a(n) is sometimes replaced with an. There are several ways to define a sequence. Here are

three of the most common ways, demonstrated on the powers of 2.

1. An explicit formula gives an as a function of n, i.e. an = f (n). This is usually the most convenient, since

it typically gives the most information about the sequence. e.g. an = 2n for n ≥ 0.

2. A recursion relation gives an as a function of previous terms in the sequence. Note that some initial

conditions must be given as well. an = f (an−1, an−2, . . . , an−k). e.g. an = 2an−1; a0 = 1.

3. Finally, listing terms can be used if no explicit or recursive formula is available. This is sometimes used in ex-

perimental settings so that one can study the terms and look for a pattern. e.g. a = (1, 2, 4, 8, 16, 32, . . .).

Example

Write out the first six terms of the sequence defined by an = 2an−1 + 1; a0 = 0. Look for a pattern to try

to find an explicit formula for an. (See Answer 1)

45.2 Limits of sequences

Recall that limits of functions came in two flavors. First, there were limits of the form limx→c f (x). The second

type of limits were of the form limx→∞ f (x).

Only the second type of limit is sensible for a sequence. (To see why the first type of limit does not make sense

for sequences, go back to the definition of a limit.) The definition of limn→∞ an for sequences is the same as

for continuous functions:
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The Limit of a Sequence

We say that

lim
n→∞

an = L

if for any ε > 0 there exists M such that for all n > M,

|an − L| < ε.

In other words, the sequence an has limit L if an gets arbitrarily close to L for sufficiently large n. If the

limit L exists, then the sequence an is said to converge to L.

Intuitively, a sequence an has a limit if for any band around L, there is some point where all the terms of an are

within the band around L:

Recall that Newton’s method defined a sequence of numbers defined by the recursion relation

xn+1 = xn −
f (xn)

f ′(xn)
.

Here, the sequence hopefully converged to a root of the function f (x). This gives an example of an application

where it is useful to know about the convergence of a sequence.

Example

Let an = 4 + (−1)n
n . Find limn→∞ an, if the limit exists. If the limit does not exist, explain why. (See Answer

2)

Example

Let an = (−1)n. Find limn→∞ an, if the limit exists. If the limit does not exist, explain why. (See Answer

3)

45.3 Methods for computing limits

Many of the methods for computing limits of continuous functions carry over to computing limits of sequences.

In particular, all of the big-O notation still applies.
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Example

Compute the limit of the sequence an = 3n −
√

9n2 + 6n. (See Answer 4)

45.4 Monotone, bounded sequences

In general, it can be difficult to find the limit of a sequence, but for certain sequences it is possible to prove

that the limit exists.

A sequence is monotone increasing if it is non-decreasing, i.e., a0 ≤ a1 ≤ a2 ≤ . . .. A sequence is monotone

decreasing if it is non-increasing, i.e., a0 ≥ a1 ≥ a2 ≥ . . .. A sequence that is either monotone increasing or

monotone decreasing is monotone.

A sequence is bounded above if there exists some real number B such that an ≤ B for all n ≥ 0. Similarly,

a sequence is bounded below if there exists a real number C such that an ≥ C for all n ≥ 0. A sequence is

bounded if it is both bounded above and bounded below.

Monotone Convergence Theorem

If a sequence an is bounded and monotone, then the sequence converges.

Example

Let an be the sequence defined by an = 5+an−1
2 ; a0 = 1. Show that the sequence converges by using the

Monotone Convergence Theorem. (See Answer 5)

45.5 Recursion relations and limits

When a sequence is defined by a recursion relation and the limit of the sequence exists, one can find the limit

by simply taking the limit of both sides of the recursion relation and solving. This is best demonstrated by

example.

Example

Find the limit L = limn→∞ an, where an = 5+an−1
2 ; a0 = 1, as in the previous example. (See Answer 6)

Example

Find

L = 1 +
1

1 + 1
1+ 1

1+...

by expressing L as a limit of a recursively defined sequence an which begins (1, 1 + 1
1 , 1 + 1

2 , . . .). Assume

that the limit exists. (See Answer 7)

Example

Find

√
1 +

√
1 +
√

1 + · · ·. Assume the limit exists. (See Answer 8)
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The golden ratio, often denoted

ϕ =
1 +
√

5

2
,

appears in many settings, both man made and natural. The golden ratio is also deeply connected with the

Fibonacci numbers, as we will see in this example and in the future.

Example

The Fibonacci sequence, Fn is defined by the recursion relation and initial conditions

Fn+2 = Fn+1 + Fn; F0 = 0, F1 = 1.

So the first few Fibonacci numbers are

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

Show that

lim
n→∞

Fn+1
Fn

= ϕ.

You may assume that the limit of the sequence exists. Hint: Observe that

Fn+1
Fn

=
Fn + Fn−1

Fn
= 1 +

Fn−1
Fn

.

(See Answer 9)

45.6 EXERCISES

• Compute the limit of the sequence an = 2n2 − (8n6 + 6n4)1/3.

45.7 Answers to Selected Examples

1.

a0 = 0

a1 = 2a0 + 1 = 1

a2 = 2a1 + 1 = 3

a3 = 2a2 + 1 = 7

a4 = 2a3 + 1 = 15

a5 = 2a4 + 1 = 31.

One might notice that adding 1 to each term in the sequence gives the sequence (1, 2, 4, 8, 16, 32, . . .),

which look like the powers of 2. So it appears that an = 2n − 1 for n ≥ 0.

(Return)

2. We claim the limit is 4. We know that

lim
n→∞

1

n
= 0.
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Therefore, for any ε > 0 we can choose M so that 1
M < ε. Then for any n > M, we have

|an − 4| =

∣∣∣∣4 +
(−1)n

n
− 4

∣∣∣∣
=

∣∣∣∣(−1)n

n

∣∣∣∣
=

1

n

<
1

M

< ε,

as desired. For this course, we will not typically be this formal, but it is useful to see this type of argument

at least a few times.

(Return)

3. From the intuitive understanding of a limit, it is clear that the terms of this sequence are not getting

closer together, and so the limit does not exist.

More formally, suppose the limit, say L, existed. Then from the definition of the limit of a sequence, we

could find a number M such that

|an − L| <
1

3

for all n > M. Since the terms of the sequence are −1 and 1, this would imply

| − 1− L| <
1

3

This implies

−
1

3
<− 1− L <

1

3
2

3
<− L <

4

3

−
2

3
>L >

−4

3
.

Similarly,

|1− L| <
1

3

which implies by similar algebra that
4

3
> L >

2

3
.

Since L cannot be simultaneously positive and negative, we have reached a contradiction. And so we see

that the limit L cannot exist.

(Return)
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4. A little factoring from the radical, and using the binomial series gives

an = 3n −
√

9n2 + 6n

= 3n − 3n

√
1 +

2

3n

= 3n

(
1−

√
1 +

2

3n

)

= 3n

(
1− (1 +

1

2

2

3n
+O(1/n2))

)
= −1 +O

(
1

n

)
.

So the limit is −1.

(Return)

5. It is not obvious that this sequence is either bounded or monotone. Writing out the first few terms,

though, gives a = (1, 3, 4, 4.5, 4.75, . . .). It appears that the sequence is increasing, and that an ≤ 5 for

all n ≥ 0.

To show that the sequence is increasing, use induction. The first few terms are increasing, so assume that

an−1 ≤ an for some n. Then adding 5 and dividing by 2 throughout gives 5+an−12 ≤ 5+an
2 , which implies

an ≤ an+1 by the recursive definition of an. Thus, the sequence is increasing.

To see that an ≤ 5, again use induction. Assume an ≤ 5 for some n. Then adding 5 and dividing by 2

gives 5+an2 ≤ 5+5
2 = 5. This means an+1 ≤ 5 by the definition of an. Thus, an ≤ 5 for all n. Finally, note

that any increasing sequence is bounded below. So the sequence is bounded.

Thus, by the Monotone Convergence Theorem, the sequence an converges.

(Return)

6. The limit exists by the previous example, so taking limits of both sides of the recursion relation and

simplifying gives

lim
n→∞

an = lim
n→∞

5 + an−1
2

L =
5 + limn→∞ an−1

2

L =
5 + L

2
.

(Note that lim an−1 = lim an because the limit of a sequence does not depend on the indexing of the

terms.) Now, solving for L gives 2L = 5 + L, so L = 5.

(Return)

7. The sequence an can be defined recursively by an = 1 + 1
an−1

; a0 = 1. Then taking limits of both sides

gives L = 1 + 1
L . Multiplying through and collecting terms gives L2 − L− 1 = 0, and solving for L gives

L = 1±
√
5

2 .

Note though that an > 0 for all n, so it must be that L = 1+
√
5

2 . This is the celebrated golden ratio.

(Return)
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8. One can express this as the limit of a recursively defined sequence an given by a0 = 1 and an =
√

1 + an−1.

Then letting L = lim an, and taking limits of the recursion relation gives

L =
√

1 + L.

Squaring both sides and collecting terms gives L2 − L − 1 = 0, which is the same equation from the

previous example. Thus, the limit is again the golden ratio L = 1+
√
5

2 .

(Return)

9. Let

L = lim
n→∞

Fn+1
Fn

.

Then, beginning with the hint and taking the limit of both sides, we have

lim
n→∞

Fn+1
Fn

= lim
n→∞

(
1 +

Fn−1
Fn

)
= 1 + lim

n→∞

Fn−1
Fn

= 1 + lim
n→∞

1

Fn/Fn−1

= 1 +
1

lim
n→∞

Fn/Fn−1
.

But this means

L = 1 +
1

L
,

which is an equation which we solved in an above example, where we found

L =
1 +
√

5

2
,

as desired.

(Return)
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46 Differences
What is the derivative of a sequence? The original definition will not work because change in input is discrete

and so one cannot take the limit as the change in input goes to 0. Instead, using the interpretation of the

derivative as a rate of change leads to two different discrete derivatives. They are called difference operators,

and are defined below.

46.1 Difference operators

The discrete analog of the derivative is the difference operator, defined as follows.

Difference operators

Given a sequence an, the forward difference of a, denoted (∆a)n, is defined by

(∆a)n = an+1 − an.

The backward difference of a, denoted by (∇a)n, is defined by

(∇a)n = an − an−1.

This can be interpreted as the change in output over the change in input:

(∆a)n =
a(n + 1)− a(n)

(n + 1)− n =
an+1 − an

1
= an+1 − an,

which resembles the definition for the derivative of a continuous function, but without the limit. If we plot the

points of the sequence as if we were graphing the function, and then connect the dots with linear segments,

then the forward difference can also be interpreted as the slope between adjacent points:
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Example

The sequence (4n) = 0, 4, 8, 12, 16, . . . has forward difference sequence

∆(4n) = 4, 4, 4, 4, . . .

Example

Find the forward difference sequence of the Fibonacci sequence F = 0, 1, 1, 2, 3, 5, 8, 13, 21 . . .. (See

Answer 1)

Example

Find the forward difference of the powers of two: (2n) = 1, 2, 4, 8, 16, 32, . . .. (See Answer 2)

Product rules

These difference operators have their own versions of the differentiation rules for continuous functions. For

example, there is a product rule. For sequences a = (an) and b = (bn), define the new sequence (ab) by

(ab)n = (anbn). Then

∆(ab)n = an∆bn + bn∆an + ∆an∆bn

∇(ab)n = an∇bn + bn∇an −∇an∇bn.

This should be reminiscent of the product rule (f g)′ = f g′ + f ′g.

46.2 Higher order difference operators

Just as the derivative of a function gives another function, the difference operator of a sequence a gives another

sequence ∆a. Then one can take the difference operator of ∆a which gives yet another sequence ∆2a. And so

on. Consider, for instance, the sequence an = n3 for n ≥ 0. Then

a = 0 1 8 27 64 125 216 343 . . .

∆a = 1 7 19 37 61 91 127 . . .

∆2a = 6 12 18 24 30 36 . . .

∆3a = 6 6 6 6 6 . . .

∆4a = 0 0 0 0 . . .

A little bit of pattern matching shows the following:

an = n3

(∆a)n = 3n2 + 3n + 1

(∆2a)n = 6n + 6

(∆3a)n = 6

(∆4a)n = 0

Just as taking higher derivatives of a polynomial eventually gives 0, taking higher order difference operators of

a polynomial eventually gives 0. Moreover, if a is a polynomial of degree p, then ∆p+1a = (0).

Note that the power rule is not quite the same as for regular derivatives (e.g. n3 7→ 3n2 + 3n + 1). This is an

artifact of the binomial expansion. The next section shows a convenient way to avoid these problems.
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46.3 Falling powers

The falling power nk is defined to be

nk = n(n − 1)(n − 2) · · · (n − k + 1), n0 = 1.

The falling power can be thought of as a discrete version of the monomial xk . One nice feature of the falling

power is that

∆nk = (n + 1)k − nk

= (n + 1)n(n − 1) · · · (n − k + 2)− n(n − 1) · · · (n − k + 1)

= n(n − 1) · · · (n − k + 2) (n + 1− (n − k + 1))

= knk−1,

which is the familiar power rule.

Example

Express n3 in terms of falling factorials and use the power rule above to find ∆n3. (See Answer 3)

46.4 Discrete e

With the falling power in hand, consider the discretized version of the exponential function, found by replacing

the usual monomials xk with nk in the Taylor series for the exponential:

∞∑
k=0

nk

k!
= 1 + n +

n(n − 1)

2!
+
n(n − 1)(n − 2)

3!
+ · · ·

If one evaluates this at n = 1 to find the ”discrete e”, note that all the terms after the first two disappear

because of the n− 1 factor in all the higher terms. Thus, the discrete version of e is 2. This is consistent with

the earlier note that 2n acted like the exponential function (it is its own discrete derivative). Indeed, the above

series is 2n, which can be seen by noting it is simply the binomial series (1 + x)n evaluated at x = 1.

46.5 Sequence operators

Just as there were operators on functions (e.g. integration, differentiation, logarithm, exponentiation), there

are operators on sequences:

Operator Notation What it does Notes

Identity I (Ia)n = an I2 = I

Left shift E (Ea)n = an+1 E2 shifts twice, etc.

Right shift E−1 (E−1a)n = an−1 E−1E = I

Forward difference ∆ (∆a)n = an+1 − an ∆ = E − I
Backward difference ∇ (∇a)n = an − an−1 ∇ = I − E−1

14



Higher derivatives

The expressions for the forward and backward differences in terms of I and E can be used to compute the

higher derivatives of sequences more easily than it would be to compute them by hand. For example, the third

derivative can be found by expanding the expression as a binomial:

∆3a = (E − I)3a
= (E3 − 3E2I + 3EI2 − I3)a
= (an+3 − 3an+2 + 3an+1 − an).

More generally, the kth derivative can be written similarly:

∆k = (E − I)k

=

k∑
i=0

(−1)k−i
(
k

i

)
E i

Indefinite integral

As shown above, the forward difference can be expressed in terms of the operators E and I:

∆ = E − I.

A logical question is to ask whether it is possible to take the anti-difference, just as there is the antiderivative

for functions. The claim is that

∆−1 = −(I + E + E2 + E3 + E4 + · · · )

This looks reminiscent of the geometric series. By taking the inverse of ∆ (and a few liberties with the algebra),

we have

∆−1 = (E − I)−1

= −(I − E)−1

= −(I + E + E2 + E3 + · · · ),

by thinking of (I−E)−1 as the reciprocal of 1−E in a sense (because I acts like 1), and applying the geometric

series. This derivation is not rigorous, but the above formula does give the anti-difference (up to an additive

constant), so long as the sequence an is eventually 0.

This is just a hint of the calculus of sequences, which we explore a little bit more in the modules to come.

46.6 Answers to Selected Examples

1. The difference sequence is

∆F = 1, 0, 1, 1, 2, 3, 5, 8, . . .

Note that this is just the Fibonacci sequence again, but slightly shifted. This makes sense since the

difference

(∆F )n = Fn+1 − Fn = Fn−1,

by rearranging the Fibonacci recursion relation.

(Return)

15



2. The difference sequence is

∆(2n) = 1, 2, 4, 8, 16, 32, . . .

This shows that 2n can be thought of as the discrete analog of the exponential ex , in the sense that it is

its own (discrete) derivative.

(Return)

3. This requires a little bit of algebra. We know that we need a n3 to get a n3. Note that

n3 = n(n − 1)(n − 2) = n3 − 3n2 + 2n.

So we have our n3, but we also have some unwanted lower order terms. We must add 3n2 to both sides

to cancel the −3n2. Note that

n2 = n(n − 1) = n2 − n,

and so

n3 + 3n2 = (n3 − 3n2 + 2n) + 3(n2 − n)

= n3 − n.

So to get rid of the final term of −n, we note that n1 = n, and so we can add this to both sides to find

n3 + 3n2 + n1 = n3.

This tells us that

∆n3 = ∆
(
n3 + 3n2 + n1

)
= 3n2 + 6n1 + 1

= 3(n2 − n) + 6n + 1

= 3n2 + 3n + 1,

which matches the observation about ∆(n3) in the above section.

(Return)
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47 Discrete Calculus
The previous two modules have laid the groundwork for the discretization, or digitization, of calculus:

1. The discrete version of a function is a sequence.

2. The discrete version of the derivative is the difference operator.

3. The discrete version of the integral is the sum.

4. The discrete version of a differential equation is a recurrence relation.

This module mostly deals with #3, the integral of a discrete function. For continuous functions, there was

the Fundamental Theorem of Integral Calculus which made computing integrals easy under certain conditions.

Essentially, it said that the integral of the derivative is the function itself, evaluated at the endpoints. The

discrete version says the same thing:

The Discrete Fundamental Theorem of Integral Calculus (FTIC)

Given a sequence u,
B∑
n=A

∆u = u

∣∣∣∣B+1
n=A

,

and
B∑
n=A

∇u = u

∣∣∣∣B
n=A−1

(See Answer 1)

Example

Note that

∆
1

n
=

1

n + 1
−

1

n
=
−1

n2 + n
.

Use this, along with FTIC, to find

B∑
n=A

1

n2 + n
. (See Answer 2)
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Example

Use the fact that

∆n! = (n + 1)!− n! = (n + 1)n!− n! = (n + 1− 1)n! = n · n!,

along with the FTIC to find
B∑
n=A

n!n

(See Answer 3)

Example

Let F denote the Fibonacci sequence defined by

Fn+2 = Fn+1 + Fn; F0 = 0, F1 = 1.

Note that

∆(Fn+1) = Fn+2 − Fn+1 = Fn,

by rearranging the above recursion relation. Use this, along with the FTIC, to find

k∑
n=1

Fn.

(See Answer 4)

Power rule for falling powers

Recall from the previous module that the falling power

nk = n(n − 1)(n − 2) · · · (n − k + 1)

has a nice power rule for the difference:

∆(nk) = knk−1.

By running this in reverse, we can find the anti-difference (or antiderivative) of the falling power, which is very

similar to the power rule for integration:

∆−1(nk) =
1

k + 1
nk+1 + C,

where C is a constant. Using this, along with the FTIC, allows one to find closed formulas for the sum of

polynomials.

Example

Using the power rule and the FTIC, find
k∑
n=1

n.

(See Answer 5)
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Example

Find
k∑
n=1

n2.

(See Answer 6)

Example

With a little algebra (shown in the previous module), one finds that

n3 = n3 + 3n2 + n1.

Use this fact, along with FTIC, to find
k∑
n=1

n3

(See Answer 7)

47.1 Integration by parts

There is also a discrete version of integration by parts. First, the following product rule can be established for

the forward difference:

∆(uv) = u∆v + Ev∆u.

(See Details 8) Then, just like for continuous functions, one can integrate both sides (i.e. sum both sides),

rearrange, and apply FTIC to find
B∑
n=A

u∆v = uv

∣∣∣∣B+1
n=A

−
B∑
n=A

Ev∆u.

Example

Find

k∑
n=0

n2n. (See Answer 9)

47.2 Differential equations

The discrete version of a differential equation is a recurrence relation. This is an equation relating one term of

a sequence u with one or more previous terms in the sequence. In this context, the shift operator acts like the

derivative.

Example

Consider the linear first-order recurrence relation

un+1 = λun,

which can be written as

Eu = λu

19



or, with some rearrangement,

(E − λI)u = 0.

By inspection, one can see the solution un = Cλn, where C = u0 is some constant (it can be thought of as an

initial condition).

Example

Now, consider using the following linear first-order difference equation

∆u = λu.

This is reminiscent of the differential equation dx
dt = ax , considered earlier in the course. Recall that ∆ = E− I,

and so this difference relation can be written

(E − I)u = λu.

With a little more rearranging one finds

(E − (λ+ 1)I)u = 0,

which is almost identical to the equation from the previous example, but with λ replaced by λ+ 1. Therefore,

the solution is un = C(λ+ 1)n.

Compare this to the solution in the continuous case, which was

dx

dt
= λx =⇒ x = Ceλt .

When λ = 1, we have the solution

x = Cet .

If we let λ = 1 in the discrete difference equation, we have

u = C(λ+ 1)n = C · 2n,

which again shows that 2n is the discrete version of the exponential function et .

47.3 Fibonacci numbers revisited

We can take the recurrence relation for the Fibonacci numbers:

Fn+2 = Fn+1 + Fn

and rearrange it to be rewritten in terms of the shift operator:

Fn+2 − Fn+1 − Fn = 0

(E2 − E − I)F = 0.

Note that the solutions to the equation

x2 − x − 1 = 0

are

ϕ =
1

2
(1 +

√
5) and ψ =

1

2
(1−

√
5).
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So we can factor the operator E2 − E − I to see that

(E2 − E − I)F = 0

(E − ϕI)(E − ψI)F = 0.

It is a fact that solutions to this equation are combinations (that is, a sum) of solutions to

(E − ϕI)F1 = 0

(E − ψI)F2 = 0.

The solutions to these equations are

F1n = c1ϕ
n

F2n = c2ψ
n.

So we have that

Fn = c1ϕ
n + c2ψ

n,

for some constants c1 and c2, which depend on the initial conditions of the sequence. To find those constants,

we can plug in convenient values of n and solve.

Letting n = 0, we have

F0 = 0 = c1 + c2 =⇒ c2 = −c1.

Letting n = 1, we have

F1 = 1 = c1ϕ+ c2ψ

= c1ϕ− c1ψ
= c1(ϕ− ψ)

= c1 ·
√

5.

So we find

c1 =
1√
5

c2 = −
1√
5
.

This gives an explicit, closed form equation for the Fibonacci numbers:

Fn =
1√
5

(
1 +
√

5

2

)n
−

1√
5

(
1−
√

5

2

)n
.

47.4 EXERCISES

• (a) What is ∆( 1n2 )? (b) Using part (a), find
∑B

n=A
−2n−1
n2(n+1)2 .
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47.5 Answers to Selected Examples

1. To see why this holds, evaluate the sum and carefully note the cancellation. This type of sum is called a

telescoping sum. First, for the forward difference operator, one finds

B∑
n=A

∆u =

B∑
n=A

un+1 − un

= (uA+1 − uA) + (uA+2 − uA+1) + (uA+3 − uA+2) + · · ·+ uB+1 − uB
= −uA + uA+1 − uA+1 + uA+2 − uA+2 + uA+3 + · · · − uB + uB+1

= −uA + uB+1,

as desired. Similarly, with the backwards difference operator, one finds

B∑
n=A

∇u =

B∑
n=A

un − un−1

= uA − uA−1 + uA+1 − uA + uA+2 − uA+1 + · · ·+ uB − uB−1
= −uA−1 + uB,

as claimed.

(Return)

2. By FTIC,

B∑
n=A

1

n2 + n
= −

B∑
n=A

∆
1

n

= −

(
1

n

∣∣∣∣B+1
n=A

)

=
1

A
−

1

B + 1

=
B − A+ 1

A(B + 1)

(Return)

3. By the fact above, we have

B∑
n=A

n!n =

B∑
n=A

∆n!

= n!

∣∣∣∣B+1
n=A

= (B + 1)!− A!.

(Return)
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4. By the above fact, we have

k∑
n=1

Fn =

k∑
n=1

∆(Fn+1)

= Fn+1

∣∣∣∣k+1
n=1

= Fk+2 − F2
= Fk+2 − 1.

(Return)

5. Note that n = n1, and so

k∑
n=1

n =

k∑
n=1

n1

=
1

2
n2
∣∣∣∣k+1
n=1

=
1

2
n(n − 1)

∣∣∣∣k+1
n=1

=
k(k + 1)

2
.

(Return)

6. Note that

n2 = n2 + n1.

Therefore,

k∑
n=1

n2 =

k∑
n=1

n2 + n1

=
1

3
n3 +

1

2
n2
∣∣∣∣k+1
n=1

=
(k + 1) k(k − 1)

3
+

(k + 1)k

2

= (k + 1)k

(
k − 1

3
+

1

2

)
= (k + 1)k

(
2k − 2 + 3

6

)
=
k(k + 1)(2k + 1)

6
.

(Return)

7. Using the above fact and FTIC, one finds

k∑
n=1

n3 =

k∑
n=1

(
n3 + 3n2 + n1

)
=

1

4
n4 + n3 +

1

2
n2
∣∣∣∣k+1
n=1

.

23



Now, note that nm = 0 when n = 1 for all m > 1, because of the factor of n − 1. Therefore, the

evaluation at the bottom limit is 0. Continuing with the algebra, we find

k∑
n=1

n3 =
1

4
(k + 1)k(k − 1)(k − 2) + (k + 1)k(k − 1) +

1

2
(k + 1)k

= k(k + 1)

(
1

4
(k − 1)(k − 2) + k − 1 +

1

2

)
= k(k + 1)

(
(k − 1)(k − 2) + 4(k − 1) + 2

4

)
=
k(k + 1)

4

(
k2 − 3k + 2 + 4k − 4 + 2

)
=
k(k + 1)

4
k(k + 1)

=

(
k(k + 1)

2

)2
.

Recalling that 1 + 2 + 3 + · · ·+ k = k(k+1)
2 , this shows the remarkable fact that

13 + 23 + 33 + · · ·+ k3 = (1 + 2 + 3 + · · ·+ k)2 .

(Return)

8. By subtracting and adding a common term and rearranging, one finds

(∆(uv))n = un+1vn+1 − unvn
= un+1vn+1 − unvn+1 + unvn+1 − unvn
= (un+1 − un)vn+1 + un(vn+1 − vn)

= [∆uEv + u∆v ]n .

(Return)

9. Let u = n and ∆v = 2n. It follows that ∆u = 1, v = 2n, and Ev = 2n+1. Thus, by the integration by

parts formula,

k∑
n=0

n2n = n2n
∣∣∣∣k+1
n=0

−
k∑
n=0

2n+1

= (k + 1)2k+1 − (2k+2 − 2)

= (k + 1)2k+1 − 2 · 2k+1 + 2

= (k − 1)2k+1 + 2.

(Return)
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48 Numerical ODEs
The previous few modules have discretized functions, derivatives, and integrals. This module shows how discrete

methods can be used to approximate solutions to problems in the continuous realm. One such application was

Newton’s method for approximating roots of functions, seen back in Linear Approximations. This module deals

with approximating solutions of continuous differential equations.

In certain situations, differential equations can be solved exactly. For example, a separable differential equation

dx

dt
= f (x)g(t)

is solved by rearranging and integrating, as seen in Antidifferentiation. A linear first order differential equation

dx

dt
= f (t)x + g(t)

is solved by an application of the product rule, as seen in More differential equations. However, there are many

differential equations of the form
dx

dt
= f (x, t)

which cannot be solved exactly by the above methods. This is the situation where techniques known as numerical

ordinary differential equations can be used to approximate a solution. There are three methods covered in this

module:

1. Euler’s method

2. Midpoint method

3. Runge-Kutta method

48.1 Euler’s method

Euler’s method uses a difference equation to approximate the solution of an initial value problem. More

specifically, given the differential equation dx
dt = f (x, t), and initial value x0 = x(t0), Euler’s method approximates

x(t∗) for some t∗ > t0.
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One way to visualize the problem is to imagine a river where the water is going in different directions at different

locations. If one drops something that floats (perhaps a very small rock, or a duck) at different locations in the

river, where would the object end up further down the river?

To compute the approximation, first a positive integer N is chosen, and the t axis is split into N intervals, giving

the sequence of time points t = (t0, t1, . . . , tN), where tN = t∗. The time step is h = t∗−t0
N . Then there is a

corresponding sequence x = (x0, x1, . . . , xN) where x0 = x(t0) is the initial condition and each subsequent xn is

an approximation of x(tn), given by the update rule

xn+1 = xn + hf (xn, tn)

tn+1 = tn + h.
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This recurrence is sensible by considering the discretization of the original differential equation:

dx

dt
= f (x, t) ⇒

∆x

∆t
= f (x, t)

⇒
xn+1 − xn

h
= f (xn, tn),

and then rearranging.

This process is using a linearization at each point (tn, xn) to get to the next point (tn+1, xn+1), then this is

repeated to get the next point, and so on:

Remember that a linearization is only good when the change in input, h in this case, is small. Therefore, a

bigger value of N gives a better approximation, but requires more computation.

Example

Let dx
dt = x with x0 = x(0) = 1. Use Euler’s method with N left as a variable to approximate x(1). What

happens as N →∞? (See Answer 1)

Example

Consider the differential equation
dx

dt
= t + x2.

Use Euler’s method to estimate (t∗, x∗), where t∗ = 1, the initial conditions are t0 = 0 and x0 = 1, and the

step size is h = 1
2 . (See Answer 2)
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Taylor series perspective

If we think of x = x(t) as a function of t, and expand the Taylor series of x about t = t0, we have

x(t0 + h) = x(t0) + h ·
dx

dt

∣∣∣∣
t=t0

+O(h2)

= x0 + h · f (x0, t0) +O(h2),

so Euler’s method can be seen as taking the first order Taylor approximation and using it to form the recursion

relation. The above equation shows that the error for a single step is in O(h2), so the error over all N steps is

Error = N ·O(h2)

=
t∗ − t0
h

·O(h2)

= O(h).

48.2 Midpoint method

Another method for solving the differential equation

dx

dt
= f (x, y)

is known as the midpoint method. There is still an update rule which is similar to the one used in Euler’s rule,

but the function f is evaluated at a different point. The idea is to consider the point where Euler’s rule would

have taken us, and find the midpoint of that with our starting point. Use that midpoint as the point to evaluate

f in the update rule.

As described, it is a little bit complicated, but with some extra notation and a diagram it becomes clearer. Let

κ = h · f (xn, tn). So κ is the quantity which would be added to xn in the update rule for Euler’s rule:

Then the eponymous midpoint which is used in the update rule is(
tn +

h

2
, xn +

κ

2

)
.

So the update rule for the midpoint method is

xn+1 = xn + h · f
(
xn +

κ

2
, tn +

h

2

)
κ = h · f (xn, tn).
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The midpoint method is a bit more complicated than Euler’s method, but it has a benefit. The midpoint method

is a second order approximation, and as a result the error turns out to be O(h3) for an individual step, and

hence O(h2) for the full approximation process. Therefore, it is a more accurate method of approximation.

48.3 Runge-Kutta method

The final method for solving the above differential equation is called the Runge-Kutta method. It is a fourth

order approximation. Its error for an individual step is O(h5) and for the whole process is O(h4). This makes it

the most accurate model of the three in this module. It is difficult to describe in an intuitive manner other than

to say it is a sort of average of Euler’s method, the midpoint method, and other methods. The update rule is

as follows:

xn+1 = xn +
1

6
(κ1 + 2κ2 + 2κ3 + κ4)

κ1 = h · f (xn, tn)

κ2 = h · f
(
xn +

κ1
2
, tn +

h

2

)
κ3 = h · f

(
xn +

κ2
2
, tn +

h

2

)
κ4 = h · f (xn + κ3, tn + h) .

Note that κ1 is the increase used in Euler’s method, and κ2 is the increase used in the Midpoint method.

48.4 Comparison of methods

We already know that Euler’s method is the most basic, then the Midpoint method, and finally Runge-Kutta. We

should expect, then, that Runge-Kutta should give the best approximation, followed by the Midpoint method,

followed by Euler’s method.

Example

Use each of the three methods to approximate the solution of

dx

dt
= x

with initial conditions

t0 = 0 x0 = 1

t∗ = 1 x∗ = e

(we already know that x∗ = e because we have solved this differential equation several times already), using

a step size of h = 1. (See Answer 3)

48.5 EXERCISES

• Given dx
dt = x3 + x2t with initial condition t0 = 0, x0 = 1, approximate x(2) using the midpoint method

with size step h = 1.
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48.6 Answers to Selected Examples

1. Note that

xn+1 = xn +
xn
N

= xn(1 +
1

N
)

(this is independent of t). Iterating this gives xN =
(

1 + 1
N

)N ≈ x(1). As N increases, the approximation

gets better and better, and one finds that

lim
N→∞

xN = lim
N→∞

(
1 +

1

N

)N
.

Call this limit L and take the ln of both sides. Then we find that

lnL = ln

(
lim
N→∞

(
1 +

1

N

)N)

= lim
N→∞

N ln

(
1 +

1

N

)
= lim

N→∞
N

(
1

N
+O

(
1

N2

))
= lim

N→∞
1 +O

(
1

N

)
= 1.

Therefore, L = e. So x(1) = e, which matches the value from solving the problem by separation of

variables.

(Return)

2. Here, we have

f (x, t) = t + x2.

So, using the initial conditions, we have

f (x0, t0) = 0 + 1 = 1.

Then we have that

x1 = x0 + h · f (x0, t0)

= 1 +
1

2
· 1

=
3

2
.

And t1 = 1
2 . So

f (x1, t1) = t1 + x21

=
1

2
+

(
3

2

)2
=

11

4
.
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Thus,

x2 = x1 + h · f (x1, t1)

=
3

2
+

1

2
·

11

4

=
23

8

And thus we have x∗ = 23
8 .

(Return)

3. It may seem ill advised to use a step size equal to the distance from the start time to the end time, but

this is just for the sake of comparison. Note that in this example,

f (x, t) = x.

Euler’s method gives

x1 = x0 + h · f (x0, t0)

= 1 + 1 · 1
= 1 + 1,

which is a pretty rough estimate of e. From this computation we have that κ = 1 for the midpoint

method.

The Midpoint method gives

x1 = x0 + h · f
(
x0 +

κ

2
, t0 +

h

2

)
= 1 + 1 · f

(
1 +

1

2
, 0 +

1

2

)
= 1 + 1 ·

(
1 +

1

2

)
= 1 + 1 +

1

2
,

so we see that we have gotten another term closer to e.

For Runge-Kutta, we need to compute several different κs. From the computations we did in Euler’s

method and the Midpoint method, we have that

κ1 = 1

κ2 =
3

2
.

Computing the other values, we have

κ3 = h · f
(
x0 +

κ2
2
, t0 +

h

2

)
= 1 · f

(
1 +

3

4
, 0 +

1

2

)
= 1 +

3

4

=
7

4
.
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And

κ4 = h · f (x0 + κ3, t0 + h)

= 1 · f
(

1 +
7

4
, 0 + 1

)
= 1 +

7

4

=
11

4
.

Putting these together (and rearranging the fractions a little bit), we have that

x1 = x0 +
1

6
(κ1 + 2κ2 + 2κ3 + κ4)

= 1 +
1

6

(
1 + 2 ·

3

2
+ 2 ·

7

4
+

11

4

)
= 1 +

1

6
+

1

2
+

7

12
+

11

24

= 1 + 1 +
1

2
+

1

6
+

1

24
,

which has two more terms of e, making it a very good approximation, despite only having one step.

(Return)
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49 Numerical Integration

The topic of this module is the discretization of the definite integral. How does one approximate the definite

integral of a function which does not have an easily computable anti-derivative? The answer is with finite sums,

which is the discrete analog of the definite integral.

Recall that one interpretation for the definite integral is area under the curve. The goal is to find a finite

sum which approximates the area under the curve. There are three common techniques for making this ap-

proximation: Riemann sums, trapezoid rule, and Simpson’s rule. Each gives an approximation of the integral∫ b
a f (x)dx .

Another way to think about this problem (and the practical applications) is to consider some sporadic sample

points, thought of as a sequence

x = (xn) = (x0, x1, . . . , xn).

Corresponding to these sample points is the sequence of function values

f = (fn) = (f0, f1, . . . , fn),

where fi = f (xi). The goal is to approximate the definite integral of the underlying function f using these

function values. Of course, in real world applications the function may not be continuous, let alone a familiar

function with an easily computed anti-derivative. The method of numerical integration gives an approximation

of the definite integral in this situation with imperfect information.

Example

Consider the problem of estimating the number of people who pass through a certain busy subway station

each day. One could sit in the station for the entire day and count every person, or one could get an estimate

by going in periodically and counting the number of people who come in over a short time.

This gives a sampling of the rate of passengers entering the station at different times:

The definite integral of the rate of passenger arrival gives the total number of passengers using the station

that day:
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49.1 Riemann Sums

The most rudimentary approximation is given by Riemann sums, which should be familiar from the definition of

the definite integral.

The left Riemann sum uses the left endpoint of the ith subinterval as the sample point to compute the height

of the the ith rectangle:

Thus, the area of the nth rectangle is. So the left Riemann sum is given by∫ b

a

f (x)dx ≈
N−1∑
n=0

fn · (xn+1 − xn)

The right Riemann sum uses the right endpoint of the ith subinterval to compute the height of the ith rectangle:
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In this case, the area of the nth rectangle is fn · (∇x)n. So the right Riemann sum is given by∫ b

a

f (x)dx ≈
N∑
n=1

fn · (xn − xn−1)

An improvement on the left and right Riemann sums, called the trapezoid rule, is given in the next section.

49.2 Trapezoid rule

The trapezoid rule uses trapezoids instead of rectangles to approximate the area above each subinterval:

Recall that the area of a trapezoid with bases (parallel segments) of length p and q, with height h has area
1
2h(p + q). The area of the nth trapezoid, then, is 1

2(∆x)n(fn + fn+1). Thus, the trapezoid rule gives the
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approximation: ∫ b

a

f (x)dx ≈
N−1∑
n=0

1

2
(∆x)n(fn + fn+1)

≈
N−1∑
n=0

1

2
(fn + fn+1)(xn+1 − xn).

If the sample points are evenly spaced uniformly, then the formula for the trapezoid rule simply becomes∫ b

a

f (x)dx ≈ h

(
1

2
(f0 + fN) +

N−1∑
n=1

fn

)
,

where h = b−a
N is the width of each trapezoid. Note that the trapezoid rule is the average of the left and right

Riemann sums.

49.3 Simpson’s rule

Think about how the previous approximations interpolate the function f . The Riemann sum is a piece-wise

constant approximation (also called a step function). The trapezoid rule is a piece-wise linear approximation.

The logical next step is to use piece-wise quadratic approximations. That is how Simpson’s rule works. Another

way to think of it is that Simpson’s rule will compute the area under a parabola exactly (whereas Riemann sums

and trapezoid rule will have errors in general).

One way that Simpson’s rule differs from the above rules is that the sample points must be evenly spaced. Let

h = b−a
N be the distance between sample points. The Simpson’s rule approximation is given by∫ b

a

f (x)dx ≈
h

3
(f0 + 4f1 + 2f2 + 4f3 + . . .+ 2fN−2 + 4fN−1 + fN) .

Here, N must be even. (See Derivation 1)

Example

Approximate the definite integral
∫ 2
0 x
3dx with N = 4 using (uniformly spaced) right and left Riemann sums;

trapezoid rule; and Simpson’s rule. Here is a table of pertinent values to make the computation easier:

n xn fn
0 0 0

1 .5 .125

2 1 1

3 1.5 3.375

4 2 8

(See Answer 2)

49.4 Errors bounds

With any approximation, it is good to get some idea of how far off the approximation is from the true value.

Let ET be the error using the trapezoidal rule, and ES be the error from using Simpson’s rule.
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Using advanced calculus beyond the scope of this course, one can bound these errors as follows.

ET ≤
M(b − a)3

12N2

where M is the maximum value of |f ′′(x)| on the interval [a, b].

ES ≤
M(b − a)5

180N4

where M is the maximum value of |f (4)(x)| on the interval [a, b].

49.5 EXERCISES

• Using the fact that
∑j

n=0 n
2 = j(j+1)(2j+1)

6 , approximate
∫ 2
0 x
2dx using the right Riemann sum with N

number of intervals.

49.6 Answers to Selected Examples

1. Note This derivation is a little bit different from the one in lecture, and perhaps more elementary.

The idea of Simpson’s rule is to fit a parabola to the first three points (x0, f0), (x1, f1), (x2, f2), and

then find the area under that parabola. Then, fit a parabola to the next three points (overlapping the

endpoints) (x2, f2), (x3, f3), (x4, f4), find the area under that parabola, and so on.

Consider the parabola g(x) = ax2+ bx + c determined by the points (−h, fn−1), (0, fn), (h, fn+1). Solving

the resulting system of equations

fn−1 = ah2 − bh + c

fn = c

fn+1 = ah2 + bh + c,

gives the parabola which fits these points. One finds that

a =
1

h2

(
fn−1

2
− fn +

fn+1
2

)
b =

fn+1 − fn−1
2h

c = fn.

And so the area ∫ h

x=−h
g(x)dx =

∫ h

x=−h
ax2 + bx + cdx

= a
x3

3
+ b

x2

2
+ cx

∣∣∣∣h
x=−h

= 2a
h3

3
+ 2ch,
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by using symmetry. Plugging in the earlier values for a and c and simplifying gives∫ h

x=−h
g(x)dx =

h

3
(fn−1 + 4fn + fn+1) .

Carrying this out for all each triplet of points gives the approximation∫ b

x=a

f (x)dx ≈
h

3
(f0 + 4f1 + f2 + f2 + 4f3 + f4 + · · ·+ fN)

≈
h

3
(f0 + 4f1 + 2f2 + 4f3 + · · ·+ fN) ,

as desired.

(Return)

2. Let L, R, T , and S be the respective approximations. Then

L =
1

2
(0 + .125 + 1 + 3.375) = 2.25

R =
1

2
(.125 + 1 + 3.375 + 8) = 6.25

T =
1

2
(0 + .125 + 1 + 3.375 + 4) = 4.25

S =
1

6
(0 + .5 + 2 + 13.5 + 8) = 4.

Note that the true value is ∫ 2
x=0

x3 dx =
1

4
x4
∣∣∣∣2
x=0

= 4,

so Simpson’s rule gets the answer exactly and the trapezoid rule is the next closest.

(Return)
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50 Series
The previous module discussed finite sums as the discrete analog of definite integrals with finite bounds. Then,

logically, the discrete analog of improper integrals with infinite bounds should be infinite sums, referred to as

infinite series or just series when there is no confusion.

50.1 Definition of infinite series

Recall that when computing definite integrals with bounds at infinity, one replaces the infinite bound with a

variable and then takes the limit: ∫ ∞
x=1

f (x)dx = lim
T→∞

∫ T

x=1

f (x)dx.

For infinite series, the definition is analogous:

∞∑
n=1

an = lim
T→∞

T∑
n=1

an.

The expression

T∑
n=1

an is called the T th partial sum of the series

∞∑
n=1

an. Then a series converges if the sequence

of partial sums converges. If the sequence of partial sums does not converge, we say the series diverges.

Example

Give the first few terms of the sequence of partial sums for the infinite series

∞∑
n=1

1

2n
.

(See Answer 1)
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50.2 Taylor series revisited

Recall some of the Taylor series from earlier modules:

ex = 1 +
x

1!
+
x2

2!
+
x3

3!
+ . . .

sin(x) = x −
x3

3!
+
x5

5!
− . . .

cos(x) = 1−
x2

2!
+
x4

4!
− . . .

1

1− x = 1 + x + x2 + x3 + . . . (|x | < 1)

ln(1 + x) = x −
x2

2
+
x3

3
− . . . (|x | < 1)

These provide many examples of series which not only converge, but can be evaluated exactly.

Example

Compute 13 + 1
9 + 1

27 + 1
81 + . . .. (See Answer 2)

Example

Compute 1− π2

2! + π4

4! −
π6

6! + . . .. (See Answer 3)

50.3 Classifying series

There are some series which cannot be evaluated exactly, though it is known that the series converges. For

example, the series

∞∑
n=1

1

n3
= 1 +

1

8
+

1

27
+

1

64
+ . . .

≈ 1.2

converges, but it is not known what the exact value is (though one can calculate as many digits as one likes).

This is in contrast with an apparently similar series,

∞∑
n=1

1

n2
= 1 +

1

4
+

1

9
+

1

16
+ . . .

=
π2

6
,

for which an exact value is known (though the proof of this value is beyond the scope of this course).

Yet another similar series, called the harmonic series,

∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+ . . . ,
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diverges, as will be shown in the next module.

There are two questions then. First, does a series converge or not? Second, if it does converge, to what does

it converge? This course deals mostly with the first question, in this module and the next few modules. More

advanced analysis classes can help answer the second question.

When intuition fails

Determining the convergence of a series using intuition can be dangerous. As one example of how intuition can

fail, consider what happens when we plug x = 1 into the series for ln(1 + x):

ln 2 = 1−
1

2
+

1

3
−

1

4
+

1

5
−

1

6
+ · · · .

Although x = 1 is not in the radius of convergence for this series, it turns out that this series still converges.

Now, consider what happens if we multiply both sides by 12 :

1

2
ln 2 =

1

2
−

1

4
+

1

6
−

1

8
+ · · · .

Adding this equation together with the above one, some of the terms cancel and some combine to show that

3

2
ln 2 = 1 +

1

3
−

1

2
+

1

5
+

1

7
−

1

4
+

1

9
+

1

11
−

1

6
+ · · ·

Now, notice that this series has all the terms of the series for ln 2, but in slightly different order. And yet, the

series evaluates to a different value. That is certainly counter intuitive. Perhaps even more alarming, the terms

of the series for ln 2 can be rearranged so that the resulting series evaluates to any real number. The takeaway

is that we must tread carefully and not trust intuition but instead rely on logic.

50.4 The nth term test for divergence

The first, and usually simplest, test for divergence of a series is the nth term test.

The nth term test for divergence

If lim
n→∞

an 6= 0, then the series

∞∑
n=0

an diverges.

(See Proof 4) This test applies to all series, and it is easy to apply (just take the limit of the terms of the

series). However, many of the series encountered in this course will have terms which go to 0 in the limit, in

which case the test is inconclusive (see the caveat below).

Example

Show that the series
∞∑
n=0

4n − 3n

4n + 2n

diverges. (See Answer 5)
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Example

Show that the series
∞∑
n=0

(−1)n = 1− 1 + 1− 1 + 1− . . .

diverges. (See Answer 6)

Example

Show that the series
∞∑
n=1

cos

(
1

n

)
= cos(1) + cos(1/2) + cos(1/3) + . . .

diverges. (See Answer 7)

Caveat

This is not a test for convergence! In particular, if lim
n→∞

an = 0, then the test is inconclusive (the series might

converge or diverge). If the test is inconclusive, one of the other tests from the upcoming modules must be

used.

In logical terms, this says that the converse of the nth term test does not hold. On the other hand, the

contrapositive does hold:
∞∑
n=0

an converges ⇒ lim
n→∞

an = 0

(The contrapositive of a true statement is always true, but the converse is not always true).

Example

What does the nth term test say about the series
∑∞

n=2
ln(n)
n ? (See Answer 8)

Example

What does the nth term test say about the series

∞∑
n=1

arctan n?

(See Answer 9)

Example

Suppose the series
∞∑
n=1

an = L,

42



converges, and that an > 0 for all n. What, if anything, can be said about the convergence of the series

∞∑
n=1

1

an
?

(See Answer 10)

50.5 EXERCISES

• Determine whether the following series converges or diverges

∞∑
n=2

n3

n ln(n100)

∞∑
n=1

2n

n100

50.6 Answers to Selected Examples

1. Adding the first term, then the first two terms, then the first three terms, and so on, gives

1

2
,

1

2
+

1

4
,

1

2
+

1

4
+

1

8
, · · ·

which becomes
1

2
,

3

4
,

7

8
,

15

16
, · · · .

This sequence appears to be converging to 1, which is consistent with what we know this series to be (by

the geometric series).

(Return)

2. Note that by the geometric series,

1

1− 1/3
= 1 +

1

3
+

1

9
+ . . .

=
3

2
.

So 1
3 + 1

9 + . . . = 1
2 .

(Return)

3. Note that this is the Taylor series for cos(x) with x = π. Thus, the series evaluates to cos(π) = −1.

(Return)

4. We give a proof by contrapositive. That is, we prove that if

∞∑
n=0

an converges, then lim
n→∞

an = 0.
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Assume

∞∑
n=0

an converges. Then by the definition of convergence, we know that the sequence of partial

sums sT defined by

sT =

T∑
n=1

an

converges also. Therefore,

lim
T→∞

sT = lim
T→∞

sT−1 = L

for some L. Then we have

lim
T→∞

(sT − sT−1) = 0,

by linearity of the limit. But notice that

sT − sT−1 =

T∑
n=1

an −
T−1∑
n=1

an

= (a1 + a2 + · · ·+ aT−1 + aT )− (a1 + a2 + · · ·+ aT−1)

= aT .

Putting this together with the above limit, we find

lim
T→∞

(sT − sT−1) = lim
T→∞

aT

= 0,

which is what we were trying to prove.

(Return)

5. Here,

an =
4n − 3n

4n + 2n
.

Applying the nth term test, we find

lim
n→∞

an = lim
n→∞

4n − 3n

4n + 2n

= lim
n→∞

4n(1− (3/4)n)

4n(1 + (1/2)n)

= lim
n→∞

1− (3/4)n

1 + (1/2)n

= 1 6= 0,

because both
(
3
4

)n → 0 and
(
1
2

)n → 0. Therefore, by the nth term test, the series diverges.

(Return)

6. Since limn→∞(−1)n does not exist (the sequence oscillates), the series diverges by the nth term test.

(Return)

7. Note that limn→∞ cos
(
1
n

)
= cos(0) = 1 6= 0. Thus, by the nth term test, the series diverges.

(Return)
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8. Note that limn→∞
ln(n)
n = 0, either by using l’Hospital’s rule or by recalling that ln(n) grows much more

slowly than n. Thus, the nth term test is inconclusive.

(Return)

9. Note that

lim
n→∞

arctan n =
π

2
6= 0,

and so by the nth term test, the series diverges.

(Return)

10. By the contrapositive of the nth term test mentioned above, we know that since the series

∞∑
n=1

an

converges, we know that

lim
n→∞

an = 0.

But this implies that

lim
n→∞

1

an
=∞

so by the nth term test, we know that the series

∞∑
n=1

1

an

diverges.

(Return)
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51 Convergence Tests 1

Unlike the nth term test for divergence from the last module, this module gives several tests which, if successfully

applied, give a definitive answer of whether a series converges or not. A common feature of the tests in this

module is that they use a comparison.

51.1 Integral test for convergence and divergence

This is a test which can definitively tell whether a series converges or diverges. However, it can be harder to

apply.

Integral test for convergence and divergence

If f (x) is a positive, decreasing function, then for any integer m,

∞∑
n=m

f (n) converges ⇐⇒
∫ ∞
m

f (x)dx converges.

The double arrow ⇐⇒ means if and only if. So the series and integral either both converge, or they both

diverge.

To see why, visualize the series as a sum of rectangles with base 1 and height f (n). If these rectangles are

drawn to the right of the curve f (x), then the result is the following figure. Each rectangle is labeled with

its area. The combined area of the rectangles completely contains the area under f (x), which establishes the

inequality shown:
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On the other hand, if the rectangles are drawn to the left of the curve f (x), then all the rectangles lie below the

curve. Their combined area is less than the area under the curve f (x), which establishes the inequality shown:

Combining these two inequalities gives∫ ∞
1

f (x)dx ≤
∞∑
n=1

f (n) ≤
∫ ∞
0

f (x)dx.

If the integral diverges, then the series diverges (by the first inequality). And if the integral converges, then the

series converges (by the second inequality). This establishes the integral test.

Example

Use the integral test to determine if
∞∑
n=2

1

n ln(n)

converges or diverges. (See Answer 1)

Example

Use the integral test to determine if
∞∑
n=1

n

en

converges or diverges. (See Answer 2)

51.2 The p-series test

The next example is important enough that it gets its own name: the p-series. This makes use of the p-integrals

that we computed earlier.
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Example

Find the values of p for which the series
∞∑
n=1

1

np

converges. (See Answer 3)

The p-series test

The p-series

∞∑
n=1

1

np
converges if and only if p > 1.

Harmonic series

The series
∑
1
n , known as the harmonic series, diverges by to the p-series test. This is a significant fact to keep

in mind because the harmonic series diverges even though the terms of the series go to 0. Thus, the harmonic

series is a demonstration that the nth term test is a test for divergence only and cannot be used to show a

series converges.

Note that the harmonic series is a sort of boundary between convergence and divergence. The series
∑

1
n.999

diverges, but the series
∑

1
n1.001 converges.

Example

The p-series test proves the convergence of two examples from the last module:
∑

1
n2 and

∑
1
n3 .

Example

Determine the values of p for which the series

∞∑
n=2

1

n(ln n)p

converges. (See Answer 4)

51.3 Comparison test

The integral test compared a series to its related integral. This test compares one series to another.

Comparison test

Let an and bn be positive sequences such that bn > an for all n. It follows that

1. if
∑
bn converges, then

∑
an converges.

2. if
∑
an diverges, then

∑
bn diverges.

In other words, if a series is smaller than a convergent series, then it converges too. If a series is bigger than a

divergent series, then it diverges too.
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Caveat

It is critical that the inequality be in the correct direction. A series which is larger than a convergent series

might converge or diverge. A series which is smaller than a divergent series might converge or diverge.

Example

Show that
∑ ln(n)

n diverges. (See Answer 5)

Example

Show that ∑
n=4

n3 − 2n2 − 10

n5 + 7

converges. (See Answer 6)

Example

Determine whether
∞∑
n=2

1

ln(n!)

converges or diverges. Hint: try for a rough upper bound or lower bound on n! and see which one gives the

right comparison. (See Answer 7)

51.4 Limit test

The final test of this module is a slightly different type of comparison. Recall that when comparing two functions

f and g to see which is “bigger” asymptotically, one computes the limit

lim
n→∞

f (n)

g(n)
.

If this limit is infinite, then f is bigger. If the limit is 0, then g is bigger. If the limit is L where 0 < L < ∞,

then the two functions are roughly equal (up to a constant multiple). It is this third case that is used for this

test (sometimes called the Limit comparison test):

Limit test

Let an and bn be positive series. If limn→∞
an
bn

= L and 0 < L < ∞, then the series
∑
an and

∑
bn either

both converge or both diverge.

The key to the limit test is finding a suitable sequence bn which is approximately equal to an in the limit. Often,

an will be a ratio, in which case the lower order terms in the numerator and denominator can be dropped, and

what is left will be bn. Ideally, it will be easy to see if
∑
bn converges or diverges. Finally, one must check that

0 < limn→∞
an
bn
<∞.
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Example

Show that ∑ n2 − n
n3 + 7

diverges. (See Answer 8)

Example

Determine whether ∑
sin

(
1

n

)
converges or diverges. (See Answer 9)

51.5 EXERCISES

• Determine whether the following series converges or diverges

∞∑
n=1

n + 4

n(2 + n4)1/3

∞∑
n=1

| sin(n)n|
n2

51.6 Answers to Selected Examples

1. Computing, one finds (using the u-substitution u = ln(x)) that∫ ∞
2

1

x ln(x)
dx =

∫ ∞
ln(2)

1

u
du

= ln(u)

∣∣∣∣∞
ln(2)

,

which diverges since ln(u) → ∞ as u → ∞. Since the integral diverges, the series also diverges by the

integral test.

(Return)

2. The integral test says the series converges if and only if∫ ∞
x=1

x

ex
dx =

∫ ∞
x=1

xe−x dx

converges. We know this integral converges (recall that xe−x is the PDF for the exponential distribution).

But we can also compute it again.

This integral is a good candidate for integration by parts, with

u = x du = dx

dv = e−x dx v = −e−x .
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Thus, ∫ ∞
x=1

xe−x = −xe−x
∣∣∣∣∞
x=1

−
∫ ∞
x=1

−e−x dx

= −xe−x − e−x
∣∣∣∣∞
x=1

= 0− (−e−1 − e−1)

=
2

e
.

Since the integral converges, the series converges too, by the integral test.

(Return)

3. We know from the integral test that
∞∑
n=1

f rac1np

converges if and only if ∫ ∞
x=1

1

xp
dx

converges. But this integral converges if and only if p > 1, as we saw in the module on p-integrals.

Therefore, the p-series converges if and only if p > 1.

(Return)

4. Making the substitution

u = ln x

du =
1

x
dx,

we see that ∫ ∞
x=2

1

x(ln x)p
dx =

∫ ∞
u=ln 2

1

up
du.

This integral (again from our knowledge of the p-integral) converges if and only if p > 1. Therefore, by

the integral test, the series
∞∑
n=2

1

n(ln n)p

converges if and only if p > 1.

(Return)

5. Note that ln(n)n > 1
n . Since

∑
1
n diverges, the series

∑ ln(n)
n diverges too, by the comparison test.

(Return)

6. Note that
n3 − 2n2 − 10

n5 + 7
<
n3

n5
=

1

n2
,

since the numerator on the left is smaller, and the denominator on the left is bigger. So

∞∑
n=4

n3 − 2n2 − 10

n5 + 7
<

∞∑
n=4

1

n2
.
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∑
1
n2 converges (p-series test from above), and so

∞∑
n=4

n3 − 2n2 − 10

n5 + 7

converges as well, by the comparison test.

(Return)

7. A lower bound for n! might be 2n (or any exponential). This gives∑ 1

ln(n!)
<
∑ 1

ln(2n)

=
∑ 1

n ln(2)

=
1

ln 2

∑ 1

n
,

which diverges, since it is a constant multiple of the harmonic series. This comparison does not go in the

right direction, since our original series is smaller than a divergent series. Thus, we should try going in

the other direction to find an upper bound for n!.

A rough upper bound for n! is nn. This gives∑ 1

ln(n!)
>
∑ 1

ln(nn)

=
∑ 1

n ln(n)
.

This series diverges (see the example earlier in this module). Therefore, the original series, which is bigger

than a divergent series, also diverges.

(Return)

8. By dropping the lower order terms in the numerator and denominator, one finds

n2 − n
n3 + 7

≈
n2

n3
=

1

n
.

So bn = 1
n is a good choice. Assuming the above approximation is not too rough, the work is done since

the harmonic series,
∑
1
n , diverges.

To make sure the approximation is not too rough, compute the limit

lim
n→∞

an
bn

= lim
n→∞

(
n2 − n

)
/
(
n3 + 7

)
1/n

= lim
n→∞

n(n2 − n)

n3 + 7

= lim
n→∞

n3 − n2

n3 + 7

= 1.

Thus, by the limit test,
∑

n2−n
n3+7 and

∑
1
n either both converge or both diverge. Since

∑
1
n diverges, so

too must
∑

n2−n
n3+7 .

(Return)
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9. With an unusual series like this, the nth term test is a good first thing to try. But it is inconclusive since

sin(1/n)→ 0 as n →∞.

To get a handle on how this function acts, note that when n is large, 1/n is small, and so we can use the

Taylor series for sin x about 0:

sin

(
1

n

)
=

1

n
+O

(
1

n3

)
.

Thus, sin(1/n) ≈ 1
n , which means 1n is a good candidate for bn in the limit test. This will work:

lim
n→∞

an
bn

= lim
n→∞

sin(1/n)

1/n

= lim
n→∞

1/n +O(1/n3)

1/n

= 1.

Since
∑
bn =

∑
1
n diverges (harmonic series), it follows by the limit test that

∑
sin(1/n) diverges also.

(Return)
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52 Convergence Tests 2

This module deals with the root test and the ratio test for convergence. Unlike the tests from the previous

module, the tests of this module can be applied without having to find a good series to compare.

Recall that the geometric series

1 + x + x2 + x3 + · · ·

converges to 1
1−x provided that |x | < 1. This fact is at the heart of both the root test and the ratio test.

52.1 Root test

The Root test

Given a series
∑
an, with all an > 0, let

ρ = lim
n→∞

n
√
an.

If ρ < 1, then
∑
an converges. If ρ > 1, then

∑
an diverges. Finally, if ρ = 1, then the test is inconclusive.

(See Justification 1) The root test works best when the term an involves an nth power, or can be expressed as

an nth power, although it can be used in other situations as well.

Example

Determine if ∑(
n

2n + 1

)n
converges or diverges. (See Answer 2)

Example

Determine if ∑(
n

n + 1

)n2
converges or diverges. (See Answer 3)
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Example

Use the root test on the p-series
∞∑
n=1

1

np
.

(See Answer 4)

52.2 Ratio test

The Ratio Test

Given a series
∑
an, with all an > 0, let

ρ = lim
n→∞

an+1
an

.

If ρ < 1, then the series
∑
an converges. If ρ > 1, then the series

∑
an diverges. If ρ = 1, then the test is

inconclusive (the series might converge or diverge).

(See Justification 5) The ratio test works best when an involves exponential functions and factorials, since in

these situations there is a lot of cancellation. It does not work well with ratios of polynomials, because the test

is inconclusive.

Example

Determine if the series ∑ n

3n

converges or diverges. (See Answer 6)

Example

Determine if the series ∑ n!

(2n)!

converges or diverges. (See Answer 7)

Example

Show that the ratio test is inconclusive on the p-series
∑

1
np . (See Answer 8)

Example

Determine if the series
∞∑
n=0

4n

(2n)!

converges or diverges. (See Answer 9)
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52.3 Summary of methods for a positive series

There is no foolproof method for determining the convergence or divergence of a series. However, here is a

rough guide for tests to try. Given a series
∑
an, where an > 0 for all n:

1. Do the terms go to 0? If limn→∞ an 6= 0, then by the nth term test, the series diverges. (If limn→∞ an = 0,

then the test is inconclusive).

2. Does an involve exponential functions like cn where c is constant? Does an involve factorial? Then the

ratio test should be used.

3. Is an of the form (bn)n for some sequence bn? Then use the root test.

4. Does ignoring lower order terms make an look like a familiar series (e.g. p-series or geometric series)?

Then use the comparison test or the limit test.

5. Does the sequence an look easy to integrate? Then use the integral test.

52.4 EXERCISES

• Determine whether the following series converges or diverges

∞∑
n=2

1

lnn(n)

∞∑
n=1

2n34n

n!

• What does the ratio test say about the convergence of

∞∑
n=1

2n(2n − 2)(2n − 4) . . . 2

(2n − 1)(2n − 3) . . . 1

52.5 Answers to Selected Examples

1. Recall what it means that lim n
√
an = ρ. It means that for a given ε > 0, there exists an M such that for

all n > M,

| n
√
an − ρ| < ε.

In other words, for n sufficiently big, n
√
an ≈ ρ, and so an ≈ ρn. This says that, roughly speaking, the

series is eventually geometric with common ratio ρ. Hence, the series converges for ρ < 1 and diverges

for ρ > 1.

(Return)
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2. Computing, one finds that

ρ = lim
n→∞

n
√
an

= lim
n→∞

n

√(
n

2n + 1

)n
= lim

n→∞

n

2n + 1

=
1

2
.

Since ρ < 1, the series converges by the root test.

(Return)

3. Computing, one finds that

ρ = lim
n→∞

n

√(
n

n + 1

)n2
= lim

n→∞

(
n

n + 1

)n
= lim

n→∞

1

(1 + 1/n)n

=
1

e
.

The last step above follows from the fact that limn→∞(1 + 1/n)n = e. Thus, ρ < 1 and so the series

converges by the root test.

(Return)

4. Trying the root test gives

ρ = lim
n→∞

n

√
1

np

= lim
n→∞

(
1

n1/n

)p
= 1,

and so the root test is inconclusive.

The last step above follows from the fact that limn→∞ n
1/n = 1. Let y = limn→∞ n

1/n. Taking the natural

log of both sides gives

ln(y) = lim
n→∞

1

n
ln(n)

= lim
n→∞

ln(n)

n

= 0.

Thus y = e0 = 1, as desired.

(Return)
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5. As in the justification for the root test, an+1
an

is eventually very close to ρ, and remains close to ρ ever

after. Roughly speaking, then an+1 ≈ ρan for all sufficiently big n. But that means that after a while, the

series becomes roughly geometric with common ratio ρ. Therefore, when ρ < 1 the series converges, and

when ρ > 1 the series diverges.

(Return)

6. Here, an = n
3n . Computing, one finds

ρ = lim
n→∞

an+1
an

= lim
n→∞

(n + 1) /
(

3n+1
)

n/3n

= lim
n→∞

n + 1

3n+1
·

3n

n

= lim
n→∞

1

3

n + 1

n

=
1

3
.

ρ < 1, and so by the ratio test, the series converges.

(Return)

7. In this example, an = n!
(2n)! . Computing gives

ρ = lim
n→∞

an+1
an

= lim
n→∞

(n + 1)!

[2(n + 1)]!
·

(2n)!

n!

= lim
n→∞

n + 1

(2n + 2) (2n + 1)

= lim
n→∞

n + 1

4n2 + 6n + 2

= 0.

So ρ < 1, and the series converges by the ratio test.

(Return)

8. Computing shows that

ρ = lim
n→∞

1/(n + 1)p

1/np

= lim
n→∞

np

(n + 1)p

= lim
n→∞

(
n

n + 1

)p
= 1,

and so the ratio test is inconclusive.

(Return)
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9. There is a quick, tricky way to see that this converges, which is to note that

∞∑
n=0

4n

(2n)!
=

∞∑
n=0

22n

(2n)!
,

which is the Taylor series for cosh x with x = 2. We know cosh converges everywhere, so we know this

series converges.

Alternatively, we can use the ratio test. We have an = 4n

(2n)! . Therefore

ρ = lim
n→∞

an+1
an

= lim
n→∞

4n+1

(2(n + 1))!
·

(2n)!

4n

= lim
n→∞

4 · 4n

(2n + 2) · (2n + 1) · (2n)!
·

(2n)!

4n

= lim
n→∞

4

(2n + 2) · (2n + 1)

= 0.

Since ρ < 1, this series converges by the ratio test, confirming what we already knew.

(Return)
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53 Absolute And Conditional
Up until now, the convergence tests covered by this course have only covered series with positive terms. What

happens when a series has some positive and some negative terms? This module describes some tools for

determining the convergence or divergence of such a series.

53.1 Alternating series test

One particular type of series is fairly simple to test for convergence. A series
∑
an is alternating if it is of

the form
∑

(−1)nbn, where bn is a positive sequence. In other words, a series is alternating if its terms are

alternately positive and negative.

Alternating Series Test

An alternating series
∑

(−1)nbn with decreasing terms converges if and only if limn→∞ bn = 0.

The intuition behind this test is that if the terms are alternating, decreasing, and go to zero, then the partial

sums of the series gradually zero in on the true value. The first partial sum is greater than the true value, the

second partial sum is less than the true value, and so on:

Example

The series

1−
1

2
+

1

3
−

1

4
+ . . .
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is alternating. Its terms are decreasing, and the terms go to zero, so by the alternating series test, the series

converges.

Example

Determine if
∞∑
n=0

(−1)n
1

2n

converges. (See Answer 1)

Example

Determine if
∞∑
n=2

(−1)n
ln(n)

n

converges. (See Answer 2)

53.2 Conditional and absolute convergence

Consider the two previous examples. Note that both
∑

(−1)n 12n and
∑

(−1)n ln(n)n converge. However, if these

series were not alternating, then
∑

1
2n still converges (it is geometric), whereas

∑ ln(n)
n does not converge

(comparison with the harmonic series
∑
1
n ).

These series demonstrate a distinction between two types of convergence.

Absolute and Conditional Convergence

The series
∑
an converges absolutely if

∑
|an| converges.

A series
∑
an converges conditionally if

∑
an converges, but

∑
|an| diverges.

In other words, a series is conditionally convergent if it is convergent but not absolutely convergent.

Example

Using this terminology, the series
∞∑
n=0

(−1)n
1

2n

converges absolutely, but
∞∑
n=2

(−1)n
ln(n)

n

converges conditionally.
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Example

Find the values of p for which the alternating p-series

∞∑
n=1

(−1)n
1

np

diverges, converges conditionally, and converges absolutely. (See Answer 3)

Example

Determine if
∞∑
n=1

(−1)n
en

n5

converges, and if so, whether it is conditional or absolute convergence. (See Answer 4)

Example

Determine if
∞∑
n=1

(−1)n
n!

nn

converges, and if so, whether it is conditional or absolute convergence. (See Answer 5)

53.3 Absolute convergence test

Some series are not strictly alternating, but have some positive and some negative terms, sporadically. In this

situation, it can be difficult to determine whether the series converges directly, but the following test sometimes

makes the determination easier.

Absolute Convergence Test

If the series
∑
|an| converges, then

∑
an converges. In other words, if a series converges absolutely, then

the series converges.

(See Justification 6)

Example

Determine if
∞∑
n=1

sin(n)

n2

converges or diverges. (See Answer 7)
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53.4 EXERCISES

• Determine whether the following series converges or not. If it converges, is it conditionally convergent or

absolutely convergent?

∞∑
n=2

(−1)n
1

n ln(n)

∞∑
n=1

(−1)n
n1/2

((n + 1)(n + 2)(n + 3))1/2

• Determine whether the following series is convergent or divergent

∞∑
n=1

cos(n)
ln(n)

n!

53.5 Answers to Selected Exercises

1. The series is alternating, the terms are decreasing, and limn→∞
1
2n = 0. Thus, by the alternating series

test, the series converges.

Alternatively, we can observe that this series is geometric:

∞∑
n=0

(−1)n
1

2n
=

∞∑
n=0

(
−

1

2

)n
=

1

1− (−1/2)

=
2

3
.

(Return)

2. The series is alternating, terms are decreasing, and

lim
n→∞

ln(n)

n
= 0.

And so by the alternating series test, the series converges.

(Return)

3. When p ≤ 0, the terms of the series do not go to 0. That is,

lim
n→∞

1

np
6= 0.

So by the nth term test for divergence, the series diverges for these values of p.

When 0 < p ≤ 1, the terms of the series are decreasing, alternating, and going to 0. So by the alternating

series test, the series converges for this range of p. However, if absolute values are taken, then the resulting

series,
∑

1
np , does not converge by the p-series test. Thus, for 0When1 (Return)
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4. The series is alternating, but notice that the terms do not go to 0, since en > n5. Therefore, by the nth

term test for divergence, this series diverges.

(Return)

5. The series is alternating, and note that nn > n!, which leads us to believe that the series converges. In

fact, the series converges absolutely, i.e. ∑ n!

nn

converges, as the ratio test shows, along with some careful algebra:

ρ = lim
n→∞

(n + 1)!

(n + 1)n+1
·
nn

n!

= lim
n→∞

(n + 1)nn

(n + 1)n+1

= lim
n→∞

nn

(n + 1)n

= lim
n→∞

(
n

n + 1

)n
= lim

n→∞

1(
n+1
n

)n
= lim

n→∞

1

(1 + 1/n)n

=
1

e
< 1.

So ρ < 1, and so the series converges absolutely.

(Return)

6. Consider the series
∑

(an + |an|). Note that

0 ≤ an + |an| ≤ 2|an|

So
∑

(an + |an|) ≤
∑

2|an|, and by the comparison test we find
∑

(an + |an|) converges. Then∑
an =

∑
((an + |an|)− |an|)

=
∑

(an + |an|)−
∑
|an|

converges too, being the difference of two convergent, positive series.

(Return)

7. sin(n) is a messy function because it is sometimes positive and sometimes negative, but not in a simple

alternating pattern. However, one nice thing about sin(n) is that, in absolute value, it is bounded by 1.

So
∞∑
n=1

∣∣∣∣sin(n)

n2

∣∣∣∣ ≤ ∞∑
n=1

1

n2
.

Since
∑

1
n2 converges by p-series test, it follows by the comparison test that

∑∣∣∣ sin(n)n2

∣∣∣ converges. Hence∑ sin(n)
n2 converges absolutely, and so it converges by the absolute convergence test.

(Return)

64



54 Power Series
Sequences can be thought of as the discretization of a function. This module goes in the opposite direction:

turning a sequence into a function called a power series.

54.1 Power series

Given a sequence an, the power series associated with an is the infinite sum f (x) =

∞∑
n=0

anx
n.

Example

The power series associated with the sequence an = 1 is the function f (x) = 1 + x + x2 + x3 + . . ..

Example

All of the Taylor series encountered earlier in the course are power series. For instance, the Taylor series for

the exponential is the power series associated with the sequence an = 1
n! .

Example

The Lucas numbers Ln are like the Fibonacci numbers but with different initial conditions. L0 = 2 and

L1 = 1, and Ln = Ln−1 + Ln−2. So the sequence begins L = (2, 1, 3, 4, 7, 11, 18, . . .).

Find the closed-form function L(x) given by the power series

L(x) = L0 + L1x + L2x
2 + L3x

3 + · · ·

=

∞∑
n=0

Lnx
n.

This is known in the field of combinatorics as the generating function for the sequence Ln. (See Answer 1)

These power series have lots of useful applications in enumeration and asymptotic analysis, among other things.

But the rest of this module will deal with convergence. Given a sequence (an), for what values of x does its

associated power series f (x) = a0 + a1x + a2x
2 + · · · converge?
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54.2 Interval and radius of convergence

Recall that some Taylor series had restrictions on the values of x for which the series equaled the function (e.g.

geometric series, ln(1 + x), arctan(x)). In other words, the series converges for some values of x and diverges

for other values of x .

In general, given a power series f (x) =
∑
anx

n, the goal is to find the values of x for which the series converges.

The following theorem tells us that the set of such values is always an interval:

Given

f (x) =

∞∑
n=0

anx
n,

there exists some 0 ≤ R ≤ ∞ such that

• the series converges absolutely if |x | < R;

• the series diverges if |x | > R;

• might converge or diverge when x = R or x = −R.

The interval of convergence is the interval (−R,R), possibly with the endpoints included (they need to be

individually checked in general). The radius of convergence is half the length of the interval of convergence.

The method for finding the interval of convergence is to use the ratio test to find the interval where the series

converges absolutely and then check the endpoints of the interval using the various methods from the previous

modules.

Previously, when using the ratio test, one computed ρ and then checked if ρ < 1, ρ > 1, or ρ = 1. Now, the

goal is to find the values of x for which the series
∑
anx

n converges absolutely, i.e. for which ρ < 1. So ρ is

computed, in terms of x , and is set to be less than 1. This gives an interval of values for x which the series

converges absolutely. Once this interval has been determined, the endpoints must be checked for convergence

as well.
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Radius of convergence

For a general power series f (x) = a0 + a1x + a2x
2 + · · · , what is the radius of convergence R in terms of the

sequence an? Note that

ρ = lim
n→∞

|an+1xn+1|
|anxn|

= lim
n→∞

|an+1|
|an|

|x |.

And for absolute convergence ρ < 1. So in terms of the an, we get absolute convergence when

lim
n→∞

|an+1|
|an|

|x | < 1,

or equivalently,

|x | < lim
n→∞

|an|
|an+1|

.

Thus, we have shown that the radius of convergence of the series f (x) = a0 + a1x + a2x
2 + · · · is given by

R = lim
n→∞

|an|
|an+1|

.

Example

Find the interval and radius of convergence for the power series

∞∑
n=1

n

2n
xn

(See Answer 2)

Example

Find the interval of convergence for
∞∑
n=1

(−1)n
xn

n

(See Answer 3)

54.3 Shifted power series

Recall that the Taylor series for a function can be computed at a point c other than 0. In this case the series

took the form

f (x) = a0 + a1(x − c) + a2(x − c)2 + a3(x − c)3 + · · ·

Such a power series is said to be centered at c , since the interval of convergence for the series will be centered

at c . To see why, carry out the calculation as above (replacing all the |x |’s with |x − c |’s) to find that the series

converges absolutely when

|x − c | < lim
n→∞

|an|
|an+1|

= R.
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So the radius of convergence is the same (it only depends on the sequence an), and it is only the center of the

interval that has changed. Thus, the interval of convergence is (c −R, c +R), and again one must individually

check the endpoints.

Example

Find the interval of convergence for
∞∑
n=1

(−1)n
(x + 3)n

n2

(See Answer 4)

Example

Find the interval of convergence for
∞∑
n=2

(2x + 5)n

ln n
.

(See Answer 5)

54.4 Answers to Selected Examples

1. Begin by writing out the series L(x), xL(x), and x2L(x):

L(x) = L0 + L1x + L2x
2 + L3x

3 + L4x
4 + · · ·

xL(x) = L0x + L1x
2 + L2x

3 + L3x
4 + · · ·

x2L(x) = L0x
2 + L1x

3 + L2x
4 + · · ·

Now note what happens when we take L(x) − xL(x) − x2L(x) and collect like terms. Because of the

recurrence, all of the coefficients of the form Ln − Ln−1 − Ln−2 = 0, which leaves only two terms in the

power series:

L(x)− xL(x)− x2L(x) = L0 + (L1 − L0)x + (L2 − L1 − L0)x2 + (L3 − L2 − L1)x3 + · · ·
= L0 + (L1 − L0)x + 0x2 + 0x3 + 0x4 + · · ·
= 2 + (1− 2)x

= 2− x.

Now, solving for L(x) by factoring and dividing gives

L(x) =
2− x

1− x − x2 .

(Return)
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2. Using the ratio test for absolute convergence, one computes

ρ = lim
n→∞

∣∣∣∣an+1an
∣∣∣∣

= lim
n→∞

∣∣∣∣(n + 1)xn+1/2n+1

nxn/2n

∣∣∣∣
= lim

n→∞

n + 1

2n+1
·

2n

n
|x |

= lim
n→∞

1

2

n + 1

n
|x |

=
|x |
2
.

Setting ρ < 1 means |x |2 < 1, hence |x | < 2. So for all −2 < x < 2, the series converges absolutely.

Checking the endpoint x = −2 gives the series

∞∑
n=1

n

2n
(−2)n =

∞∑
n=1

n

2n
(−1)n2n

=

∞∑
n=1

(−1)nn,

which diverges by the nth term test for divergence. Similarly, the endpoint x = 2 gives the series

∞∑
n=1

n

2n
2n =

∞∑
n=1

n,

which diverges, also by the nth term test. Thus, both endpoints diverge and so the interval of convergence

is (−2, 2). The radius of convergence is 2.

(Return)

3. Using the ratio test gives

ρ = lim
n→∞

∣∣∣∣ xn+1n + 1

n

xn

∣∣∣∣
= lim

n→∞

|x |n
n + 1

= |x |.

Setting this less than 1 gives |x | < 1 so the interval is (−1, 1). Checking the endpoint x = 1 gives the

alternating harmonic series which converges. The other endpoint x = −1 gives the harmonic series which

diverges. So the interval of convergence is (−1, 1].

(Return)

4. The interval of convergence will be centered at −3. We can take a short cut and just compute the radius

of convergence R = lim |an |
|an+1| , where an = (−1)n

n2 . This gives R = 1.

Then the interval of convergence is (−3− 1,−3 + 1) = (−4,−2), and it remains to check the endpoints.

At x = −4, we get
∑

1
n2 , which converges by p-series. At x = −2, we get the alternating p-series∑

(−1)n 1n2 , which converges by alternating test. Thus, the interval of convergence is [−4,−2].

(Return)
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5. It takes a little rearranging before this takes the form of a shifted series as defined above (the problem is

the coefficient of 2 on the x). The 2 can be factored out, and what results is

∞∑
n=2

(2x + 5)n

ln n
=

∞∑
n=2

2n(x + 5/2)n

ln n

=

∞∑
n=2

2n

ln n
(x + 5/2)n,

which is now of the form given above. Note that this series is centered at −5/2. The radius of convergence

is

R = lim
n→∞

2n

ln(n)
·

ln(n + 1)

2n+1

=
1

2

(since the ratio of logs goes to 1). Thus, the interval of convergence is (−3,−2). Checking the endpoints,

one finds convergence at x = −3 (by alternating series test) and divergence at x = −2 (by comparison

of
∑

1
ln n with the harmonic series, for example).

So the interval of convergence is (−3,−2).

(Return)
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55 Taylor Series Redux

The last module took a sequence (an) and turned it into a power series f (x) =

∞∑
n=0

anx
n. This module turns

this around and asks can we go from a function f (x) to a sequence (an)? The answer is yes, and this is the

familiar process of computing the Taylor series for the function. Recalling the Taylor series for f :

f (x) = f (0) + f ′(0)x +
f ′′(0)

2!
x2 + · · · =

∞∑
n=0

1

n!
f (n)(0)xn,

we see that an = 1
n! f
(n)(0) is the sequence corresponding to f (x). We could also center the Taylor series at a

different point, and get a different sequence, but for now let’s keep things centered at 0.

Now that we have turned our function into its Taylor series, we come back to the questions deferred from earlier

in the course:

1. For what values of x does a function’s Taylor series converge?

2. Does the Taylor series converge to the function?

These questions are the topics of this module.

55.1 Taylor series convergence

We now have the tools to see when a power series converges, so the answer to the first question is that the

series
∞∑
n=0

anx
n =

∑
n=0

1

n!
f (n)(0)xn

converges absolutely for |x | < R, where

R = lim
n→∞

|an|
|an+1|

= lim
n→∞

f (n)(0)

n!
·

(n + 1)!

f (n+1)(0)

= lim
n→∞

(n + 1)
f (n)(0)

f (n+1)(0)
.

Within the interval of convergence, differentiation and integration of a power series are nice, in that they can

be done term by term:
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1.
df

dx
=

∞∑
n=0

nanx
n−1

2.

∫
f (x) dx =

∞∑
n=0

an
n + 1

xn+1 + C

Why is this useful? Being able to differentiate and integrate term by term allows us to compute the Taylor

series for various functions by differentiating or integrating the Taylor series for other functions.

Example

Compute the Taylor series for arctan x by noting that d
dx arctan x = 1

1+x2 . (See Answer 1)

Example

Show that the power series f (x) = 1 + 2x + 3x2 + 4x3 + 5x4 + · · · can be written as 1
(1−x)2 for |x | < 1.

Hint: try integrating both sides and see what familiar function you get. (See Answer 2)

55.2 Example

The Fresnel Integral C(x) is defined by

C(x) =

∫ x

t=0

cos(t2)dt.

There is no elementary expression for this integral, but it can be expressed as a series by expanding the series

for cos and then integrating term by term:

C(x) =

∫ x

t=0

cos(t2)dt

=

∫ x

t=0

( ∞∑
n=0

(−1)n
(t2)2n

(2n)!

)
dt

=

∞∑
n=0

(−1)n
t4n+1

(2n)! (4n + 1)

∣∣∣∣x
t=0

=

∞∑
n=0

(−1)n
x4n+1

(2n)! (4n + 1)
.

55.3 Taylor series convergence to a function

Now, we consider the second question above: when a Taylor series converges, does it always converge to the

function? Unfortunately, not always. Even with a smooth f , and x within the interval of convergence, it is

possible that the Taylor series does not converge to f . The following definition is used for functions whose

Taylor series do converge to the functions themselves:
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Definition: Real-analytic function

A function f is real-analytic at x = a if for x sufficiently close to a,

f (x) =

∞∑
n=0

1

n!
f (n)(a)(x − a)n.

That is, a function f is real-analytic at a if the Taylor series for f converges to f near a.

Almost all the functions we have encountered in this course are real-analytic. However, there are examples of

smooth functions which are not real-analytic, as the next example shows.

Example

Consider the function

f (x) =

{
e−1/x if x > 0

0 if x ≤ 0.

To show that this function is smooth, we must show that its derivative exists at x = 0 (everywhere else it

is a composition of nice functions, so we need not worry). We use the definition of the derivative:

df

dx

∣∣∣∣
x=0

= lim
h→0+

f (h)− f (0)

h

= lim
h→0+

1

h
e−1/h.

This can either be thought of as a 0/0 case for l’Hospital’s rule, or we can do a change of variables t = 1
h ,

which gives the limit

lim
h→0+

1

h
e−1/h = lim

t→∞
te−t

= lim
t→∞

t

et

= 0,

since the exponential beats a polynomial asymptotically. So f ′(0) = 0. It turns out that all of the higher

derivatives of f at 0 are 0 as well. So if we tried to expand this as a Taylor series, we would have

f (x) = f (0) + f ′(0)x +
1

2!
f ′′(0)x2 + · · ·

= 0 + 0x + 0x2 + · · ·
= 0.

So the Taylor series for f converges to 0, despite the fact that f is non-zero for x > 0.
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55.4 Answers to Selected Examples

1. We have that

d

dx
arctan x =

1

1 + x2

= 1− x2 + x4 − x6 + x8 − · · · ,

for |x | < 1. Thus, for |x | < 1, we can safely integrate both sides of this equation to find

arctan x =

∫ (
1− x2 + x4 − x6 + x8 − · · ·

)
dx

= x −
x3

3
+
x5

5
−
x7

7
+
x9

9
− · · ·+ C.

By checking arctan(0) = 0, we find that the integration constant C = 0. Thus for |x | < 1 we have

arctan x = x −
x3

3
+
x5

5
− · · · =

∞∑
n=0

(−1)n
x2n+1

2n + 1
.

(Return)

2. Integrating both sides gives ∫
f (x)dx =

∫
(1 + 2x + 3x2 + · · · )dx

= x + x2 + x3 + · · ·

=
x

1− x ,

by recognizing that this is the geometric series. Now, differentiating both sides gives that

f (x) =
1

(1− x)2
,

as desired. Note that this only holds within the interval of convergence for the geometric series, |x | < 1.

(Return)
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56 Approximation And Error

Given a series that is known to converge but for which an exact answer is not known, how does one find a good

approximation to the true value? One way to get an approximation is to add up some number of terms and

then stop. But how many terms are enough? How close will the result be to the true answer? That is the

motivation for this module.

56.1 Error defined

Given a convergent series

s =

∞∑
n=0

an.

Recall that the partial sum sk is the sum of the terms up to and including ak , i.e.,

sk = a0 + a1 + a2 + . . .+ ak

=

k∑
n=0

an.

Then the error Ek is the difference between sk and the true value s, i.e.,

Ek = s − sk

=

∞∑
n=0

an −
k∑
n=0

an

= ak+1 + ak+2 + ak+3 + . . .

=

∞∑
n=k+1

an.

In other words, the error is the sum of all the terms from the infinite series which were not included in the

partial sum.

56.2 Alternating series error bound

For a decreasing, alternating series, it is easy to get a bound on the error Ek :

|Ek | ≤ |ak+1|.
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In other words, the error is bounded by the next term in the series.

Note

If the series is strictly decreasing (as is usually the case), then the above inequality is strict.

To see why the alternating bound holds, note that each successive term in the series overshoots the true value

of the series. In other words, if S is the true value of the series,

a0 > S

a0 − a1 < S

a0 − a1 + a2 > S.

The above figure shows that if one stops at a0 − a1 + a2 − a3, then the error E3 must be less than a4.

Example

What is the minimum number of terms of the series

∞∑
n=1

(−1)n+1
1

n2

one needs to be sure to be within 1
100 of the true sum?

The goal is to find k so that |Ek | ≤ 1
100 . Since |Ek | ≤ |ak+1|, the question becomes for which value of k is

|ak+1| ≤ 1
100? If k = 9, then |ak+1| = 1

100 , and so by the alternating series error bound, |E9| ≤ 1
100 . Thus 9

terms are required to be within 1
100 of the true value of the series.

56.3 Integral test for error bounds

Another useful method to estimate the error of approximating a series is a corollary of the integral test. Recall

that if a series
∑
f (n) has terms which are positive and decreasing, then∫ ∞

m+1

f (x)dx <

∞∑
n=m+1

f (n) <

∫ ∞
m

f (x)dx.
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But notice that the middle quantity is precisely Em. So∫ ∞
m+1

f (x)dx < Em <

∫ ∞
m

f (x)dx.

This bound is nice because it gives an upper bound and a lower bound for the error.

Example

How many terms of the series
∞∑
n=1

1

n3

must one add up so that the Integral bound guarantees the approximation is within 1
100 of the true answer?

(See Answer 1)

56.4 Taylor approximations

Recall that the Taylor series for a function f about 0 is given by

f (x) =

∞∑
n=0

f (n)(0)

n!
xn

= f (0) + f ′(0)x +
f ′′(0)

2!
x2 + · · · .

The Taylor polynomial of degree N is the approximating polynomial which results from truncating the above

infinite series after the degree N term:

f (x) ≈
N∑
n=0

f (n)(0)

n!
xn

= f (0) + f ′(0)x +
f ′′(0)

2!
x2 + · · ·+

f (N)(0)

N!
xN .

This is a good approximation for f (x) when x is close to 0. How good an approximation is it? That is the

purpose of the last error estimate for this module.

As in previous modules, let EN(x) be the error between the Taylor polynomial and the true value of the function,

i.e.,

f (x) =

N∑
n=0

f (n)(0)

n!
xn + EN(x).

Notice that the error EN(x) is a function of x . In general, the further away x is from 0, the bigger the error

will be.

A first, weak bound for the error is given by

EN(x) ≤ CxN+1

for some constant C and x sufficiently close to 0. In other words, EN(x) is O(xN+1). A stronger bound is given

in the next section.
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Taylor remainder theorem

The following gives the precise error from truncating a Taylor series:

Taylor remainder theorem

The error EN(x) is given precisely by

EN(x) =
f (N+1)(t)

(N + 1)!
xN+1,

for some t between 0 and x , inclusive. So if x < 0, then x ≤ t ≤ 0, and if x > 0, then 0 ≤ t ≤ x .

Example

Consider the case when N = 0. The Taylor remainder theorem says that

f (x) = f (0) + f ′(t)x,

for some t between 0 and x . Solving for f ′(t) gives

f ′(t) =
f (x)− f (0)

x − 0
,

for some 0 < t < x if x > 0 and x < t < 0 if x < 0, which is precisely the statement of the Mean value

theorem. Therefore, one can think of the Taylor remainder theorem as a generalization of the Mean value

theorem.

Taylor error bound

As it is stated above, the Taylor remainder theorem is not particularly useful for actually finding the error,

because there is no way to actually find the t for which the equation holds. There is a slightly different form

which gives a bound on the error:

Taylor error bound

|EN(x)| ≤
C

(N + 1)!
|x |N+1,

where C is the maximum value of |f (N+1)(t)| over all t between 0 and x , inclusive.

Example

Estimate
√
e using

e1/2 ≈ 1 +
1

2
+

(1/2)2

2!
+

(1/2)3

3!
≈ 1.64,

and bound the error. (See Answer 2)
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56.5 Answers to Selected Exercises

1. If one adds up the first m terms, then by the integral bound, the error Em satisfies

Em <

∫ ∞
m

dx

x3

=
x−2

−2

∣∣∣∣∞
m

=
1

2m2
.

Setting 1
2m2 ≤

1
100 gives that m2 ≥ 50, so m ≥ 8. Thus, m = 8 is the minimum number of terms required

so that the Integral bound guarantees we are within 1
100 of the true answer.

Note

If you actually compute the partial sums using a calculator, you will find that 7 terms actually suffice. But

remember, we want the guarantee of the integral test, which only ensures that 1
128 < E7 <

1
98 , despite

the fact that in reality, E7 ≈ .009 < .01.

(Return)

2. The function is f (x) = ex , and the approximating polynomial used here is

ex ≈ 1 + x +
x2

2!
+
x3

3!
.

Then according to the above bound,

|E3(x)| ≤
C

4!
|x |4,

where C is the maximum of f (4)(t) = et for 0 ≤ t ≤ x . Since et is an increasing function, C = ex . Thus,

|E3(x)| ≤
ex

4!
x4.

Thus,

|E3(1/2)| ≤
e1/2

4!
(1/2)4 <

1

100
.

(Return)
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57 Calculus
In this course, we’ve learned skills in five key areas:

• Limits

• Differentiation

• Integration

• ODEs

• Series

Some of the things we can do are pretty impressive. However, there are many simple-seeming questions in

single-variable calculus that show us just how much we have left to learn.

57.1 PROBLEM 1

Why is the standard Gaussian a probability density function? In other words, why is∫ ∞
−∞

e−
x2

2 dx =
√

2π (1)

Why is it that with all our methods, we cannot evaluate this integral easily? Let’s try...

MORAL

This integral is easy with a little bit of multivariable calculus.

57.2 PROBLEM 2

Recall that we began this class with the definition of the exponential function ex and then, to obtain series for

sin and cos, we invoked Euler’s formula:

e it = cos t + i sin t

Why is this true? We certainly could substitute in our favorite Taylor series and verify that it is true, but

wouldn’t it be better to have a principled reason for why this is so? Let’s try...
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Let z = e it . Then z ′ = iz by that very familiar differential equation. Now, name the real and imaginary parts

of z by x and y respectively. Then z = x + iy , and z ′ = x ′ + iy ′. On the other hand, multiplying by i gives

z = x + iy

iz = ix + i2y = −y + ix .

Therefore, z ′ = iz becomes x ′+ iy ′ = −y + ix , and so by equating the real and imaginary parts in this equation

we get the system

x ′ = −y
y ′ = x

This is a system of differential equations which is easy to solve with some multivariable calculus, but for now

we are stuck. We can observe that x = cos t and y = sin t provides a solution, but we cannot say it is the only

solution without more tools.

MORAL

This system of ODEs is easy to solve with a little bit of multivariable calculus.

57.3 PROBLEM 3

On several occasions, we have referenced the famous series

∞∑
n=1

1

n2
=
π2

6

Why is this true? Could we use discrete calculus to derive it? I don’t think so...but here is proof using Taylor

series and integration.

Let u = arcsin(x). Consider the integral ∫ π/2

u=0

udu =
u2

2

∣∣∣∣π/2
u=0

=
π2

8
.

On the other hand, the integral in terms of x is∫ 1
x=0

arcsin(x)
1√

1− x2
dx

One can show that the Taylor series for arcsin(x) is given by

arcsin(x) = x +

∞∑
n=1

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)

x2n+1

2n + 1
.

Plugging this in gives

π2

8
=

∫ 1
x=0

(
x +

∞∑
n=1

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)

x2n+1

2n + 1

)
1√

1− x2
dx.

81



One can find with careful integration by parts and induction that the inner integral evaluates to∫ 1
x=0

x2n+1√
1− x2

dx =
2 · 4 · 6 · · · (2n)

3 · 5 · 7 · · · (2n + 1)
,

(See Details 1)

Plugging this in cancels almost everything, leaving

π2

8
=

∞∑
n=1

1

(2n − 1)2
.

This is the sum of the odd reciprocals squared. Giving names to these various sums:

S =

∞∑
n=1

1

n2

So =

∞∑
n=1

1

(2n − 1)2

Se =

∞∑
n=1

1

(2n)2
.

Note that S = So + Se (So has the odd terms, and Se has the even terms). Further,

Se =

∞∑
n=1

1

(2n)2

=
1

4

∞∑
n=1

1

n2

=
1

4
S.

Substituting, we find that S = So + S/4, and so S = 4
3So . Since So = π2

8 as shown above, it follows that

S = π2

6 , as desired.

MORAL

This series is easy to evaluate with a little bit of multivariable calculus. Well, actually, no: it’s not easy, but it

is a bit simpler. In the end, some math problems are hard.

57.4 Answers to Selected Exercises

1. If we encountered this integral earlier in the course, we would hit it with a trigonometric substitution

x = sin θ (and dx = cos θ dθ, which changes the integral to∫ π/2

θ=0

sin2n+1 θ dθ.

This integral can be found inductively using the following reduction formula:∫
sinn θ dθ =

− sinn−1 θ cos θ

n
+
n − 1

n

∫
sinn−2 θ dθ.

(See Proof of Reduction Formula 2)
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2. Use integration by parts. Let u = sinn−1 θ and dv = sin θ dθ. Then du = (n − 1) sinn−2 θ cos θ dθ and

v = − cos θ. It follows that∫
sinn θ dθ = − sinn−1 θ cos θ + (n − 1)

∫
sinn−2 θ cos2 θ dθ

= − sinn−1 θ cos θ + (n − 1)

∫
sinn−2 θ(1− sin2 θ) dθ

= − sinn−1 θ cos θ + (n − 1)

∫
sinn−2 θ dθ − (n − 1)

∫
sinn θ dθ.

Now, solving for the integral
∫

sinn θ dθ (by adding (n− 1)
∫

sinn θ dθ to both sides of the above equation

and dividing by n) gives the desired result.

Applying the reduction formula in the situation at hand gives∫ π/2

0

sin2n+1 θ dθ =
− sin2n θ cos θ

2n + 1

∣∣∣∣π/2
0

+
2n

2n + 1

∫ π/2

0

sin2n−1 θ dθ

=
2n

2n + 1

∫ π/2

0

sin2n−1 θ dθ,

since the first quantity evaluates to 0. Now, induction gives the result.

(Return)

(Return)
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58 Foreshadowing

In this module we give a hint at what is to come in multivariable calculus.

58.1 Functions

As in single variable calculus, multivariable calculus is primarily a study of functions. But instead of functions

with one input and one output, multivariable calculus looks at functions with multiple inputs and outputs. The

notation for a function f with n real inputs and m real outputs is

f : Rn → Rm.

58.2 Matrices

When dealing with multiple inputs and multiple outputs, it becomes necessary to keep track of several pieces

of information when dealing with, say, the derivative. The data structure which makes this possible is a matrix,

which is an array of numbers arranged in rows and columns. For example, a 4 × 3 matrix has 4 rows and 3

columns, and might look like 
3 1 4

1 5 9

2 6 5

3 5 8

 .
A square matrix has the same number of rows and columns. A particular square matrix with a special name is

the identity matrix, which has 1’s on the main diagonal and 0’s everywhere else. For example, the 3×3 identity

matrix is given by

I =

 1 0 0

0 1 0

0 0 1

 .
Matrix algebra

One feature of matrices is that they can be multiplied, by a slightly unintuitive process. Consider the product

of a 2× 3 matrix with a 3× 3 matrix:[
1 −1 4

2 5 7

]
·

 2 1 0

4 4 3

−2 7 1

 =

[
−10 25 1

10 71 22

]
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To see where these numbers come from, arrange the matrices a little differently:

(Matrix Multiplication Animated GIF)

To get an entry in the resulting matrix (bottom right), take the corresponding row from the matrix to the left

and the corresponding column from the matrix above, multiply their corresponding entries together, and add.

The above example shows the calculation for two entries in the result.

Note that for this multiplication to be defined, the number of columns in the first matrix must match the

number of rows in the second matrix (otherwise there would not be the correct number of entries to multiply

together and add).

There are some nice features of matrix multiplication, and some features which are a little bit different than

regular multiplication:

• The identity matrix can be thought of as the matrix equivalent of 1, since multiplying by the identity (of

the appropriate size) gives back the same matrix with which we began.

• Matrix multiplication is associative (i.e. (AB)C = A(BC) for appropriately sized matrices A,B, C), but

it is not commutative (i.e. AB 6= BA) in general. Indeed, both orders of multiplication is only defined if

A and B are square matrices of the same size.

• There is a matrix version of
√
−1 (again thinking of I as 1). Note that[

0 −1

1 0

]
·
[

0 −1

1 0

]
=

[
−1 0

0 −1

]
= −I.

• It is possible that the product of two non-zero matrices to give the zero matrix:[
0 1

0 0

]
·
[

0 1

0 0

]
=

[
0 0

0 0

]

58.3 Vectors

Another data structure of importance is a vector, which can be thought of as a single row or single column

matrix (depending on context). A useful way to visualize a vector is as a difference between two points, or an

arrow from one point to another. So a vector can be thought of as a line segment with both a magnitude (the

distance between the two points) and a direction (which way the arrow points).

Vectors can be added by visualizing placing the tail of one vector at the head of the other. Vectors can also be

multiplied by a matrix to give another vector (the multiplication is just matrix multiplication, again by thinking

of the vector as a matrix with just a single column).
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