Chapter 2

SURVEY OF PROCESSES WITH
REINFORCEMENT

This chapter discusses Pélya’s urn process and some of its generalizations. Since the
main results of this thesis concern processes that generalize Pélya’s urn, this chapter
serves as historical background. Pélya’s urn has been widely studied; this chapter
singles out the generalizations and applications most relevant to this thesis. For want

of an already established term, I call these random processes with reinforcement.

The term random process with reinforcement is intended to delimit a class of discrete-
time processes, of which the Pélya urn process, described below, is prototypical. Which
processes fall into this class? The question can best be answered by another question:
why is the Pélya urn more interesting than the Ehrenfest urn or an urn scheme based
on sampling without replacement, or any of a number of other urn schemes to be found
in a general survey such as [JK]? One answer is that it is not easily reduced to a Markov
chain which can then be completely understood. Perhaps I should say “fruitfully” in-
stead of “easily”, since any discrete-time process can be made into a Markov chain
by expanding the state space to include the entire history of the process. In general,

random processes with reinforcement can be described by their transition probabilities.



These are not constant as in the Markov case, but depend on the history of the pro-
cess via a single (vector-valued) function. Typically, this function is just a normalized
occupation vector, i.e. a vector indexed by the states of the process that says what

fraction of the time the process has been in each state.
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2.1 Pdlya’s urn

In 1923, Eggenberger and Pélya [EP] proposed the following urn scheme to model
processes such as the spread of infectious disease. An urn contains R red balls and B
black balls. A ball is drawn from the urn and replaced in the urn along with A balls of
the same color. Here, A is any fixed constant. This process of drawing and replacing
is repeated ad infinitum. At each draw, the chance of picking a red ball is equal to the
fraction of balls in the urn that are red; we call any urn scheme satisfying this condition
a linear scheme. Initially this chance is R/(R + B), but it changes after each draw.
The following is the basic theorem about this process; it is part of the mathematical

folklore, i.e. I was too lazy to track down the first time it appeared in this form.

Theorem 2.1 (Pélya’s urn) The fraction of red balls in the urn under such a scheme

converges almost surely to some random lLimit. The distribution of this limit i3 a beta

distribution with parameters R/A and B/A.

The randomness of this limit is surprising to most people (see [Co] for a discussion of
this).

Proof: The successive fractions of red balls form a bounded martingale and hence
converge almost surely. To verify the distribution of the limit is routine once you know
that it is a beta with parameters R/A and B/A. See for example [Fe] v. 2 ch. VII sec.
4, o

Remark: R, B and A may be taken to be arbitrary positive real numbers, although the
process is usually stated for integral R, B and A because of the physical description
in terms of balls in an urn. Similarly, the number of colors can be taken to be any
d = 2 and the limiting distribution can be calculated as follows: consider all the colors

but one to form a single supercolor and apply theorem 2.1 to this two-color problem;
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Now since the distribution of colors within the supercolor is independent of the total
fraction that have the supercolor, this procedure can then be inductively applied to the
d — 1 color problem that remains. Let the original number of balls of color i be w;. It
is easy to see that the joint distribution of the limiting fractions, zi,...,z4, of balls of
each color must have density

T((wy + -+ wa)/A) p /A1 L g walB-1

(w1 /A)- - T(wa/A)
which is know as the Dirichlet distribution with parameters wy/A,...,ws/A. This
follows from the characteristic property of the Dirichlet distribution, namely that the

marginal distribution of the sum ¥ ;c4 z; is a beta with parameters 3 ;.4 w;/A and
Zipt wi/A.

Another way of looking at Pélya’s urn is through exchangeability theory. An easy
computation shows that the sequence of draws is an infinite exchangeable sequence
of random variables. In other words, the probability of drawing a particular finite
sequence of colors at the beginning depends only on the numbers of each color drawn
and not on the specified order. An application of De Finetti’s theorem [Fe v. 2 ch. VII
sec. 4] now yields

Theorem 2.2 Pick p € (0,1) randomly from a beta distribution with parameters RfA
and B/A. Then generate a sequence of colors where each color 1s independently red
with probability p and black with probability 1 —p. The sequences generated by this two-
step process are identically distributed to the sequences of colors drawn from a Pdlya

urn with parameters R, B and A. O

This theorem gives the Pélya urn process an interesting Bayesian interpretation.
Suppose p € (0,1) is an unknown parameter corresponding to the probability of any
ball being red, and put a prior on p that is beta with parameters R/A and B/A. This

is a common prior, dating back to Bayes’ original paper [Ba] where R = B = A and
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the prior is uniform. Then a Bayesian would guess that the probability of a red ball
being drawn is just E(p) = R/(R + B). This is indeed just what happens on the first
draw from the urn. After each draw, the Bayesian updates his information on p, while
the urn changes its composition. These two things happen in such a way that the
Bayesian's guess as to the probability of choosing a red ball next is always given by
the fraction of red balls in the urn. In some sense, the urn is just an analog computer,
carrying out the Bayesian's computations. Thus the effect of a red draw increasing the
chance of a future red draw by actually altering the composition of the urn may be
interpreted as a pseudo-effect where all that has changed is knowledge about a hidden

parameter.

This interpretation makes the Pélya urn a natural model on which to base prediction
of future probabilities, With a uniform prior, the process is equivalent to the Bayes-
Laplace scheme. According to Feller ([Fe] v. 1 ch. V sec. 2) Laplace used this model
to (jokingly?) estimate the probability that the sun will rise tomorrow to be 1,826,214
to 1 because it has risen every day for the past 5,000 years or 1,826,213 days. More
recently, Blackwell and Macqueen [BM] have proposed the following generalization.
Let the index set of colors be arbitrary, and let u be a probability measure on this set
corresponding to the initial composition of the urn. Pick a random ball, say its color
is 7, and return it to the urn along with an extra ball of color i. Now the composition
of the urn is (u + §;)/2. Continuing in this way, the composition of the urn converges
to a random measure. This random measure is almost surely atomic and is sometimes
called a Dirichlet process or a Ferquson’s Dirichlet process (after [Fer]) with parameter
measure 4. It can be argued (see [Fer]) that the law of the Dirichlet process is a
good pi:inr for the distribution of a random measure, at least in situations where the
measure is expected to be atomic, in which case this urn model has a useful Bayesian
Liu.terpretai:inn. At the least, the prior is mathematically convenient. A similar model
has been proposed to predict and quantify clumping in the location of new industries
[Ar2].
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Various types of scientific data can be expected to fit the Polya statistics, meaning
that data ranging from 1 to n has the same distribution as the number of red draws
among n draws from a Pélya urn of some fixed initial composition. This is because
the scheme may be thought of revealing a hidden parameter that changes from one
group of trials to the next. In [Ja] it is proposed that the number of male children in
a family of a specified size is not binomially distributed, since the parents may have a
predisposition toward producing one sex, but might fit the Polya statistics better. The
data actually presented in the paper are not convincing one way or the other. Mackerro
and Lawson [ML] make a similar proposal for the number of days in a season that are
suitable for crop spraying; the evidence in their case is somewhat more compelling.
Several hypothetical examples are given in Cohen’s friendly account of random limits
in observed data [Co].

The inference process can also be reversed. The cross-section of the number of
particles created in high-speed hadronic collisions is known experimentally to have a
Greenwood-Yule distribution. This leads physicists to look for a mechanism responsible
for the Pélya urn-like behaviour (see [Mi] and [YMN]).

Remark: Of historical interest is the following limiting case of the Pdélya distribution
which predates the general case by a few years. Suppose that the proportion of red
balls is initially infinitessimally small, but that we draw often enough to expect an
average of p red draws. More formally, suppose we let R/A = r remain fixed while
B/A — oo and we look at the number p of red draws among the first N draws, where
N = M1 + B/AR) so that E(p) remains constant at A\. Then the distribution of p
converges to the Greenwood-Yule distribution, which is a generalization of the Poisson
distribution that is sometimes also called the Eggenberger-Pdlya distribution. The
distribution is given by

hivpras e \Vr(r4+1)---(r4+i-1)
pmb{‘}‘*)‘(lﬂ) (1 + ey (1)
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where ¢ = r/(r + A). See [GY] for a wordy discussion of this distribution as it relates

to their data on accidents in industry.

2.2 Generalizations of Pdlya’s urn

Bernard Friedman [Fri] considers the following generalization of Pélya’s urn. It is
perhaps the simplest generalization, and it is quite instructive. Let the urn begin as
before with R red balls and B black balls, but now when a ball is drawn, replace it
along with & extra balls of the same color and # extra balls of the opposite color.
The introduction of the parameter 8 radically changes the behaviour of the process.
It will turn out that the vertez-reinforced random walk of chapter five is essentially
like a Friedman urn and bears little resemblance to the edge-reinforced random walk
of chapter four which is a Pélya urn type process. In the Friedman urn-like examples
such as the Friedman urn itself, the successive fractions of red balls no longer form a
martingale, but tend instead toward 1/2. This causes the set of possible limits to shrink
from the whole interval [0,1] to the set of points p such that the expected fraction of
red balls after the next draw is p whenever the current fraction is p. This set is often

a singleton (as in the above example) or a discrete set.

David Freedman [Fre] uses a moment calculation to obtain the precise rate of con-

vergence of the successive fractions of red balls, vy, vs,... to 1/2.

Theorem 2.3 ([Fre]) Let p = (a — B)/(a+ B) and 0* = (a — §)*/(1 — 2p). Then

(va —1/2)\/n — N(0,6%) if p<1/2
(vn - 1/2)nlog(n) — NO,(a-§?) i p=1/2 @
(v, —1/2)n'? — Z i p>1/2

where Z 13 a non-degenerate random variable and the convergence is in distribution. O
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Another way of generalizing Pélya’s urn is to allow the probability of drawing a red
ball to be some function of the fraction of red balls other than the identity. This will
be called a nonlinear urn scheme. Hill, Lane and Sudderth [HLS] consider a simple
nonlinear urn scheme which adheres to Pélya’s original practice of always putting back
one extra ball of the color drawn. Letting f(x) denote the probability of drawing a
red ball when the fraction of red balls is z, they show that the successive fractions of
red balls, vy, vq,... must converge whenever the f is not too discontinuous: the set of
points p such that f(p) # p but every neighborhood of p contains some z; and z; for
which f(z,) < z; and f(z2) > z3 must be nowhere dense in [0,1]. For continuous f
it is not hard to show that the limiting value v of the fractions vy, va,... must satisfy
f(v) = v with probability 1. To see this, let v be any point with f(v) # v. Assume
without loss of generality that f(z) > v + e for all z in some neighborhood of v. If
v, — v then the probability of choosing a red ball at each step is eventually greater
than v + e, so convergence of the v, to v violates the strong law of large numbers. Hill,
Lane and Sudderth also obtain a second order result about the behaviour of f near
points of convergence of v,. Say that a point v where the graph of f meets the diagonal
is an upcrossing if f(z) < z for 2 < v and f(z) > z for £ > v. Say it is a downcrossing
if f(z) < z for z > v and f(z) > « for z < v. If f is differentiable at v then these will
hold when f'(v) > 0 or f'(v) < 0 respectively.

Theorem 2.4 ([HLS]) In the above urn scheme, suppose 0 < f(x) < 1 for allz €
[0,1] and let v € (0,1) be a fized point for f. Then
(i) prob(v, — v) =0 if v is an upcrossing for f

(1) prob{v, — v) > 0 if v is a downcrossing for f.

Remark: The conclusion of part () is only significant when the set of v for which
f(v) = v is discrete; in this case, with probability one, the process does not converge

to any point outside the prescribed set. In the case of Pélya’s urn, f(v) is always equal
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to v and the probability of convergence to any point is zero though in fact the fraction

always does converge somewhere,

The intuitive idea behind this theorem is that at an upcrossing, v,41 15 expected to
be further away from v than v,, while at a downcrossing there is a restoring force that
makes vn41 closer to v than v,, at least in expectation. To prove the non-convergence of
v, to v when v is an upcrossing, they use an elegant gambling-optimization argument.
They allow the player to vary f after seeing the outcome of the draws up to time n,
but always subject to the upcrossing condition: (f(vn) — va)(va — v) = 0. They show
that the best way for the player to maximize a payoff that is a function of the limit of
the v,, namely a beta density with peak at v, is always to choose f(vs) = vn. For this

choice of f the distribution of the limit is a beta, and in particular has no atom at v.

Some independent work by Blum and Brennan [BB] implies the second part of
this theorem under slightly stronger assumptions on f than are used in [HLS]. Their
technique is to treat n v, as a sum of almost independent random variables. In chapter
three, we shall generalize part (i) of this theorem to multicolor urns; the idea for the
proof is present in [HLS], although we cannot duplicate their elegant methods. The
proof uses instead an analysis of the increments of the process that is similar to the

one in [BB], but more detailed.

Athreya generalizes a linear multicolor Pélya urn in two ways [At]. As before, the
extra balls added at each step are always of the color drawn, but Athreya allows this
number to be a random non-negative integer. Athreya also allows the distribution of
this random number to be different for each color. As might be expected, the only
colors that persist as a positive fraction in the limit are those with the greatest mean

reinforcement.

Suppose there are d colors and that the generating functions for the distributions
of the random numbers of additions for each color are fi,..., fa with finite means

£i(1) = ;. Suppose in addition that the random number of additions a; of each color
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are never zero and satisfy E|a;loga;| < co. Then letting the fraction of balls of color i

at time n be denoted v;(n), we have

Theorem 2.5 (Athreya) The vector t(n) = (v1(n),...,ve(n)) converges almost surely
to a random vector U with v; +--- +vqg = 1. Furthermore, tf \y =--- = A > A1 2
<o+ > Ay, then with probability 1, v; =0 fori > r.

Athreya’s idea for proving this is to map the urn process into a continuous time
branching process. Suppose each ball in the urn at any time waits for an exponential
amount of time and then vanishes and gets replaced by 1 + y balls, where y is a
random non-negative integer distributed appropriately for whatever color just vanished.
Although this alters the time scale, the probability that the next ball to vanish has
color i is always just the fraction of balls in the urn of color i, since the exponential
waiting time has no memory. The details of mapping the urn process to a branching
process are carried out in [AK]; The theorem then follows from the standard results
about branching processes. This method of proof, unlike all the others cited above,
actually does require the number of balls to be integral, since the results on hré.nching

processes are only applicable in this case (at least as they are usually stated).

2.3 Other processes with reinforcement

In this section we consider some random processes with reinforcement that are not urn
schemes. There are many in the literature and I will not pretend to discuss them all;
instead I will mention two of the larger categories of such processes, namely stochastic
approximation and learning models. These are chosen because they relate loosely to

the processes in chapter five below.
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Stochastic approximation was first introduced in 1951 by Robbins and Monro [RM].
They consider the following problem, which may be thought of as an attempt to
modify Newton's method for root-finding when the values of the function have noise
added. Suppose y = y(z,w) is a random function of r with mean M(z), where we
do not necessarily know M(z). We are allowed to sample y(z;),y(zz),... at points
Ti,Z3,... of our choosing, and we want to approximate a solution of M(z) = 0
in the sense that z, — =z in probability for some = such that M{z) = 0. For
example, suppose M(z) = z — @ for some unknown 6 and y(z,) = z. — 0 + &,
where {£,} are independent, identically distributed normal random variables with zero
mean. Then the problem asks for an algorithm for generating z,;; as a function of
T1yeeeyTnyYly- .., Un inl such a way that r, — 6 in probability. Robbins and Monro con-
sider the case where M is monotone; we will assume hereafter that M is non-increasing.

They propose the recursive estimate
Tn41 = T+ Gnln (3)
where {a,} is a sequence of type 1/n, i.e. there are constants ¢,, ¢; such that
ci/n < an < ¢xfn for all n.

The idea is that the addition of a,y, is a restoring force toward #, since its expected
value is positive when , < # and negative when z, > 8. The reason for the particular
choice of asymptotic magnitude of a, is that }_ @, must be infinite in order to be able

to compensate for any initial errors, but ¥~ a,? must be finite if z, is to converge.

Theorem 2.6 ([RM] theorem 2) Suppose {a.} is of type 1/n and M 1is a nonin-

creasing function of  salisfying

M(8) = 0 (4)
M) < 0 (5)
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for some 6. Suppose also that y(m,w.) is bounded almost surely. Then E(z, —§)* — 0.
a

This result specializes to a version of part (ii) of Hill, Lane and Sudderth’s theorem.
For each z the random function y(z,w) returns either —z or 1 — x with respective
probabilities f(z) and 1 — f(z). For each z the mean return is therefore E(y(z)) =
f(z) — z. The Robbins-Monro algorithm finds a “root” of y, i.e. an z for which
E(y(z)) = 0. The algorithm uses only the sample values y(z,w); it does not know f.
Implementing the Robbins-Monro algorithm with a, = 1/n gives

nz + £
n+1 (6)
where £ is a random variable that is 1 with probability f(z) and 0 otherwise. The

rule governing the sequence z,,z3,... of successive fractions in a Hill-Lane-Sudderth

Tntl —

nonlinear urn whose urn function is f is precisely equation (6). The processes therefore
have identical laws and since conditions (4) and (5) above are just the conditions for a
differentiable downcrossing, part (ii) of Hill, Lane and Sudderths theorem (theorem 2.4)
follows in the differentiable case from theorem 2.6 and the fact that @ is the unique
fixed point for f because M is non-increasing,.

The Robbins-Monro process hass been widely studied and generalized since 1951
(see [NH] for a survey of this field). A natural way to generalize it is to raise the
dimension, so ¥ is a random vector §(¥,w). Immediately, it becomes more difficult to
establish the convergence of @, under the scheme 0,4 = ¥, + a,¥,. In fact there are
reasonable choices for ¥ for which @, does not converge, but moves in (ever slower)
cycles. One approach to determining convergence is the method of Liapunov functions.
This means finding, for the given approximation algorithm, a non-negative potential
(scalar function) that decreases in expectation with each iteration. The following result

underlies most convergence theorems.
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Theorem 2.7 ([NH] ch. 2 thm. 5.1) Let {v,} be as above, let H be a non-negative
function and suppose {a,} is any positive sequence with T a, = oco. Let G be any
measurable set and let v be the first ezit time from G. If

E(H(§ﬂ+l} 1 n, gﬂ) < H{ﬁ-ﬂ] — Oy

whenever U, € G, then prob(r < ) =1. o

This is essentially the reasoning used in chapter five below, lemma 5.7 and theorem 3.8.

To see how the notion of upcrossing in theorem 2.4 generalizes, consider any point §
for which M(p) = 0. In order for 2,7, to be a restoring force, the linear approximation
to M(f+ ) for small ¥ should be T'% where T is a negative definite matrix. This ensures
that #,4; is always pushed back toward p in some appropriate metric. Requiring T to
be negative definite is analogous to condition (5) in the one-dimensional case. Under
certain conditions, this implies ¢, — p just as in theorem 2.4 (i1). Conversely, if T is
positive definite then a non-convergence theorem similar to theorem 2.4 (i) holds. For

various versions of this theorem see [NH] ch. 5 sec. 3 and following.

Specializing once more to an urn scheme, let F : A — A be any continuous function
from the unit simplex A C R? to itself. Consider an urn with the fraction of balls of
color i at step n given by wv;(n) and let a ball of color ¢ be drawn with probability
Fi(v(n)), being replaced along with one extra ball of the same color. This is the mul-
ticolor version of the simple nonlinear urn scheme studied in [HLS]. Arthur, Ermol ‘ev
and Kaniovskii use stochastic approximation theorems such as the one above to derive

the following theorems about nonlinear urns with more than 2 colors.

Theorem 2.8 ([Arl] theorem 1) Let a multicolor nonlinear urn be governed by a

continuous urn function F as above. Suppose for some § € A, F(ﬁ'} = p and either

(2) C@-FF@) —p) > 0forallz¢ Q
or (i) C(T—pF#) —p) < Oforallz ¢ Q
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where C i3 a symmetric positive definite bilinear form and Q 1s the set of fized points
of F. Then @, — ¥ almost surely for some random variable ¥ with prob(v € Q) = 1.
. :

Theorem 2.9 ([Arl] theorem 2) Assume the hypotheses of the above theorem with
case (ii) holding. Suppose also that F satisfies a Holder condition with exponent u €
(0,1] in a neighborhood of p. Then prob(#, — p) = 0. O

An important heuristic is pointed out in both [NH] and [Arl]: the multidimensional

stochastic approximation process

Unt1 = Tn + @n(§(Tn, w) — ) (7)

is in some sense a discrete version of the differential equation

25(t) = a()(F((t)) ~ 7)) ®)

where F(#) = E(7(Z)). The differences are that the stochastic version (7) is discrete
and also that is has noise added (which is mean zero by definition of F'. Because of

the noise, the reader may prefer to think of (7) as analogous instead to a diffusion, for
which (8) then gives the drift.

By a time change, assume a(t) = 1. Then the flow for the differential equation has
a critical point wherever F(#) = # and the linear approximation T to F(7 + ©) being
positive or negative definite corresponds to the flow having a repelling or attracting
node respectively. Of course, one expects that the stochastic version will converge only
to stable eritical points, which are the attracting nodes. However, the case where T
has both positive and negative eigenvalues and the critical point is thereby unstable

— though only in some directions - is not dealt with. One reason may be that there
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are few theorems stating that the process converges in this case, so a theorem giving
non-convergence to such a point is not worth very much. We consider such cases in

chapter five and in the latter part of chapter three.
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