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A review of negative dependence

This talk surveys developments over the last 50-60 years.

Most of the work is not mine, but I have intersected it on several
occasions, as a contributor and as a user.

Undoubtedly, the Strong Rayleigh property of Borcea, Brändén and
Liggett (JAMS, 2009), is one of the crowning achievements of the
theory. They connect negative dependence to the geometry of zero
sets of complex polynomials. Their theorem “SR ⇒ NA” proves a
strong conclusion (negative association) under a surprisingly
checkable hypothesis. The result covers many cases of interest.

Developments since then include further consequences of SR,
distributional consequences of the geometry of zero sets, and the
more general notion of Lorentzian polynomials and measures.
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Notation

Some notation throughout the lectures for collections of random
variables taking the values 0 and 1:

Bn := {0, 1}n is a Boolean lattice of rank n with the
product partial order.

P is a probability measure on Bn
The random variable Xk is the kth coordinate, i.e.,
Xk(ω1, . . . , ωn) = ωk .

A probability measure µ is said to stochastically dominate
another law ν (written µ � ν) if µ(A) ≥ ν(A) for all sets
A that are upwardly closed in the partial order. This is
equivalent to the existence of a coupling measure Q on B2n
supported on {(x , y) : x ≤ y} such that the projection of
Q onto the first coordinate is ν and onto the second is µ.
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Some definitions and properties

Many of these properties make sense for joint laws of real random
variables as well as binary random variables. For reasons of time, I
will stick to binary variables. See Karlin and Rinott (JMAA, 1980)
for a discussion of properties of bivariate densities that lead to
various kinds of positive or negative dependence.

If λ1, . . . , λn are positive real numbers, the measure defined by

µλ(ω) :=
1

Z
µ(ω)

n∏
j=1

λ
ωj

j Z :=
′∑
ω

µ(ω′)
n∏

j=1

λ
ω′
j

j

is said to be a result of applying an external field to µ. If P is a
property of measures on Bn, then P+ holds for µ if P holds for all
measures obtained from µ via external fields.
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Negative dependence hierarchy

Each of the following properties is implied by the next.

NC Pairwise negative correlation: EXiXj ≤ (EXi )(EXj).

NCP Negative cylinder property: E
∏

k∈A Xk ≤
∏

k∈A EXk .

NA Negative association: Efg ≤ (Ef )(Eg) whenever f and g are
increasing functions on Bn measurable with respect to disjoint
sets of coordinates.

SR Strong Rayleigh (definition TBA)

Pemantle Negative Dependence



Motivation for studying

negative dependence properties
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Motivation: tail bounds on sums

Now that we have some defined terms, we can go back and discuss
why anyone wants to study negative (or positive) dependence.

One motivating factor for the study of negative dependence was to
get tail bounds on the sum S :=

∑k
j=1 Xj .

1. NC implies P(|S − ES | ≥ a) ≤ n/(4a2)

2. NCP implies Gaussian bounds, via bounds on EeλS :
P(S − ES ≥ a) ≤ exp(−2a2/n)

3. NA implies a self-normalized CLT: (S− ES)/Var (S)1/2 → χ
(Newman, 1982, bounding difference of char. fn.)

4. SR implies Gaussian tail bounds for all Lipschitz functionals
on Bn (details will be given later in the lecture).
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Motivation: Controlling the probability of events

Another use of positive or negative dependence is to control the
effects of conditioning.

Algorithms on graphs such as searches, message passing, and other
local parallel algorithms can suffer the “curse of knowing too
much,” making the performance of the algorithm difficult to
analyze because the effects of earlier steps on later conditional
distributions is hard to describe. If this information all goes in the
same direction, one can at least get one-sided bounds on the
effects of conditioning.
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Case study: spanning trees

Fix the dimension d and define a random graph GN to be a
uniformly chosen spanning tree of the centered box of volume
(2N + 1)d in the usual nearest neighbor graph on Zd. How do we
know that GN approaches a weak limit, which is now called the free
uniform spanning forest on Zd? We look at three proofs of this.

The original proof (1991) showed convergence via electrical theory.
Let H be a finite set of edges of Zd containing no cycle. One may
express P(H ⊆ GN) as a product of resistances, taking each edge
of GN to have resistance 1. A physical law, due to Rayleigh, says
that resistances can only decrease when more edges are added.
Hence P(H ⊆ GN) decreases and must converge to some pH. The
probabilities pH define the unique weak limit of the uniform
spanning tree on GN.
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Better arguments

Shortly thereafter, Feder and Mihail (1992) showed that the
uniform spanning tree measure on a finite graph was negatively
associated. This is a much stronger result. It follows that the
sequence GN|B of restrictions of GN to a given finite region B is
stochastically decreasing, whereas the previous proof shows only
that the probabilities of cylinder events H ⊆ GN decrease.

Nowadays we would shortcut the Feder-Mihail proof by noting that
the spanning tree measure is known to be determinantal, hence
strong Rayleigh, hence negatively associated.
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The problem with negative dependence
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Why is negative dependence hard?

Useful results were developed for positive dependence long before
they were for negative dependence.

Intuitively, this is because if X and Y are positively related and Y
and Z are positively related, this is not an obstacle for X and Z to
be positively related.

For negative dependence, on the other hand, there is frustration.

For example, if (X,Y,Z) is Markov, and X and Y are negatively
correlated and Y and Z are negatively correlated, then X and Y
will be positively correlated.

The enemy of my enemy is my friend.
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Narrow range for negative dependence

Another manifestation is that the total amount of negative
correlation to go around is a lot less than the total amount of
positive correlation:

∑
i 6=j EXiXj − (EXi)(EXj) must be between

−n and n2 − n.

There is a lot more room for positive correlation (for example when
all Xi are the same) than for negative correlation (for example
when the sum is constant).

One more indicator of why positive dependence conditions are
more harmonious than negative dependence conditions comes from
studying conditions of the weights P(ω) as lattice functions.
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Lattice conditions

A 4-tuple (a,b, c,d) of the Boolean lattice Bn is a diamond if b
and c cover a and if d covers b and c, where x covers y if x ≥ y
and x ≥ u ≥ y implies u = x or u = y.

b c

d

a

 

Say that P satisfies the positive lattice condition if
P(b)P(c) ≤ P(a)P(d) for every diamond (a,b, c,d). The reverse
inequality is called the negative lattice condition (NLC).
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Positive association

Say that the measure P on Bn is positively associated if

Efg ≥ (Ef) (Eg)

whenever f and g are both monotone increasing on Bn. Taking
f = Xi, g = Xj this implies pairwise nonnegative correlation.

Take f = X1 and let P1 and P0 denote the conditional distribution
of P given X1 = 1 and X1 = 0 respectively. In this case positive
association says

∫
g dP1 ≥

∫
g dP0 for all increasing functions g.

In other words, P1 � P0 (stochastic domination).
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Coupling for positive association

5X X X X X1 2 3 4

One can sample simultaneously from (P|X1 = 1) and (P|X1 = 0)
in such a way that turning off the bit at X1 also turns off some of

the other bits (in this case X2 and X5).
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FKG

The positive lattice condition is very useful, due to the following
result of Fortuin, Kastelyn and Ginibre (1971).

Theorem 1 (FKG)

If P satisfies the positive lattice condition then P is positively
associated and the projection of P to any smaller set of variables
satisfies both these conditions as well.

The positive lattice condition involves checking the ratios of
probabilities of nearby configurations. This is often much easier
than computing correlations between bits, which involves summing
over all configurations.
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Negative association

Negative association is a trickier business because f can’t be
negatively correlated with itself.

The measure P on Bn is negatively associated if

Efg ≤ (Ef) (Eg)

whenever f and g are both monotone increasing and they depend
on disjoint sets of coordinates.

Taking f = X1, the consequence is that the conditional law of the
remaining variables given X1 = 0 stochastically dominates the law
given X1 = 1. Thus a sample conditioned on X1 = 1 is obtained
from one conditioned on X1 = 0 by turning some ones into zeros,
except the first coordinate, which goes from zero to one.
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Coupling for negative association

5X X X X X1 2 3 4

This time, turning off the bit X1 causes the sample from
(P|X1 = 1) to gain some ones when it turns into a sample from
(P|X1 = 0).
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Negative lattice condition

Unfortunately, there is not a version of the FKG theorem holding
when the positive lattice condition is replaced by the negative
lattice condition. In particular, NA does not follow from this, and
the NLC is not stable under forgetting one of the variables.

As a result, negative association is very difficult to check!

A profusion of properties has been suggested that are somewhat
weaker than NA. These are not totally ordered with respect to
implication. Many concern the stochastic domination of some
conditional distribution of P by others.
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A mess of properties
You can ignore the details and view

the next few slides impressionistically
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Lattice based conditions

Needless to say, the is no corresponding theorem for the negative
lattice condition. Both lattice conditions are closed under external
fields, an extreme case of which is conditioning on the value of a
variable. But the negative lattice condition is not closed under
ignoring variables (projecting to a smaller lattice), so is not a
natural condition.

Just as we use + for a property extended to external fields, let h-P
denote the property P holding hereditarily, that is, for all subsets of
variables.

In this notation, for example, the condition for real variables
introduced by Karlin and Rinott (JMAA, 1980) called S-MRR2,
would, for binary variables, be called h-NLC+.
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JNRD

The notion of Joint Negative Regression Dependence (JNRD) is
inherited from the theory of real random variables. In the binary
context it means that if A is some subset of the set [n] of indices,
then the conditional law (Xj : j /∈ A|Xi = xi : i ∈ A) is
stochastically decreasing in the partial order on binary vectors x in
{0, 1}A.
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Implications

By 2000, this was the state of affairs, as documented in a paper of
mine1.

NA+ JNRD+ h-NLC+
S-MMR2

CNA JNRD h-NLC

NA

- -

- -
? ? ?

?

Here, CNA means NA after conditioning on the values of any
variables. But, what checkable condition implies NA?

1This is my paper with the most citations but also the least success in terms
of results proved and conjectures that have not been disproved.

Pemantle Negative Dependence



Ultra-log-concavity

Consider the case where S =
∑n

j=1 Xj is the sum of independent
(but not IID) Bernoullis. The generating polynomial

f (z) := EzS =
n∑

j=0

P(S = j)z j has all real roots.

Theorem 2 (Newton, 1707)

If EzS has all real roots then the sequence{
P(S = j)(n

j

) }

is log-concave.

Ultra-log-concavity is not closed under external fields but I hoped
(wrongly) that ULC+ is a natural property implying NA.
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One thing turned out to be true

Natural properties of measures on Bn should hold for µ× ν if they
hold for µ and ν. For ULC, this means that the convolution of two
ULC measures should be ULC. In my infamous paper, I
conjectured this but could not prove it.

But something good came out of this...

Theorem 3 (Liggett, 2001)

The convolution of two ULC measures is ULC.

Those of you who knew Tom might guess how he proved it: he
found an inspired combination of algebraic identities and
inequalities.
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Even bad ideas can be good

This didn’t do a whole lot on its own: it was only a corroboration
of the fact that ULC might be important.

The best thing that came out of this was that Tom was hooked on
this mess of a non-theory, and that he too thought ULC, hence
real-rootedness, might play a role.

*** passage of several years, during which Liggett managed to

connect with Petter Brändén, who is an expert in the geometry

of roots of multivariate polynomials. ***

Multivariate polynomials? Yes, the generating function

f (z1, . . . , zn) =
∑

P(X = x)
n∏

j=1

z
xj
j

turns out to be the key player.
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Strong Rayleigh distributions
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Generating functions

Given a set of random variables X1, . . . ,Xn taking values in Z+,
the associated generating function is the polynomial in n variables
defined by

F (x1, . . . , xn) =
∑

a1,...,an

P(X1 = a1, . . . ,Xn = an) xa11 · · · x
an
n .

When the variables {Xn} are Boolean, the corresponding
generating function is multi-affine: no powers can by higher than 1.

A useful identity computes the probability of all 1’s in a set A:

E
∏
k∈A

Xk =
∂

∂xk1
· · · ∂

∂xkr
F (1, . . . , 1)

where k1, . . . , kr enumerates A.
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Definition of strong Rayleigh

In terms of the generating function, NC is expressed by

EXiXj ≤ (EXi )(EXj)⇐⇒ F (1)
∂2F

∂xixj
(1) ≤ ∂F

∂xi
(1)

∂F

∂xj
(1) . (1)

NC+ requires this not just at (1, . . . , 1) but at all points x in the
positive orthant; this is known as the Rayleigh property.

ExXiXj ≤ (ExXi )(ExXj)⇐⇒ F (x)
∂2F

∂xixj
(x) ≤ ∂F

∂xi
(1)

∂F

∂xj
(x) . (2)

Definition (strong Rayleigh)

The law P with generating function F is called strong Rayleigh
if (2) holds for all x ∈ Rn, not just x in the positive orthant. In
other words, NC persists under positive or negative external fields.
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R+ → R→ C

In fact, understanding SR requires not only allowing x to be
negative but allowing arguments of generating functions to be
complex as well!

A function F : Cn → C is called stable if F is nonzero on Hn,
where H is the open upper half plane.

Generating functions of probability measures on Bn are multi-affine,
meaning each monomial has degree zero or one in each variable. A
key result in the development of the strong Rayleigh property is:

Theorem (Borcea, Branden and Liggett, 2009, Lemma 4.1)

P is SR if and only if its generating function F is stable.
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Some things that preserve the SR property

It is not the place to take a long detour into the theory of stable
functions.

Instead, I will state two results whose proofs require this detour.

These results are very intuitive when stated probabilistically. Once
we accept them, the remaining results can be argued in a more or
less self-contained manner.

Further details may be found in the original source Borcea,
Brändén and Liggett (2009) or in my (2012) survey.
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Polarization

Let X1, . . . ,Xn be nonnegative integer random variables, all
bounded by M. Polarization means replacing X1 by Boolean
variables {Y1, . . . ,YM} such that, conditional on X1, . . . ,Xn, the
Y variables are exchangeable and sum to X1.

Lemma 4
If the generating function for X1, . . . ,Xn is stable then the
generating function for Y1, . . . ,YM ,X2, . . . ,Xn is stable.

The polarization construction can be described in algebraic terms,
without reference to probability, and is proved via the
Grace-Welsh-Szegö Theorem.
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Splitting X1 into exchangeable variables Y1, . . . ,Ym

8

X  , X  ,  ...1 2 X  , X  ,  ...1 2

1

0

2

0

1  0  0  0  1  0  1  0
3

1

0

2

0

X Y  , Y   , ...  Y  1 1 2

On the left is a sample from a distribution on positive integers
where all variables are bounded by M := 8.

On the right, given that X1 = 3, this variable was replaced by 8
binary variables, three of which were chosen to be 1, uniformly

among the

(
8

3

)
possibilities.
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Homogenization

Often algebra works better with homogeneous polynomials. A
generating function F is homogeneous if and only if the random
variable S :=

∑n
k=1 Sk is constant.

Lemma 5 (Homogenization Lemma)

Let F be a stable polynomial in n variables with nonnegative real
coefficients. Then the (usual) homogenization of F is a stable
polynomial in n + 1 variables.

The proof uses hyperbolicity theory, showing that nonnegative
directions are in the cone of hyperbolicity.

Probabilistic interpretaion: if {X1, . . . ,Xn} have stable generating
function then adding Xn+1 := n −

∑n
k=1 Sk preserves stability.
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Symmetric homogenization

Putting these two constructions together yields a natural stability
preserving operation within the realm of Boolean measures.

Definition 6
The symmetric homogenization of a measure on Bn is the measure
on B2n obtained by first adding the variable Xn+1 := n −

∑n
k=1 Xk

(homogenizing) and then polarizing: splitting Xn+1 into n
conditionally exchangeable Boolean variables.

Theorem 7
Symmetric homogenization preserves the strong Rayleigh property.
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Example of symmetric homogenization

On the left is a configuration in B9. Symmetric homogenization
extends this, on the right, to a configuration on B18 in which the
number of new 1’s is the number of old 0’s and vice versa.
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Further closure properties

Here are five properties that preserve SR, for which the proof is
more or less immediate from the full definition of stability.

1. Permuting the variables: F (xπ(1), . . . , xπ(n))) is stable if F is.

2. Merging independent collections: FG is stable if F and G are.

3. Forgetting a variable: setting the indeterminate xj = 1.
More generally, setting xj = a for a ∈ H preserves stability.

4. Replacing X1 and X2 by X1 + X2: F (x1, x1, x3, . . . , xn).

5. Conditioning on Xj :
∂F

∂xj
and F − xj

∂F

∂xj
are stable if F is.
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Not so obvious closure properties

Three more closure properties hold that are probabilistically
meaningful, two of which are less automatic.

1. External field: F (λ1x1, . . . , λnxn) is stable if F is.

2. Stirring, that is, replacing F by a convex combination of F
and F ij := F (x1, . . . , xi−1, xj , xi+1, . . . , xj−1, xi , xj+1, . . . , xn).

3. Conditioning on the total, S : (P|S = k) is SR if P is.

Pemantle Negative Dependence



Stirring

+ 1−qq
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Conditioning on the total

(P | S = 3)P
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Proofs

1. External field. Immediate from the defition of stability: that F
be nonvanishing on Hn.

2. Stirring. The nonvanishing of pF + (1− p)F ij may be checked
for each fixed set of values of {xk : k 6= i , j} in H. These
specializations of F are stable, 2-variable, multi-affine polynomials
with complex coefficients. It suffices to check for this class that
stability is closed under F 7→ pF (x , y) + (1− p)F (y , x). This can
be done by brute force.

3. Conditioning on the total. Homogenize to obtain the new stable

function G (x1, . . . , xn, y) =
∑n

j=0 Ej(x1, . . . , xn)y j . Derivatives
preserve stability. Differentiating k times with respect to y and
n − k times with respect to y−1 leaves a constant multiple of Ek .
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EXAMPLES OF STRONG RAYLEIGH LAWS
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Conditioned Bernoulli sampling

Let {πi : 1 ≤ i ≤ n} be numbers in [0, 1]. Let P be the product
measure making EXi = πi for each i . Let P′ = (P|S = k). The
measure P′ is called conditioned Bernoulli sampling. We already
know this is SR because it is a product measure, conditioned on
the total. What’s interesting is you can always arrange to sample
this way if your marginals sum to an integer.

Theorem 8
Given any probabilities p1, . . . , pn summing to k, there is a
one-parameter family of vectors (π1, . . . , πn) whose conditional
Bernoulli sampling law has marginals p1, . . . , pn.
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Further examples

I Exclusion process. Let P be a strong Rayleigh measure on Bn.
Suppose for each i , j , the values of Xi and Xj swap at some
prescribed, not necessarily constant rates βij(t). Then for
fixed T , the law at time t is strong Rayleigh.

I Pivot sampling. (I won’t go into this now.)

I Determinantal measures. To prove these are SR, use the fact
that F = C det(H − diag(x1, . . . , xn)) where H is positive
definite, together with Gårding’s (1951) criterion for stability.
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Further useful properties of SR measures

1. Let P be SR and let S :=
∑n

k=1 Xk . Then S has a real rooted
generating function. In particular, it has the same law as a
sum of independent Bernoullis, the sequence
{P(S = k) : 0 ≤ k ≤ n} is ultra-log-concave, and it’s mode
and mean differ by at most one.

2. Stochastically increasing levels: the law (P|S = k + 1)
stochastically dominates the law (P|S = k).

3. The law of P conditioned on S ∈ {k , k + 1} is strong Rayleigh.
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Rank rescaling

Lemma 9 (rank re-scaling)

Let P on Bn be strong Rayleigh and let {bi : 0 ≤ i ≤ n} be a finite
sequence of nonnegative numbers such that

∑n
i=0 bix

i is stable
(equivalently, has only real roots). Then the measure

n∑
i=0

bi (P|S = i)

normalized to have total mass 1, is also strong Rayleigh.
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Example of rank re-scaling

8

0

0

4

1

The sequence 1, 8, 4, 0, 0 corresponds to the polynomial
1 + 8x + 4x2, which has all real roots. A generic measure on B4 (on
the left) becomes a new measure in which ranks 3 and 4 are gone.
Points in rank 1 increase in weight by the most, followed by rank 2
and then rank 0. Resulting weights are normalized to sum to 1.
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Proof that rank re-scaling preserves SR

Proof:

1. In the special case bi = δi ,k , this is just saying that (P|S = k) is
SR, which we alredy proved.

2. In general, because the reversed sequence {bn−k : 0 ≤ k ≤ n} is
real rooted, we may construct independent Bernoulli random
variables Y1, . . . ,Yn whose law Q on Bn gives
Q(
∑n

j=0 Yj = k) = bn−k for all k .

3. The product law P×Q is SR (closure under products). By Step
(1), the law (P× Q|

∑2n
j=0 ωj = n) of the product conditioned on

the sum of all the X and Y variables being equal to n is SR as
well. Forgetting about the Y variables, this is

∑n
i=0 bi (P|S = i). �
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Cleaning up two arguments from before

Applying the lemma with bi := 1k≤i≤k+1 proves that
(P|k ≤ S ≤ k + 1) is strong Rayleigh.

To deduce stochastically increasing levels, homogenize the measure
(P|k ≤ S ≤ k + 1), yielding a SR measure ν. Negative association
implies that the homogenizing variable Xn+1 := 1S=k is
ν-negatively correlated with any upward event in Bn. This is the
desired conclusion.

Remark: we can’t continue and apply the lemma to bi := 1k≤i≤k+2

because xk + xk+1 + xk+2 does not have all real roots.

Therefore, (P|k ≤ S ≤ k + 2) is NOT in general SR.

Pemantle Negative Dependence



A recurring argument

Negative association for the spanning tree measure was first proved
by Feder and Mihail (1992). In fact this argument is at the heart
of a number of others, so we should be aware, although they state
somewhat less, of what their argument showed.

Theorem 10 (Feder and Mihail (1992, Lemma 3.2))

Let M be a class of probability measures on Boolean lattices that
are all homogeneous and pairwise negatively correlated. Suppose
M is closed under conditioning on the value of one of the variables.
Then all measures in the class M are negatively associated.
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SR implies NA

With this, we can pay off a debt and prove that SR implies NA.

Proof that strong Rayleigh measures are negatively
associated:

1. The critical step is that P can be extended to a homogeneous
measure, namely its symmetric homogenization.

2. Observe that SR implies Rayleigh which implies pairwise
negative correlation.

3. The class of strong Rayleigh distributions is closed under
conditioning. The hypotheses of Feder-Mihail are satisfied,
therefore all strong Rayleigh measures are negatively
associated.

�
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MORE RECENT RESULTS
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Stochastic covering property

Say that ν stochastically covers µ if it is stochastically greater and
can be coupled so that the sample from ν is either equal to the
one from µ or contains precisely one more element.

Let µ and ν are the respective conditional measures on Bn−1
defined by µ = (P|Xn = 1) and ν = (P|Xn = 0). A measure is said
to have the SCP if ν stochastically covers µ, and this holds when
P is replaced by any conditionalization or index permutation.

Proof: stochastic domination follows from negative association.
For a homogeneous measure, stochastic covering follows from
stochastic domination. In general, P can be extended to a
homogeneous measure (symmetric homogenization), and that’s
good enough.
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Lipschitz functionals

A Lipschitz function f : Bn → R is one that changes by no more
than some constant c (without loss of generality c = 1) when a
single coordinate of ω ∈ Bn changes.

Example: Let {1, . . . , n} index edges of a graph G whose degree is
bounded by d . Let Y be a random subgraph of G and let
Xe := 1e∈Y . Let f count one half the number of isolated vertices
of Y . Then f is Lipschitz-1 because adding or removing an edge
cannot affect the isolation of an vertex other than an endpoint of e.

d

a

b

c
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Simultaneously generalizing the functional and the measure

Strong tail bounds are available for Lipschitz functions of
independent variables. These are based on classical exponential
bounds going back to the 50’s (Chernoff) and 60’s (Hoeffding).

E. Mossel asked about generalizing from sums to Lipschitz
functions assuming negative association. This question is still
open, but it is true if one assumes the strong Rayleigh property.

Theorem 11 (Pemantle and Peres, 2015)

Let f : Bn → R be Lipschitz-1. If P is k-homogeneous then

P(|f − Ef | ≥ a) ≤ 2 exp

(
−a2

8k

)
.

Without the homogeneity assumption, the bound becomes
5 exp(−a2/(16(a + 2µ)) where µ is the mean.
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Proof

Sketch of proof:

I Strong Rayleigh measures have the stochastic covering
property.

I The classical Azuma martingale, Zk := E(f |X1, . . . ,Xk) can
now be shown to have bounded differences, due to Lipschitz
condition on f and coupling of the different conditional laws.

(See illustration)

Note: this actually proves that any law with the SCP satisfies the
same tail bounds for Lipschitz-1 functionals.
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Illustration

Look at values of Xi one at a time.

? ? ? ? ? ? ? ?

? ? ? ? ? ? ??

There is a coupling such that the upper row samples from P, the
lower row samples from (P|X1 = 1), and the only difference is in
the X1 variable and at most one other variable.

A similar picture holds for (P|X1 = 0).

Therefore, f varies by at most 2 from the upper to the lower row,
hence |Ef − E(f |X1)| ≤ 2.
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Application

The proportion of vertices in a uniform spanning tree in Z2 that
are leaves is known to be 8/π2 − 16/π3 ≈ 0.2945. Let us bound
from above the probability that a UST in an N × N box has at
least N2/3 leaves.

Letting f count half the number of leaves, we see that f is
Lipschitz-1. The law of {Xe := 1e∈T} is SR and N2 − 1
homogeneous. Therefore,

P(f − Ef ≥ a) ≤ 2 exp(−a2/(8N2 − 8)) .

The probability of a vertex being a leaf in the UST on a box is
bounded above by the probability for the infinite UST. Plugging in
a = N2(1/3− 8π−2 + 16π−3) and replacing the denominator by
8N2 therefore gives an upper bound of

2 exp

[(
1

3
− 8

π2
+

16

π3

)2

N2

]
≈ 2e−0.0015N

2
.
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A CLT based on geometry of zeros

Distributions on {0, . . . , n} whose generating function F has all
real roots obey a CLT, provided their variance goes to infinity. This
is because such a distribution is the law of a sum of independent
Bernoulli random variables.

In fact, if the roots are all in the left half-plane, then F is the
product of trinomials with nonnegative coefficients, hence the
distribution is the sum of independent {0, 1, 2}-valued random
variables, hence the CLT holds again. Similar arguments improve
this to requiring F avoid any region avoiding a small sector near
the positive real axis.

Theorem (Lebowitz, Pittel, Ruelle and Speer (2016))

If probability distributions Pn on {0, . . . , n} have generating
functions Fn with no zeros in a δ-neighborhood of 1, and the
variances grow faster than n2/3, then {Pn} satisfies a central limit
theorem.
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Best 1-avoiding CLT

The hypothesis that n−1/3σn →∞ cannot be removed using the
technology of [LPRS]. Their proof does not make essential use of
the nonnegativity of the coefficients of F .

A natural conjecture is that it can be replaced by σn →∞, but
this is false as was demonstrated by Michelen and Saharasbudhe
(Advances, 2019). Recently, these two proved a quantitative result
that appears to be best possible.

Theorem (best geometric CLT)

There is a universal constant C such that if a R.V. X on {0, . . . , n}
has generating function F with no zeros within δ of 1, then the
self-normalized variable X∗ := (X − µ)/σ differs in the CDF sup
norm from a standard normal by at most C log n/(δσ). This is best
possible because for any fixed C > 0 there are δ > 0 and {Xn}
supported on {0, . . . , n} with Fn nonvanishing in a δ-ball around 1,
σn > C log n, and (Xn − µn)/σn not converging to a normal.
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Lorentzian distributions

Another motive for pursuing negative dependence properties has
been to settle the conjecture that the random cluster model has
negative correlations for q < 1.

The hope was to show the RC model was negatively associated by
showing it was in a class of models having the NA property.

Unfortunately no one yet knows whether the RC model is strong
Rayleigh.

It is, however, in a newly defined class of Lorentzian distributions,
which contains the strong Rayleigh distributions.
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Lorentzian implies 2-NA, but sadly, not NA

Lorentzian disgtributions were defined in a recent preprint of
Brändén and Huh. Their generating functions are homogeneous
polynomials of any degree d in the closure of the set of
polynomials such that, when differentiated d − 2 times with
respect to any variables, they result in a homogeneous quadratic
with Lorentzian signature.

Unfortunately, being Lorentzian only implies NA up to a factor of 2.

This is new information for the RC model: EXiXj ≤ 2EXiEXj for
any two edge indicators. It may help settle some open problems on
cluster size, even though it is not the big conjecture.
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OPEN PROBLEMS
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Determinantal point processes

This topic and associated problem goes a bit beyond the realm of
measures on finite Boolean lattices.

A point process in Rn is said to be determinantal if the is a
Hermitian kernel K : Rn × Rn → C such that the joint density of
points at x1, . . . , xk is equal to the determinant of the matrix
K (xi , xj)

n
i ,j=1.

Determinantal point processes satisfy analogous negative
dependence properties to discrete negatively dependent collections.
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Visual depiction of negative dependence for DPP

Which one is the Poisson?

Pemantle Negative Dependence



Open problem # 1: SR in continuous space?

The text by Kulesza and Taskar (2012) on determinantal point
processes for machine learning makes no distinction between
discrete and continuous space. This makes sense in Computer
Science, where continuous space is represented in the end as
discrete space (pixels, floating point numbers, etc.) with a very
fine mesh.

Mathematically though, we have no theory of the strong Rayleigh
property for a point process on a continuous space.

Problem 1
What is the right definition of strong Rayleigh for point processes,
and what can be deduced from it? [Nonstandard analysis?]
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Open problem #2: random acyclic graphs

Related to the spanning tree measure:

Problem 2
Does the uniform (or weighted) random acyclic subgraph possess
any negative dependence properties? Is is conjectured to be NC,
and this is still open. If it is, one would imagine it is because it is
SR, and this has not been refuted.

Again, we can get this up to a factor of 2 via the new technology.

Theorem 12 (Huh-Brändén)

The uniform measure on random acyclic subgraphs is Lorentzian.
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THE END
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