Chapter 3

GENERALIZED URN
PROCESSES AND PROCESSES
WITH NONATTRACTING
POINTS

ABSTRACT

We generalize the Pélya urn process in two ways. First a simple time dependence is
considered. For this process, we characterize the distribution of the random limiting
fraction of red balls, giving conditions for its concentration on {0,1} and for its being
non-atomic. Second, a multicolor process with nonlinear draws is considered. For this
process, we give analogues of theorem 2.4, showing that the vector of fractions of balls
of each color cannot converge to certain unstable equilibria (theorem 3.8). The method
we use is to look at a certain functional of the urn process. This is then a sequence
of real valued random variables, and we identify certain points as nonattracting points
for the sequence. We prove a general lemma, also used in chapter five, stating that a
sequence of real random variables cannot converge to a nonattracting point.



3.1 Simple time dependence

We begin by considering a Pélya urn with the single change that the number of extra
balls added of the color drawn is a function of time. For simplicity we consider the
two-color case, but the generalization to more than two colors is automatic by grouping
together colors. Let F : ZT — (0, cc) be any function. Let {v;,vs,...} be the successive
proportion of red balls in an urn that begins with one red ball and one black ball and
evolves as follows: at discrete times n =1,2,... a ball is drawn and replaced in the urn
along with F(n) balls of the same color. Note that the proportions of red balls in the
urn form a martingale, so it may be possible for the proportions of red balls to converge
anywhere in [0, 1] (see the discussion at the beginning of section 2.2). The usual Pélya
urn scheme is the case where F' is a constant. We show that v, must converge for any
F' and determine those F' for which the limit must be 0 or 1. The reasoning uses only
elementary facts about bounded martingales. We give conditions implying that the law
of the random limit is non-atomic except at 0 and 1 and conjecture that this is always

true.

The following formal definition of the process is completely routine; it is included
because it will be useful to refer to the underlying measure space in the proof of
lemma 3.4, Let € be [0,1]%" with the product uniform measure. All probabilities will
be with respect to this space and all functions will be functions of w where w is a generic
point in €2, but the notation will supress the role of w when no ambiguity arises. Let z,
be the n** coordinate of w so that {z, : n = 0,1,2,...} is a set of independent uniformly
distributed variables on [0,1], and let F,, be the o-algebra generated by {z; : 1 < n}.
Let 51(0) = 52(0) = 1 and recursively define

Si(n +1) = 5i(n) + F(n)1(zn < 51(n)/(51(n) + S2(n)))

1
Sa(n + 1) = Si(n) + F(n)1(zn > Si(n)/(S51(n) + Sa2(n))) W

where 1 denotes the indicator function of a set. So Si(n) and Sz(n) represent the
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numbers of red and black balls in the urn after n draws. For convenience we let

n=1

bn = F(n)/(2 + gﬂ F(i))

denote the fractional additions. Let v, = Si(n)/(Si(n) + S2(n)) denote the proportion
of red balls at time n. We will prove the following results.

Theorem 3.1 For any function F as above, the random variables v, converge

almost surely to some random variable v.

Theorem 3.2 The limit v satisfies prob(v = 0) = prob(v = 1/2) = 1 if and only if

>, 6a2 = o0.

This theorem applies, for example, when F(n) = 2". Roughly, the hypothesis means
that F' grows faster than polynomially, but one needs to look more closely if the growth
is irregular since the function

TP n if n is a power of 2
27" otherwise

satisfies the hypothesis.
Theorem 3.3 The distribution of v has no atoms on (0,1).

Remark: It is possible for the distribution of v to have atoms at 0 and 1 of weight
less than 1/2 each; then the remainder of the time v is in (0,1) and this part of the
distribution is nonatomic. An example where this occurs is if F(n) = n. In this case
the probability that all draws are of the same coloris 2 x € x 8 x... > 0, but according

to theorem 3.2 the distribution is not entirely concentrated on {0,1}. I do not know of
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a converse to theorem 3.2 giving a necessary condition for the probability that v = 0

or 1 to be nonzero.

Proof of theorem 3.1: {v,:n =1,2,...} is a martingale. To see this, calculate

E(vas1|Fn) = va(Si(n) + F(3))/(S:(n) + F(n) + S2(n))
+ (1= 2a)51(n)/(51(n) + S3(n) + F(n))
$1(n) + vaF(n)/(51(n) + Sa(n) + F(n))

Un-

Now since {v,} is bounded, it converges almost surely to some v. O

Proof of theorem 3.2: We calculate the expected value of v?. By symmetry this is most
1/2 with equality if and only if prob(v = 0) = prob(v = 1) = 1/2. Necessary and
sufficient conditions for this will follow from the simple recurrence relation (2) on the
values of 1/2 — E(v,?) which is denoted W,.

Since v, converges almost surely to v and the variables are bounded by 1, we know
that E(v2) converges to E(v?). Let V, denote E(v,?). For a fixed F, v, takes on only
finitely many values and ¥V, can be recursively calculated as follows. If v, (w) =z =
- Si(n —1)/(S1(n — 1) + S3(n — 1)) then

vn(w) = Si(n—1)/(Si(n— 1)+ Sa(n — 1) + F(n))
I — I'snf-{l + 6,)
= z/(1+6,)

Il

with probability 1 — z, and

va(w) = (Si(n —1)+ F(n))/(Si(n —1) + Sa(n — 1) + F(n))
= z4((1—-=2)6)/(1+6,)
= (z+6)/(1+6,)
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with probability x. So
Vo = jmzdtgn
= [ =2)2 /(1 + 6.0 +2(z +6)/(1 + 6. dvy
Y(1+6.) [(1=2)2* +2(z + 8, dvns
1/(1 + 6,)? f 22 + 2602® + o83 dva_y
= (82/2+4 Saca(1+26,))/(1 +6,)°
To see how the value of V,, relates to the value of V,_; we let Wj denote 1/2— V.. Then
Wa = 1/2 = [(62/2) + Sn-a(1 + 26)])/(1 + 6,)?
= (1f2 48 8 2.8 f(1cbs )
= Waar(1+26,)/(1 + 6,)
= Waaa(1=&/(1+6,)%). (2)

Thus the value V, converges to 1/2 if and only if W,, converges to 0 which happens
whenever the product of the values (1 — 62/(1 + 6,)?) converges to 0. This happens
whenever 322, 62 /(1 + 8,)* diverges, which in turn happens exactly when 352, 62 di-
verges, and theorem 3.2 is proved. O

I

The proof of theorem 3.3 will be given at the end of the next section but in the
case that 3572, F'(n) = M < oo there is a combinatorial proof which is enough simpler
to be worth including. To prove theorem 3.3 in this case, pick any z € [0, 1] and set
L=Mz=z37%, F(n). Then v,(w) converges to z if and only if S;(n)(w) converges
to L. Suppose prob(Si(n) — L) > 0. Since £ is a product measure space there
must be some finite set of values £,,...£;_1, such that prob(S;(n) — L | Si(k+1) =
§1,--.,51(k4+5—1)) = ;1) is arbitrarily close to 1, say greater than (1+M)/(2+ M).
The following argument shows that this cannot happen.

Fix any value of 5,(7 — 1) and consider all probabilities hereafter to be conditional
upon this value of 5;(j —1). Now find a k such that 332, ., F(n) < F(5). If Si(n,w)
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converges to L then S)(kw) must be in the interval

[L — ¥3lk41 F(n), L]. This interval has length less than F(j). Consequently, if a
given sequence of draws from the j* through the k** causes S;(k) to fall in this in-
terval, then the same sequence with the color of the j** draw reversed will miss the
interval. Formally, if

Aw)={i:j<i<kand z, < 5(i - 1)/(Si(i — 1) + Sa(i — 1))}

and

S={BCj.k:B(kw)e[L- 3 F(n), I} snd Aw) = B}
n=k+1

then
BeSandjeB=B\{j}¢§ and
BeSand j¢ B=BU{j}¢8S.

We need to show prob(A(w) € §) < (1 + M)/(2 + M). So we consider a subset T
of the complement of S. Let T be the collection of B C {j,..., k} such that either

L]
(]) j¢B and if A(w)= B then S;(k,w) <L — }: F(n)
n=k+1
or (i) j€B and if A(w)= B then ai(w) > L.
Then T has the following properties:

(2) {B €T :j¢ B} is closed under subset
(i) {B € T : j € B} is closed under superset
(44i) Forany C C{j+1,...,k}eitherCeT or {j}UCET

The final step is to show that prob(A(w) € T) = 1/(2 + M) for any T satisfying
properties (i) - (iii). We use the following:
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Lemma 3.4 For any collection U of subsets of {j+1,...,k} that is closed under subset,
prob(A(w) e U |j ¢ A(w)) = prob(A(w)\{j} €U |j € A(w)). (Here all probabilities are
still conditional on a;_1.) In other words a set of outcomes for draws j +1,...,k that
is closed under changing red draws to black is at least as likely after a black ball on the

jt* draw as it would be after a red ball on the 3t draw.

Proof: Recall from the formal definition of the process the variables {z;} of equation (1).
For a given sequence of variables zj41,..., 2, decreasing the value of Sy(j) can only
change red draws to black. The lemma follows from the independence of the variables
Z;. O

Apply the lemma with & = {B € T : j ¢ B}. Letting a = prob(A(w) € U|; ¢
A(w)), we have
prob(A(w) € T |j € A(w))
2 1-prob(A(w)\{j} eU|j € A(w))

-
Then prob(A(w) € T) > aprob(j ¢ A(w)) + (1 — a)prob(jeA(w)) = min{prob(j €
A(w)), prob(j ¢ A(w))} which is at lgast 1/(2 4+ M) as required. a

Knowing that the distribution of v is nonatomic on (0, 1), it is logical to ask when
the distribution is absolutely continuous with respect to Lebesgue measure. Nothing is
known about this except when the distribution of v is known explicitly or when F(n)

goes to zero very fast.

3.2 Processes with non-attracting points

The object of this section is to state conditions (3) - (5) on a process X, X3,... that
prevent the partial sums S, = X; + +++ + X, from converging to a preassigned point,
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p. One application will take S, to be the variables v, from the previous section. By
showing the conditions to hold for all p € (0,1) we will conclude that the law of
limp—.co Sn is nonatomic on (0,1) and theorem 3.3 will be proved. Note that we cannot
here conclude that S, never converges to a point of (0,1); in fact it often does. Later,
in chapter five, we will apply the results of this section in cases where S, is known to
converge almost surely to one of a finite set of points. In this case, we will indeed be
able to rule out any point satisfying conditions (3) - (5) as possible points of convergence
of S,.

Consider a sequence of real random variables X3, X,,... and their partial sums,
S. = Sp + ¥, X; for some fixed S5. Let p be any real number and let N be a
neighborhood of p. Suppose that the following properties hold for sufficiently large n:

X < = (3)
(Sa — P)(E(Xas1|Fa) 20 (4)
% > Var( X4 |Fn) = i%" (5)

where cg, €1, €3, € are positive constants, the sequence F; C F; C ... is a filtration with
F. containing the o-algebra generated by {Si,...,Sx}, 7 is a constant greater than
1/2, and Var( X1 |F) = E(.X,;H?I.F“) — E(Xp4+1]F.)?. Condition (4) states that the
Snt+1 1s expected to lie farther from from p than S,, and on the same side. Hill, Lane
and Sudderth say p is a splitting point for {S,} when this holds.

Remark: These conditions may be taken to hold almost surely; that is, they may fail on
a set of measure zero in F,,. Indeed, condition (4) uses a regular conditional probability

that may only be well-defined up to sets of measure zero in F,,.

To see how this generalizes the 2-color urn model, suppose we have a two-color urn.
At time n we add a random number of balls of each color, where the joint distribution
of the two random numbers of balls added may dépend on the entire history of the
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process. If we let S, = S(n) be the fraction of balls of color 1 in the urn at time n, and
X, = Sp — Sn_1, then (3) - (5) are satisfied for a wide class of urn schemes including

the one in the previous section.

Theorem 3.5 Let {X;,S;:i > 1} satisfy (3) - (5) above. Then
prob(S, — p as n — c0) = 0.

Later we will sketch a proof of essentially the same theorem but with weaker hy-
potheses. The reader interested in reading only a sketch of this proof should read that
version beginning after lemma 5.18 on page 102.

Proof of theorem 3.5: If prob(S, — p) > 0 then there is some n and some event A € F,
such that prob(S, — p|.A) is arbitrarily close to 1. In fact, n can be taken to be as large
as desired and in particular, we can assume n is large enough so that conditions (3) -
(5) are satisfied. So it suffices to show that there is a constant @ > 0 determined by
co, €1, ¢2 and p so that prob(S, — p|F,) £ 1 — a for sufficiently large n. To do this, we
establish two claims.

Claim 1: & i v
aim prob(iggla pl>ﬁifl_1f2 (6)

= \/;—‘—; Q%" |- 0 (7)

: : £ e
Claim 2: prob(jof | - pﬁ.ﬁ | Fry A) > 2a (8)

A is the event |S, — p| = c3//n
and a = 1/2min(1/2, c3?/16¢,).

where

where

Putting these two claims together, we see that for any value of S, the probability is
at least a that some Spy; will be at least c3/+/n away from p and that no subsequent
Snk+t will ever return to the interval [p — e3/2y/n, p + c3/2\/n]. The theorem follows.
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Proof of claim 1: Let 7 = inf{k > n : |Sk — p| > ¢c3/v/n}. We will calculate
the variance of S stopped at r. On the one hand, this is limited by the fact that
| Sk — p| is never much more than e3//n for k < 7. On the other hand, condition (5)
forces the variance to keep up a certain minimum growth on the order of n~? until
the stopping time%is reached. When ¢z is small enough, these two facts together imply
that the stopping time is reached often enough for (15 to hold. To calculate how
E((S-apm — p)*|Fn) increases with M, we fix any M > n.

E((Sra@e+1) — P)|F2)
=E((Seam — )} | Fa) + E(Lesm(2Xp11(Su — p) + X)) F2)
=EB((Soarr — 22 | F) + E(E(LsmXars12(Sy — p)|Far)|Fa)
+ EEL>uXua’|Fu)lFn)

=E((Sram —p)* | Fa) + E(E(Lsa)E(Xaria(Su — p)|Fur)|Fn)

+ E(E(Ls>m)E(Xpi?|Fu)lFn) (9)
> B((Seau =P 17) + Ellowigr P (10)

since the middle term in (9) is non-negative by (4) and using the lower bound in (5),

€3

> B((Soan = 1 52) + oy probr = ol 7).
Pk B iadsinbeon
E((Srant — 2| Fr) 2 (Sn = )* + prob(r = 00| Fr)es Shhors 15
> ¢ prob(t = 0o | Fy) (% - ﬁ) ;

But |S.anm —p| < €3/ /1 + co/n?, so for n sufficiently large c3//n > co/n7, so 2¢c3/+/n >
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|S-an — p| and therefore

e B - 2 e prob(r = oo | F) | = =
- 2 E((Sram —p)° | F2) 2 ez prob(r =) (4n. 4M

and letting M — oo, prob(r = oo |F,) < 16¢3?/cz = 1/2, so prob(supys, |Sk — p| >
ca//n|Fn) =1 —prob(r = 00| F,) = 1 —16¢3%/c, = 1/2.

Proof of Claim 2: The idea this time is that the variance of the variables {X} : k > n}
is not enough to give a high probability of getting back to within ¢3/2\/n of p. The
inequality we use is a one-sided Tchebysheff inequality relying on the fact that the
expectation of 5, is not getting any closer to p, so if S, has a probability of 1 — e of
coming back within ¢3/2,/n of p, then € of the time it must get to a distance of order
e~! away from p, contributing to the variance on the order of ¢~2.

Assume without loss of generality that S, < p — c3//n since the case where S, >
P+ ¢3//n is identical. We are trying to show that prob(sup,s, Sk < p — c3/2y/n) =
2a = min(1/2,¢3?/16¢;). So let 7 = inf{k > n : Sy > p — e3/2,/n}. Define a sequence
of variables ¥41,Y042,... by Yi =0 for k > 7 and Y} = X} + p; for 7 > k > n, where
#r = —E(Xi|Sk-1) = 0 by (4). So the sequence {Z : k¥ > n} is a martingale, where
2y = E:§=“+1 Yj. By (5), {Zx} is L*-bounded. It suffices to show

prob ( i Y. > c:ﬂEﬁ) <1-2a (11)

k=nr+1

since

supSy > p—e3/2v/n = 5,2 p—c3/2v/n
.k;:n.

f
= 3 XiZcf2yn

k=n+1

= N ¥ s a0

k=n+1
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But

:3|‘-"=

ar(in):-:i‘ < (12)

_.l
k=n+1 k=n+t1 n?

“(£7)

prob(T < oco) ( 1‘/_) + prob(t = 00)E(Z%|T = )

Also,

v

> prob(t = 00)E(Z,|T = o0)? (13)
< ez prob(t < o0) :
= pronr =eo) (-Eﬁpmb{r = m))

c3® prob(r < o0)?
4n prob(T = o0)
where the penultimate term is calculated from the fact that

E(Z, |7 < o0) > ¢3/2y/n while E(Z.) must be zero. Combining inequalities (12)
and (13) gives

prob(T = o) €a”
prob(r < cc)? T 4¢
so either prob(t = o0) 2 1/2 or prob(t < o0) < (e3*/4¢1)(1/2)? = ¢3?/16¢) and in both

cases we are done by the definition of a. !

Theorem 3.5 is really a theorem about the behaviour of S, near the point p. The
next proposition is a version of the same theorem with slightly weaker hypotheses that
reflect the local nature of the result.

Proposition 3.6 With notation as in the statements of conditions (3) - (5), suppose
there ezists a neighborhood N of p and a constant N such that (§) - (5) hold whenever
5, €N end n > N. Then prob(S, — p asn — c0) = 0.

Proof: If prob(S, — p) > 0 then there is some n > N and some event .4 € F, so that
prob(Sy € [p—e,p+e forallk>n|A)>0. Let r=inf{k>n: S5, é[p—e€, p+€}.
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Construct a sequence of random variables, ¥;,Y3,... by letting Y3 = S; for k¥ < 7 and
letting ¥ evolve independently from X after time 7 in any way that makes the process
{Y; — Y;_1} satisfy (3) - (5) whether or not S, € N. Then ¥; — p with non-zero
probability which is a contradiction. m)

At this point, we could derive as a corollary a case of theorem 3.3, namely the case
where né, is bounded between two constants. This has as a subcase any F that is
approximately polynomial in n. Instead, we will derive theorem 3.3 in the general case
by essentially repeating the proof of theorem 3.5. The tradeoff will be that because
F(n) is fixed, we know the approximate sizes of X,? in advance. We are then free
to replace the c3/+/n in claims 1 and 2 above by appropriate other values and the
condition (5) becomes irrelevant. It should be noted that condition (5) is vital in the
absence of such advance information, since without it the sequence {S,} is just a [0, 1]-
valued martingale whose increments get small fast enough; it is easy to find one of

these that converges to some point in (0,1) with nonzero probability.

Proof of theorem 3.3: Define

Qy = i 5.‘2+

=n
According to theorem 3.2 there is no loss of generality in assuming a,, to be finite. Fix
p € (0,1). Also assume without loss of generality that p < 1/2 since the case p > 1/2
is identical but with red balls and black balls interchanged. We will prove versions of
claims 1 and 2 above. Since a, — 0 there is an N for which n > N implies o, < p/10.
Choose ¢ small enough so that ¢ < 1 and

9¢? < 81p?/800. (14)
Claim 1": prab(iup |Sk — p| > evfan | Fn) = min{1/2,9p/10} (15)
2n

Proof: Let 7 = inf{k > n : |Sx—p| > e\/an}. We need to show that prob(r < o) >
min{1/2,9p/10}.
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Case 1: & > 2¢/a,/(1 — p — ¢y/a,) for some i > n. Basically what happens in this
case is that there is a good enough chance of stopping on the i + 1* draw:

T > i and draw ¢ is red
= v; = p— c\/a, and draw ¢ is red

= Ui }P'i'c\i"ﬂf_n
= r=i+1.

Since the probability of a red draw is always at least p — ¢/a; > 9p/10 until 7 is
reached, this easily implies that prob(r < co) = 9p/10.

Case 2: No §; is that big. Then the increment on which 7 is reached cannot be bigger
than 2¢./a@,, and so
|vinr — p| < 3¢/, for all i > n. (16)

Pick any ¢ > n and use the fact that v; is a martingale to get
E((vgrmnr — 2 1Fn) = E(ine?|Fn) + E(Lesi(via — 0:)?1 ). (17)

But

geE A2 wi SRR
(Ul'--i-i 3t 1‘]2 s { L {Esf[]- + 51) ) with probabmty 1 — [:13}

(1 — v:)%(8:/(1 + &))? with probability v;
Now since 1+ §; < 2 by the assumption that o, < p/10 and since 7 > i = min{v;,1 —
v} = p — ¢/an = 9p/10, it follows that

(vigr — vi)* 2 81p?6;71,5/400.
So the right hand side of equation (17) is at least

E((vinr)?|Fn) + 818 prob(r = oo|F,,)/400
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and summing over i gives
M=1
E((v{n-l-ﬁﬂﬁf _P)ELIFn} = (S]-Pg E "512!’40"}) p‘!“ﬂb{f o ml}-ﬂ]*
i=n
But equation (16) implies that
o0
E((v(nsanar — p)’1Fn) < 9c’a, = 9¢? Z 67,

so letting M — oo gives
prob(r = o0) < 9¢*/(81p* /400) < 1/2

by the choice of ¢ in (14) above. So claim 1’ is proved. Now assume |v, — p| > ¢,/a,

with the same conditions on ¢,n and &, as in claim 1"

Claim 2": prob(inf |vx —p| > ev/n/2| F,) = 1 —min{1/2,c*/16} (19)

Proof: From (17) again, calculate

M-1 el
Var(vnem|Fa) = D0 E(Lrsi(vigr — v)?|Fa) < D 62
i=n i=n
according to the values for (viy1 — 1;)? given in (18). So {v.4:} is an L%-bounded
martingale with variance at most % 6> = a,. Then the one-sided Tschebysheff
inequality used in equation (13) and following shows that

prob(r < oo)?
ap = (“:21(4]*1:1 prob['r ey

s0 prob(t = c0) > min{1/2,¢?/16} and claim 2’ is proved.

Theorem 3.3 follows from claims 1’ and 2' in the same way that theorem 3.5 follows
from claims 1 and 2. O
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3.3 Non-linear draws and random additions of balls

The most general urn scheme we consider is the following d-color scheme. Let F(n) be
a random vector and let Fj(n) balls of color i be added at time n. By conditioning on
the past, we can think of this random vector as having a distribution which is itself
an F,-measurable function. In the examples below, this distribution will often only
depend on #{n), but in general the distribution of F(n) and other related quantities

may depend on the entire past.

The formal definition (1) be generalized in the obvious way; instead of 5;(n) and
Sy(n), we will have a vector S(n) = Si(n),...,Su(n), keeping track of the numbers
of balls of each color present at time n. Let #(n) = §(n)/ T, Si(n) keep track of
the proportions of each color present at time n, so #(n) is analagous to g,. Note
that #(n) must lie on the unit simplex ﬁdéf{t?‘ : Y v; = 1 and for each i,v; > 0}. Let
by = Y4_, Fi(n)/ T9_, Si(i) be the fractional addition vector, let F(n) be the unit
vector in the direction F(n), and let G(n) = ﬁ_‘_}:[ﬁ' — I)o(n) = #(n + 1) — 6(n). Note
that G(n) always lies in the subspace w e {7 : T¢_, vx = 0} since #(n + 1) and #(n)
are both in A. Write G(n) = E(C-?:(n} | F.). Typically the direction of G is a function
solely of #(n).

This scheme is general enough so its features are really that of a stochastic ap-
proximation scheme, although nothing is being approximated. It has most of the urn

schemes we have already discussed as special cases.

(1) When F(n) is f(n) times the standard basis vector e; with probability
vj(n) for 1 < j < d, this gives the model discussed in section 1.

(2) When d = 2 and F(n) = (1,0) with probability f(#(n)) and (0,1) with
probability 1 — f(#(n)), this gives the model in [HLS].
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(3) When f;(n) are independent, identically distributed positive integer ran-
dom variables and F(n) = f(n)e; with probability vij{n) for 1 < j < d, this

gives the urn scheme in [At].

Of course these generalizations may be combined in countless ways, and the methods
of the previous section will yield various theorems about which points cannot be the
limit of ¥(n) with positive probability. Instead of trying to state a theorem of maximal
generality, we will derive a reasonably broad result that is adequate for use in chapter
five. The exposition will be terse in places, referring the reader ahead to chapter five
for details. The reason is that the application of this material in chapter five is to a
non-linear urn process for which we know the urn function only approximately. Because
it is not completely straightforward, we cannot avoid repeating the calculations of this

section in detail, and therefore choose only to summarize them here.

In the two cases we consider, namely the ones in section 1 of this chapter and the
one in chapter five, we already have convergence theorems. In several other cases that
have been studied, convergence theorems have also already been obtained (see [NH]).
Instead we will try to generalize [HLS] and [Ar] by finding conditions on F near a
point p that imply prob(#(n) — §) = 0. The question of when #(n) converges for a
generalized urn process is too difficult to address here; it seems to depend a lot on the
details of the random vector fields F and G.

Impose the following restrictions on F via restrictions on G and G.

There is a 4 > 1/2 such that for all € > 0 there is an

£ 20
N such that prob(|G(n)| < 1/n"foralln > N)>1—e. 0

E{lﬁ(u]ﬁ | ) < ¢/n? for some constant . (21)

Condition (20) is a multidimensional version of condition (3) that has been weakened

by saying it only has to hold on sets of measure arbitrarily close to 1. Condition (21)
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is a version of one of the first inequality in condition (5). Note that these are satisfied
with ¥ = 1 when |I'-'" | =1 as in cases (2) and (3) above, or more generally when |F| is

bounded above and below by polynomials of the same degree as in case (1).

The other two conditions we impose on F are local conditions. Let P be any point
in the interior of A, so p; > 0 for all i, and let /' be any neighborhood. We require

that There is some constant ¢ for which, whenever #(n) € N,
prob(G(n) -8 > ¢|f]/n) > ¢ (22)

for all § € W. Again observe that this condition is satisfied in cases (1) - (3) above.
Basically, the condition states that &(n) is of order 1/n and is not restricted to any
narrow band inside W. It is the counterpart to the second inequality in condition (5).
To generalize the notion of an upcrossing in [HLS], suppose that there is a twice con-

tinuously differentiable function n with \775(5) nonzero such that either
vn(#(n)) - G(n) has the same sign and a greater magnitude than Ap(v{n))/n (23)

for some constant A > 0, or

n is linear and (7n((n)) - G(n))n(#(n)) > 0 (24)

whenever (n) € A. Note that (24) is satisfied in cases (1) and (3) for any non-
degenerate linear n vanishing at 5 because G = 0. In case (2), (v;,v;) can be taken
to be v; — p;. Then whenever the hypotheses of Hill, Lane and Sudderth’s theorem 2.4
are satisfied, condition (23) is satisfied with A being any positive lower bound for F'(p)
on a neighborhood of p. Conditions (23) and (24) are of course the counterparts to the
splitting condition (4).

Theorem 3.7 Let 5, N, F,G,G and 1 satisfy conditions (20) - (22) and either (23)
or (24). Then prob(#(n) — p) = 0.
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Proof: Letting S, = n(#(n)), we use theorem 3.5, only with slightly weaker conditions.
The modified hypotheses of the theorem are as follows:

For any € > 0 there is an n and a neighborhood A of 0 such that
prob(B|F,) >1—¢ (25)

where B = (5o Bx and By € F is the event that either (26) - (29) below are satisfied,
or S, ¢ N.

E(Xas1® +2Xn415: | Fa) = by /n? (26)
E(Xn+15a1i5,05¢/n | Fn) 2 0 (27)
X < 1/n7 (28)
E(Xn? | Fa) < ba/n? (29)
where
O RSEY
¥ 5 1/2
Fn = o(all events up to time 7).

The proof of this version of theorem 3.5 is given in chapter 5, section 5. [t is almost
identical to the proof of the first version of theorem 3.5 and at any rate, we will not
repeat it here. We need to show now that (26) - (29) are satisfied when S, = n(#(n)).
First note that by continuity, n is a bounded operator in a neighborhood of f, so (28)
follows from (20) and (29) follows from (21).

By a linear estimate we get

Sﬂ+1 = ’E(‘m:" I 1]}
= 5(#(n) + G(n))
= S+ vn(®(n)) - G(n) + O(IG(n) ).
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The last term drops out if 5 is linear. Now if (24) holds, taking the expected value and
subtracting S, gives a quantity of the same sign as 5, so (27) is satisfied. And if (23)
holds, we use (21) to get E(Spq1 | Fa) — Sn > ASa/n 4+ O(1/n?). This is the same sign

as S, whenever S, > ¢/n for some appropriate ¢, and (27) follows.

Finally, it follows from (22) and the fact that |57n| is bounded away from 0 near §
that E(X,.41%) is at least b/n? for some b > 0 on a neighborhood of p. Then picking
any by < b, the condition (26) holds when |S,| > ¢/n by (27) and when |S,| < ¢/n for
sufficiently large n because E(2X 115, | F) = AS.? + O(1/n?)S, = O(1/n®). (]

We conclude this section with a discussion of condition (23). As previously indi-
cated, we would like condition (23) to be satisfiable whenever the linear approximation
to G near § has at least one eigenvalue with positive real part, or in terms of the
continuous flow, whenever the autonomous system d(#(t))/dt = G(#(t)) has an unsta-
ble equilibrium at . We can obtain this result by placing an extra condition on the

eigenvalues of the linear approximation to G near p.

LTheurem 3.8 Suppose G(n) = f(n,#(n))G(#(n)) where f is o scalar function and G

is a vector function of #(n) alone. Pick any § with G(7) = 0 and let TT be the linear
approzimation to (:—'(35' + ©). Suppose the eigenvalues of T are distinct and linearly
independent over the rationals with none purely imaginary and at least one having
positive real part. Then prob(#(n) — p) = 0.

Proof: An argument is given in chapter five following proposition 5.23 that is valid
whenever the eigenvalue with posive real part is real. If not, then the eigenvector
corresponding to this eigenvalue has a conjugate corresponding to the conjugate eigen-
value, and together they span a two-dimensional space over C which contains a real
two-dimensional space. For this case, use the argument in chapter five, but replace
projection onto the direction of the eigenvector with magnitude of the projection onto
this two-dimensional real space. O
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