
Residues are about integrals over closed curves in the complex
plane. Let’s take as an example, the integral∮

A

1

1 + z2
dz .

Let f (z) denote the integrand,

that is, f (z) :=
1

1 + z2
. The

function f has singularities at
±i . That’s where the denomi-
nator is zero, hence the function
is undefined there.

We say that the singularities at ±i are poles. A pole is an isolated
singularity at a point a that goes away if you multiply by some
power of z − a. For example, if I multiply by z − i , the function
becomes (z − i)f (z) = 1/(z + i) which no longer has a pole at i .
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A theorem due to Cauchy (not the big one, namely Cauchy’s
integral formula) says that you can move the contours without
changing the integral. There are some necessary hypotheses to
make this work.

1. You have to deform the contour without crossing any
singularities. In the picture, contour A can be deformed to B but
not to C . It can’t enclose the singularity i if it didn’t already.

2. This whole thing only works if the thing you’re integrating is an
analytic function. More on that in a minute.
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This means that no matter what contour γ you integrate over,
there are only a few possible values for

∮
γ f (z) dz . At every

singularity y there is a fixed value for the integral that holds for
every contour that encloses y and only y . We call this value
2πi Res(f; y).

In the figure, the green inte-
gral has value 2πi Res(f; i) and
the purple one has the value
2πi Res(f;−i).

The integral over red contour will
be the sum of these. The integral
over the blue contour will be zero.
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Theorem 1 (Cauchy integral formula)

Suppose f is analytic, defined everywhere except for poles at
z1, . . . zn. Then ∮

γ
f(z) dz = (2πi)

n∑
k=1

nk Res(f; zk)

where nk is the winding number telling how many times γ winds
counterclockwise around zk.

Example:
Cauchy’s integral formula tells us that∮
A

1

1 + z2
dz = 2Res(f; i)−Res(f;−i) .
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Analytic functions

One way to think of an analytic function on a domain in the
complex plane is that it’s a function that looks like one of your
favorite real functions – a polynomial, an exponential, a trig
function, etc. – except that it has been extended to the complex
numbers.

Another definition of an analytic function is that it has a
convergent power series f(z) =

∑∞
n=0 anz

n. If you were wondering
how something like ex gets extended to the complex numbers,
that’s it: use the power series. A meromorphic function, means a
function that’s analytic except at some poles. It can have a more
general looking power series: near each pole zk, of order mk (poles
have orders),

f(z) =
∞∑

n=−mk

an(z− zk)n .
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What is this thing we call “Residue”?

One way to think of / define a residue is as a power series
coefficient: Res(f; zk) is the coefficient of (z− ak)−1 in the power
series expansion. For example, if f(z) = g(z)/(z− a) where g is
analytic everywhere (no poles), then Res(f; a) = g(a). To see this,
recall that g has a power series near a with no negative powers, so
f has a pole of order 1 and a power series in powers (z− a)m,
m ≥ −1. Near a, we have

g(z) = a0 + a1(z− a) + a2(z− a)2 + · · ·
f(z) = a0(z− a)−1 + a1 + a2(z− a)1 + · · ·

so Res(f; a) = a0 = g(a).

Example: take f(z) = 1/(1 + z2), a = i and g(z) = 1/(z + i). Then
Res(1/(1 + z2); i) = g(i) = 1/(2i). Cauchy’s integral formula gives∮

A
f(z)dz = 2πi Res(f; i) = (2πi)/(2i) = π .
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Another way to think of residues

This will show you why this definition gives you Cauchy’s integral
formula. Let’s say we are only interested in one contour: the unit
circle, γ, oriented clockwise. Also, we are only interested in
functions with a single pole at the origin of order 1. Parametrize
the unit circle by z := eiθ. Changing variables,∮

γ
f(z) dz =

∫ 2π

θ=0
f
(
eiθ
)
ieiθdθ .

On the unit circle, the functions {einθ : n ∈ Z} are a basis, that is,
for some coefficients {an},

f
(
eiθ
)

=
∞∑

n=−∞
ane

inθ

Remember how to extract an? Multiply by e−inθ and integrate.
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Therefore, integrating over θ ∈ [0, 2π],∫ 2π

θ=0
f
(
eiθ
)
ieiθdθ =

∞∑
n=−∞

ian

∫ 2π

θ=0
e(n+1)iθ

= 2πi a−1

because
∫ 2π
0 eimθ dθ is zero when m is a nonzero integer and 1

when m = 0.

In other words we have proved:∮
γ
f(z) dz = 2πi a−1 .

The integral of a function analytic except at the poles over a
closed contour can be given by evaluating the residue a−1 at each
pole zk, and summing nk(2πi)a−1(zk) where nk is the winding
number of γ around zk.
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Using residues to compute real integrals

Let’s compute L :=

∫ ∞
−∞

1

1 + z2
dz. Let BM be the blue contour, a

line segment [−M,M]. Let CM be the red contour, a semicircle
from M to iM to −M. Let DM = BM + CM be the purple closed
loop, drawn just inside its true position so you can see it distinct
from BM and CM.
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1. Observe that L = limM→∞ LM, where LM =
∫
Bm

f(z) dz .

2. Observe that
∫
CM

f(z)dz→ 0 because

|1/(1 + z2)| ≤ 1/(M2 − 1), and integrating over a contour of
length πM gives at most πM/(M2 − 1)→ 0.

3. Therefore L = limM→∞
∮
DM

f(z)dz = (2πi)Res(f, i) = π.
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