
FINITE TRIPOD VARIANTS OF I/OM

ON IHARA’S QUESTION/ODA–MATSUMOTO CONJECTURE

FLORIAN POP

Abstract. In this note we introduce and prove a wide generalization and sharpening of
Ihara’s question / Oda-Matsumoto conjecture, for short I/OM. That leads to a quite con-
crete topological/combinatorial description of absolute Galois groups, in particular of
GalQ = Aut(Q), as envisioned by Grothendieck in his Esquisse d’un Programme.

1. Introduction/Motivation

A consequence of the results of this paper is a positive answer to a question by Ihara
from the 1980’s, which in the 1990’s became a conjecture by Oda–Matsumoto, for short
classical I/OM. In essence, the classical I/OM is about giving combinatorial/topological
descriptions of the absolute Galois group of the rational numbers GalQ = Aut(Q). Before
giving the results in their full strength, let me briefly present the broader context in which the
classical I/OM evolved as one of the main problems in Grothendieck’s anabelian program,
which itself grew out of [G1], [G2] (see [GGA]). To fix notation and context, let Gout be
the category of profinite groups and outer homomorphisms. For geometrically integral Q-
varieties X, setting X := X ×Q Q, one has: First, viewing the algebraic fundamental group
π1(X) := πet

1 (X, ∗) of X as an object in Gout renders keeping track of base points irrelevant.
Further, X(C) endowed with the complex topology is a “nice” topological space, and π1(X)
is the profinite completion of the topological fundamental group πtop

1

(
X(C), ∗

)
; hence π1(X)

is in a precise sense an object of combinatorial/topological nature. Second, the canonical
exact sequence of étale fundamental groups 1→ π1(X)→ πet

1 (X)→ GalQ → 1 gives rise to
a canonical representation ρX : GalQ → Out

(
π1(X)

)
= AutGout(π1(X)), which is compatible

with the canonical projections π(X) → π(Y ) defined by morphisms X → Y of Q-varieties.
Hence if V is any category of geometrically integral Q-varieties, its algebraic fundamental group
functor πV : V → Gout, X 7→ π1(X) is well defined, and one gets a canonical representation:

ρV : GalQ → Aut(πV), σ 7→
(
ρX(σ)

)
X∈V

Thus the question of giving topological/combinatorial descriptions of GalQ would follow from
giving categories V of geometrically integral Q-varieties for which ρV is an isomorphism.
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Among other things, Grothendieck suggested to use subcategories V ⊂ T of the Teich-
müller modular tower T of all the moduli spaces Mg,n, and try to answer the two questions:
First, for which categories V is the representation ρV injective. Second, describe the image
im(ρV) ⊂ Aut(πV), and particular decide whether ρV is surjective.

There was and is an intensive and extensive effort to answer the questions above and related
ones, starting with work by Deligne [De], Ihara [I1], see also [I2], [I3], Drinfeld [Dr], and
subsequently by many others, e.g. [An], [F1], [F2], [H-Ma], [H-Sch], [H-Mz], [HLS], [I-M],
[LNS1], [LNS2], [L-Sch], [Ma], [M-T], [Na], [N-Sch], [Sch], to mention a few. In particular,
there is a canonical embedding of GalQ in the Grothendieck–Teichmüller group

GalQ ↪→ ĜT ⊂ Aut(F̂2), 1

as well as in its more sophisticated variants GalQ ↪→ ĜT•. On the other hand, it turns out

that all these more or less abstractly defined subgroups of Aut(F̂2) are actually of the form

ĜT• = Aut(πV•)

for properly chosen categories V• of geometrically integral Q-varieties; e.g. ĜT = ĜTV0 ,
where V0 := {M0,4,M0,5} is the full subcategory of T with objects M0,4, M0.5, cf. Harba-

ter–Schneps [H-Sch]. On the other hand, the other categories V• under discussion, are not
necessarily subcategories of T .

Concerning concrete general results, the nature of ρV in the above cases and in general is
only partially understood. First, concerning the injectivity of ρV , Drinfel’d remarked that
using Belyi’s Theorem [Be] it follows that ρV is injective, provided U0 := M0,4 = P1\{0, 1,∞}
lies in V , and Voevodsky showed that the same is true if X ∈ V, where X := E \{∗} is the
complement of a point in an elliptic curve E; Matsumoto [Ma] showed that the same holds if
X ∈ V for some affine hyperbolic curve X, and finally, Hoshi–Mochizuki [H–Mz] proved that
ρV is injective as soon as V contains any hyperbolic curve (complete or not). On the other
hand, the question about describing non-tautologically the image im(ρV), in particular the
question about the surjectivity of the representation ρV , was/is less understood. Ihara asked
in the 1980’s whether ρV is an isomorphism, provided V = VarQ; and Oda–Matsumoto

conjectured (based on some motivic evidence) in the 1990’s that Ihara’s question has a
positive answer. Let classical I/OM stand for Ihara’s question/Oda–Matsumoto conjecture:

Classical I/OM. Prove that if V = VarQ, then ρV : GalQ → Aut(πV) is an isomorphism.

The author gave a proof (end of 1990’s) of the above classical I/OM, and slightly later,
André [An] showed that the p-adic tempered I/OM holds. [This variant of the I/OM is
obtained by replacing Q by Qp and π1(X) by the tempered fundamental group πtemp

1 (X),
which carries more information than π1(X).] Author’s original proof of the classical I/OM
was never published, because shortly later, he started developing a completely new approach
to tackle I/OM types questions. That approach allows —among other things— to formulate
and prove (birational) pro-` abelian-by-central variants of I/OM, which are much stronger
than and imply the classical I/OM, cf. [P5].2 In a nutshell, the basic idea is as follows:

1 Here, F̂2 is the profinite free group on two generators.
2 Among other things, the present note renders the “officially” unpublished [P5] obsolete.
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Let k0 be an arbitrary field, k := k0. For a category V of geometrically integral k0-varieties,
let F be the category of the functions fields K := k(X), X ∈ V having as morphisms the
k-embeddings L := k(Y ) ↪→ k(X) =: K defined by the dominant V-morphisms X → Y. Let
C be a Serre class of groups, e.g., finite (abelian-by-central) [`-groups], unipotent/linear, etc.,
and π C1 (X) and Gal CK be the corresponding completions of π1(X), respectively GalK . Then
paralleling the discussion above, one can formulate the pro-C I/OM for V and the pro-C I/OM
for F , where the latter should be rather called the birational pro-C I/OM for V . Moreover,
if V contains a basis of open neighborhoods of the generic point ηX for every X ∈ V , e.g.,
V = Vark0 , then by taking limits one gets: Every automorphism Φ CV ∈ Aut(π CV ) gives rise
to an automorphism Φ CF ∈ Aut(Gal CF), that is, to automorphisms Φ CK ∈ Gal CK , K ∈ F,
compatible with all F -morphisms L ↪→ K. And an easy verification shows that the pro-C
I/OM for V follows from the birational pro-C I/OM for V . In particular, for C the class of all
the finite abelian-by-central `-groups, ` 6= char(k0), one gets the (birational) pro-` abelian-by-
central I/OM for V , as introduced [P5] and proved there for “sufficiently rich” categories V
by using techniques developed to tackle the so called Bogomolov’s Program; see [P3], [P4] for
details about the latter. This also suggests that in the case of other classes C, like the ones
mentioned above, the corresponding pro-C I/OM type results might lead to Galois group like
objects of interest in arithmetic/algebraic geometry. See Remark 2.10 for such an instance.

For the rest of the paper, we introduce notations as follows:

Notations 1.1. Let ` be a fixed prime number, and k0 an arbitrary base field, char(k0) 6= `.
For geometrically integral k0-varieties X, let π1(X) � Πc

X � ΠX be the pro-` abelian-by-
central, respectively pro-` abelian (quotients of the) algebraic fundamental group of X. We
notice the following:

1) First, the canonical projections π1(X)� Πc
X � ΠX give rise canonically to projections

AutGout

(
π1(X)

)
→AutGout(Πc

X)→Aut(ΠX), which usually are not injective or surjective.

2) One has ΠX = H1
et(X,Z`)∨, and Autc(ΠX) := im

(
AutGout(Πc

X) → Aut(ΠX)
)
/Z×` con-

sists of the automorphisms compatible with ∪ : H1
et(X,Z`)× H1

et(X,Z`)→ H2
et(X,Z`).

Finally, for categories V of geometrically integral k0-varieties, consider the corresponding
quotients of πV and the resulting representation of Galk0 below

πV � Πc
V � ΠV , ρc

V : Galk0 → Aut(πV)→ Autc(ΠV).

Notice that the classical I/OM is a rather theoretical question of foundational nature.
On the other hand, by the discussion above, the (birational) pro-` abelian-by-central I/OM
for V is quite concrete and relates in down-to-earth terms to the étale `-adic cohomology of
the category V . Further we notice that, strictly speaking, the “sufficiently rich” hypothesis
under which the (birational) pro-` abelian-by-central I/OM for V was proved in [P5] requires:

a) Every Y ∈ V is dominated by some X ∈ V satisfying: dim(X) > 1 and V contains some
basis BX of Zariski open neighborhoods Ui of the generic point ηX ∈ X.

b) For X and Ui ∈ BX as above, V contains (virtually) all dominant morphisms Ui → U0,
where U0 = P1\{0, 1,∞} is the tripod.

Especially condition b) is quite restrictive and moves away from and beyond the Teichmüller
tower type situation. This being said, the aim of this note is to

prove similar I/OM type results but under much weaker hypotheses,
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by weakening hypothesis b) to the extent that V contains the morphisms Ui → U0 defined by
only (finitely many) rational maps ϕt : X 99K U0, given in advance, necessary to rigidify V .
This gives much more concrete descriptions of Galk0 for k0 global and/or local fields, that
might be used in studying representations of Galk0 and the (birational) Tate conjectures.

Example. The birational Grothendieck–Teichmüller groups ĜTbir and ĜTbir
c

Recall that V0 := {M0,4,M0,5}, and let ϕi : M0,5 →M0,4 be the morphisms of V0 defined by
“forgetting the ith marked point” for 1 6 i 6 5. Further, one has M0,4 = P1\{0, 1,∞} = U0,
and M0,5 = U0×U0\∆U0 with ∆U0 the image of the diagonal morphism U0 ↪→ U0×U0. Hence

M0,4 = Spec Q[t0,
1
t0
, 1

1−t0 ], M0,5 = SpecQ[t1, t2,
1
t1
, 1
t2
, 1

1−t1 ,
1

1−t2 ,
1

t1−t2 ],

and the projections ϕi : M0,5 →M0,4 are defined by the field embeddings Q(t0) ↪→ Q(t1, t2),
t0 7→ t ∈ Θ0, where Θ0 := {t1, t2, t1− t2, t′, t′′} with t′, t′′ ∈ Q(t1, t2) explicitly computable.

We set Θ := {t1, t2, t2−t1}, and for an arbitrary but otherwise fixed basis B = {Ui | i ∈ I}
(w.r.t. inclusion) for the complements of curves Ci = V (fi) ⊂M0,5, consider the category:

V0,bir := V0,Θ,B

with objects B ∪ {U0}, and having as morphisms, first, the canonical inclusions Uj ↪→ Ui for
Ci ⊂ Cj and idU0 , and second, the projections ϕt : Ui → U0 defined by Q(t0) ↪→ Q(t1, t2),
t0 7→ t ∈ Θ . Then in the above notation, one has the resulting canonical representations

(∗) ρV0,bir
: GalQ → Aut(πV0,bir

) =: ĜTbir , ρc
V0,bir

: GalQ → Autc(ΠV0,bir
) =: ĜTbir

c .

An easy verification shows that the category V0,bir satisfies Hypothesis (H), from Defini-
tion/Remark 2.2 below. Hence in this concrete situation, by Theorem 2.6, 1) and Theo-
rem 2.7, 1) below, one gets the following far reaching generalization of the results from [P5]:

Theorem. The canonical representations ρV0,bir
and ρc

V0,bir
from (∗) above are isomorphisms.

Acknowledgemnets: I would like to thank Ching-Li Chai, Franz Oort, Jakob Stix, Alexander
Schmidt and Tamás Szamuely for technical discussions and help, Pierre Lochak for insisting that
these facts should be thoroughly investigated, and many others who showed interest in this work:
Yves André, Pierre Deligne, R. Hain, Y. Ihara, Minhyong Kim, M. Matsumoto, N. Nakamura,
M. Saidi, A. Tamagawa for discussions on several occasions. Special thanks are due to the Univer-
sity of Heidelberg, University of Bonn, and there MPI Bonn, for the excellent working conditions
during my visits there as visiting scientist. Last but not least, many thanks to the referee, for the
careful reading of the manuscript and suggestions to improve the presentation.

2. Presentation of the results

As already mentioned, the results of this note refine and generalize the ones from [P5].
Essential technical steps and tools for the proofs developed here are new and go beyond what
was done in loc.cit. The results presented here hold and will be proved over arbitrary perfect
base fields k0. In particular, the classical I/OM over Q is a consequence of the tame I/OM, as
given below in Theorem 2.7. We begin by introducing/recalling notation and terminology.

Recall that Gout is the category of profinite groups and outer (continuous) group homo-
morphisms, i.e., for given G,H ∈ Gout, an element of HomGout(G,H) is of the form InnH ◦ f
with f : G→ H a continuous and InnH the inner automorphisms of H.
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We set k := k0, and given a geometrically integral k0-variey X and its base change
X := X×k0 k, we view the algebraic fundamental group π1(X) := πet

1 (X, ∗) of X as an object
in Gout. Hence the ambiguity resulting from base points vanishes, and by mere definitions
one has Out

(
π1(X)

)
= AutGout(π1(X)). Further, via the canonical exact sequence

1→ π1(X)→ πet
1 (X)→ Galk0 → 1

one gets a representation ρX : Galk0 → Out
(
π1(X)

)
= AutGout(π1(X)), and by the func-

toriality of the étale fundamental group, the collection of all the representations (ρX)X , is
compatible with the base changes of k0-morphisms f : X → Y of geometrically integral
k0-varieties. In particular, for every category V of geometrically integral varieties over k0,
its algebraic fundamental group functor πV :V → Gout gives rise to a representation

ρV : Galk0 → Aut(πV),

where Aut(πV) is the automorphism group of πV . In down to earth terms, the elements
Φ ∈ Aut(πV) are the families Φ = (ΦX)X∈V , ΦX ∈ Out

(
π1(X)

)
= AutGout(π1(X)), which

are compatible with π1(f) : π1(X)→ π1(Y ) for all V-morphisms f : X → Y .

Next we recall the pro-` abelian-by-central I/OM from [P5] in detail. Let π1 → Πc → Π
be the pro-` abelian-by-central and the pro-` abelian quotients of π1 as introduced in Nota-
tions 1.1. Then by mere definitions, Πc

X → ΠX are the maximal pro-` quotients of π1(X) with
ΠX abelian, and ker(Πc

X → ΠX) in the center of Πc
X . Since the kernels in π1(X)→ Πc

X → ΠX

are characteristic subgroups, there are canonical projections:

AutGout(π1(X))→ AutGout(Πc
X)→ Aut(ΠX).

Hence for every category V of geometrically integral k0-varieties, the canonical morphisms
of functors πV → Πc

V → ΠV give rise to homomorphisms Aut(πV) → Aut(Πc
V) → Aut(ΠV).

Further, Z×` acts by multiplication on ΠX , and by general group theoretical non-sense, that
action lifts to a Z×` -action on Πc

X . Hence we get naturally a representation:

ρc
V : Galk0 → Autc(ΠV) := im

(
Aut(Πc

V)→ Aut(ΠV)
)
/Z×` .

Conjecture (pro-` abelian-by-central I/OM over k0). Let V = Vark0 be the category
of geometrically integral k0-varieties. Then ρc

V : Galk0 → Autc(ΠV) is an isomorphism.

We will prove more precise and much stronger assertions than the above pro-` abelian-by-
central I/OM over k0. In order to present the results, we need some preparation as follows:

First, concerning general terminology, let pX : X → S, pY : Y → S be given S-schemes.
When speaking about a morphism f : X → Y , we mean a pair (f, fS), where fS : S → S
is a scheme isomorphism such that fS ◦ pX = pY ◦ f . In particular, if fS = idS, then f
is actually an S-morphism. We denote by HomS(X, Y ) ⊆ Hom(X, Y ) the corresponding
spaces of S-morphisms, respectively morphisms from X to Y . Second, if char(S) = p > 0,
we tacitly assume that the schemes are perfect, i.e., the absolute Frobenius is an isomorphism
of schemes, and identify two morphisms which differ by a Frobenius twist. To indicate this,
we will use the notation Homi(X, Y ), and to reduce the amount of explanation, we will use
this notation in the case char(S) = 0 as well, where actually Homi(X, Y ) = Hom(X, Y ).

Let k0 be a fixed perfect field with ` 6= char(k0). By the convention above, when speaking
about a k0-variety X, we will actually mean its perfect closure X i, and in particular, the
function field k0(X) will be replaced by k0(X)i = k0(X i). Finally, up to Frobenius twists, a
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morphism between k0-varieties X, Y is a morphism of schemes f : X → Y which induces a
field isomorphism fk0 : k0 → k0 on k0. Finally, up to Frobenius twists, the dominant rational
maps ϕ : X 99K Y are in bijection with the field embeddings k0(Y )i ↪→ k0(X)i which map
k0 onto itself. In particular, up to Frobenius twists, the automorphisms φ : k0(X)i → k0(X)i

with φ(k0) = k0 are in canonical bijection with the birational maps ϕ : X 99K X, say φ↔ ϕ.

We also mention that in the case k0 is replaced by its algebraic closure k, all the above
facts hold, but something new specific to the situation happens. Namely, since k ⊂ k(X)i

is the unique maximal algebraically closed subfield, one has: Every field isomorphism φ of
k(X) maps k isomorphically onto itself, and therefore originates from a unique birational
map ϕ : X 99K X up to Frobenius twists. But since φ does not necessarily map k0 onto/into
itself, ϕ is not necessarily induced by base change from a birational map X 99K X.

Recall that U0 := Spec k0[t0, 1/t0, 1/(1− t0)] = P1
k0
\{0, 1,∞} is the k0-tripod (terminology

by Hoshi–Mochizuki) with canonical parameter t0 on P1, and that Auti(U0) = Auti(k0)×S3,
and Auti

k0
(U0) = S3. Actually, setting Ut0 := {t0, 1−t0, 1/t0, 1/(1−t0), t0/(t0−1), (t0−1)/t0},

the representatives φ of elements in Auti
k0

(U0) are defined by t0 7→ tp
e

φ for some e ∈ Z, tφ ∈ Ut0 .

Up to Frobenius twists, the rational dominant maps ϕt : X 99K U0 are in bijection with
the field embeddings φt : k0(t0) ↪→ k0(X), t0 7→ t ∈ k0(X) and φt(k0) = k0, and ϕt is defined
on all sufficiently small open subsets U ⊂ X.

Definition/Remark 2.1. In the above notations, for every open subset U ⊆ X there exists
a unique maximal open subset Umax ⊆ X such that U ⊆ Umax and the canonical projection
ΠU → ΠUmax is an isomorphism, or equivalently, ker(GalK → ΠU) = ker(GalK → ΠUmax

);
in particular, Umax is uniquely determined by ker(ΠK → ΠU). We say that U is maximal, if
Umax = U , and notice that U ⊂ X is maximal if and only if U ⊂ X is maximal. For a set
of Zariski open subsets B of X, we denote Bmax := {Umax |U ∈ B}, and notice that the base
change Bmax of Bmax under k0 ↪→ k is precisely {Vmax |V ∈ B}. Further, if B is a basis of
open neighborhoods of the generic point ηX , then so is Bmax, thus so is Bmax for ηX . Finally,
let ϕ : X 99K X be a birational map. Then ϕ is defined on Umax for all sufficiently small
open subsets U ⊂ X, and if ϕ is defined on some Umax, then ϕ(Umax) = ϕ(U)max.

Definition/Remark 2.2. In the above notations, let Θ ⊂ k0(X) be a subset of non-constant
functions, and ϕt : X 99K U0, t0 7→ t ∈ Θ , be the corresponding dominant rational k0-maps.

1) For a basis of neighborhoods B of the generic point ηX ∈ X, consider the small category

VX := VX,Θ,B
with objects B ∪{U0}, and morphisms as follows: First, idU0 and the canonical inclusions
Uj ↪→ Ui, and second, the restrictions ϕt,i := ϕt|Ui , t ∈ Θ , provided ϕt is defined on Ui.

2) Let ϕ : X
i
99K X

i
be a birational map. We say that ϕ is VX-compatible, if ϕ satisfies:

i) There exists ϕ0 ∈ Auti(U0) such that ϕ0 ◦ ϕt = ϕt ◦ ϕ, t ∈ Θ , as rational maps.

ii) If U ∈ B and ϕ is defined on Umax, then ϕ(Umax) = Umax.

The set of all the VX -compatible birational maps is a subgroup Auti
VX (K) 6 Auti(K),

and the image of the canonical embedding Galk0 → Aut(K i) lies actually in Auti
VX (K).

3) We say that VX is rigid, if it satisfies the following equivalent conditions:

i) The restriction of every φ ∈ Auti
VX (K) to k0(X)i is a power of Frobenius.

6



ii) The canonical embedding Galk0→Auti
VX (K) is surjective, thus Auti

VX (K)= Galk0 .

Hypothesis (H): The following are satisfied: dim(X) > 1, k(X) = k(Θ), VX is rigid.

Remark 2.3. The following hold (the proofs being straightforward verifications):

1) The fact that VX satisfies Hypothesis (H) above is somehow the generic case. Indeed:

a) VX is rigid, provided K i|k0 is geometrically rigid, i.e., Autk(K
i) = 1 = Auti(K)|k0 .

In general, if ϕ : X 99KX is not a Frobenius twist, there are arbitrarily small open
subsets U ⊂ X with ϕ(Umax) 6=Umax. Hence if B is chosen randomly, then VX is rigid.

b) K = k(Θ), provided Θ contains a basis of a linear space |L| for X which defines the
birational class of X, i.e, the canonical rational map X 99K P(|L|) is a birational map.

c) Finally, if Θ is a linear space such that the canonical rational map X 99K P(|Θ |) is a
birational map, then K = k(Θ) and VX is rigid for all B.

2) If VX is rigid, then Autc(ΠVX ) consists of all the systems of automorphisms
(
(Φi)i,Φ0

)
with Φi ∈ Autc(ΠUi

) and Φ0 ∈ Autc(ΠU0
) such that for all Uj ↪→ Ui and ϕt,i : Ui → U0,

t ∈ Θ , the diagrams below are commutative:

(∗)
ΠUj

Φj−→ ΠUj
ΠUi

Φi−→ ΠUi

↓ can ↓ can ↓ Π(ϕt,i) ↓ Π(ϕt,i)

ΠUi

Φi−→ ΠUi
ΠU0

Φ0−→ ΠU0

Definition/Remark 2.4. In the above context, let
(
(Φi)i,Φ0

)
∈ Autc(ΠVX ) be given.

1) Since Πc
K → ΠK is the projective limit of the projective system (Πc

Ui
→ ΠUi

)
i∈I

, it follows

from (∗) above that (Φi : ΠUi
→ ΠUi

)
i

defines a unique Φ ∈ Autc(ΠK) satisfying:

i) Let πt : ΠK → ΠU0
be the canonical projections defined by ıt : k0(t0) ↪→ k0(X),

t0 7→ t ∈ Θ . Then πt ◦ Φ = Φ0 ◦ πt, and in particular, Φ
(
ker(πt)

)
= ker(πt).

ii) Let pUi : ΠK → ΠUi
be the canonical projection. Then pUi ◦ Φ = Φi ◦ pUi , and in

particular, Φ
(
ker(pUi)

)
= ker(pUi).

2) Given an automorphism Φ ∈ Autc(ΠK), we say that Φ is VX-compatible, if it satisfies
conditions i), ii) above, and let Autc

VX (ΠK) be the set of all such automorphisms of ΠK .
An easy verification shows that one has canonical group embeddings:

Autc(ΠVX )→ Autc
VX (ΠK) 6 Autc(ΠK) .

3) Recalling the group of VX-compatible automorphisms Auti
VX (K) as introduced in Def-

inition/Remark 2.2, 2), one has that the canonical map Auti(K) → Autc(ΠK) arising
from Galois Theory is injective, and gives rise by restriction to a canonical embedding :

Auti
VX (K) ↪→ Autc

VX (ΠK) .

The stronger/more precise form of the pro-` abelian-by-central I/OM for VX is as follows:

Conjecture [(Birational) pro-` abelian-by-central I/OM for VX].

If VX satisfies Hypothesis (H), then Galk0 → Autc(ΠVX )→ Autc
VX (ΠK) are isomorphisms.

Definition 2.5. Let V be a category of geometrically integral k0-varieties.

1) For X, Y ∈ V , we say that X dominates Y , denoted Y ≺ X, if there exists a dominant
morphism X → Y which is a V-morphism.
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2) We say that V is connected, if for every X, Y in V there exist X0, . . . , X2m in V such
that X0 = X, X2m = Y, and for 0 ≤ i < m one has X2i, X2i+2 ≺ X2i+1.

3) We say that V satisfies Hypothesis (H), if for every X ∈ V there exists some X̃ ∈ V
such that V contains a subcategory VX̃ satisfying Hypothesis (H), and there is some
U ∈ VX̃ with X ≺ U and ΠU → ΠX surjective.

Theorem 2.6. Let k0 be a perfect field. In the above notations the following hold:

1) Suppose that the category VX satisfies Hypothesis (H). Then the resulting canonical
representations Galk0 → Autc(ΠVX )→ Autc

VX (ΠK) are isomorphisms.

2) Let V be a connected category satisfying Hypothesis (H). Then the canonical represen-
tation ρc

V : Galk0 → Autc(ΠV) is an isomorphism.

An application of Theorem 2.6 is the following strengthening of the classical I/OM:

In the general context above, replace π1,Gal by their valuation tame quotients π t
1,Gal

t
.

Then for every category of geometrically integral k0-varieties V one gets a representation

ρt

V : Galk0 → Aut(π t

V).

Further, in the context of VX above, every Φt ∈ Aut(π t
VX ), say given by Φ0, (Φ

t
i)i, defines

an automorphism Φt ∈ Out(Gal
t

K), which is VX-compatible, i.e., maps ker
(
Gal

t

K → π t
1(Ui)

)
onto itself, thus induces isomorphisms Φt

i : π t
1(Ui) → π t

1(Ui), Ui ∈ VX , and pt
t ◦ Φt = Φ0 ◦ pt

t

for pt
t : Gal

t

K → ΠU0
, t ∈ Θ . Hence if AutVX (Gal

t

K) 6 Out(Gal
t

K) denotes the subgroup of
VX-compatible automorphisms, then one has a canonical embedding

Aut(π t

VX ) ↪→ AutVX (Gal
t

K).

Theorem 2.7. Let k0 be a perfect field. In the above notations the following hold:

1) Suppose that the category VX satisfies Hypothesis (H). Then the canonical representa-
tions Galk0 → Aut(π t

VX )→ AutVX (Gal
t

K) are isomorphisms.

2) Let V be a connected category satisfying Hypothesis (H). Then the canonical represen-
tation ρt

V : Galk0 → Aut(π t
V) is an isomorphism.

The essential technical tool in the proof of the above results is Theorem 2.9 below, which is
related to Bogomolov’s Program as initiated in [Bo], see rather [P3], Introduction.

Definition/Remark 2.8. In the above notations, let Θ ⊂ K\k be a non-empty set, en-
dowed with a bijection θ : Θ → Θ , t 7→ u, and for t ∈ Θ , recall ϕt : X 99K U0 and the
corresponding πt : ΠK → ΠU0

. We say that ϕ : X 99K X, respectively Φ ∈ Autc(ΠK), are
weakly Θ-compatible, if for every t 7→ u, there is ϕ0 ∈ Aut(U0), respectively Φ0 ∈ Aut(ΠU0

),
depending on t, u, such that ϕt ◦ ϕ0 = ϕu ◦ ϕ, respectively Φ0 ◦ πt = πu ◦ Φ.

Notice that ϕ and/or Φ being “weakly Θ-compatible” is in general much weaker than con-
ditions i) from Definition/Remark 2.2, 2), respectively 2.4, 1) above. Further, the correspond-
ing subsets AutΘ(K i) ⊂ Aut(K i), Autc

Θ(ΠK) ⊂ Aut(ΠK) are actually subgroups, and the
canonical embedding Aut(K i)→ Autc(ΠK) defines an embedding AutΘ(K i)→ Autc

Θ(ΠK).

Theorem 2.9. Let K|k be a function field with td(K|k) > 1, and Θ ⊂ K satisfy K = k(Θ).
Then the canonical embedding AutΘ(K i)→ Autc

Θ(ΠK) is an isomorphism. Equivalently, for
every Φ ∈ Autc

Θ(ΠK) there exists φ ∈ Aut(K i), unique up to Frobenius twists and satisfying:
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i) φ defines Φ, i.e., letting φ′ be the prolongation of φ to the maximal pro-` abelian exten-
sion K ′|K, there exists ε ∈ Z×` such that ε · Φ(g) = φ′−1g φ′ for all g ∈ ΠK.

ii) For t 7→ u under θ : Θ → Θ, there exists tφ ∈ {t, 1− t, 1/t, 1/(1− t), t/(t−1), (t−1)/t}
and a power pe, e ∈ Z, of the characteristic exponent p of k, such that φ(u) = tp

e

φ .

It turns out that Theorem 2.6 follows relatively easily from Theorem 2.9, whereas The-
orem 2.7 follows from Theorem 2.6 and some extra (partially quite technical) work. The
techniques for the proof of Theorem 2.9 are the ones developed to tackle Bogomolov’s Pro-
gram, supplemented by some new ideas. Namely using Πc

K endowed with πt : ΠK → ΠU0
,

t ∈ Θ , one has the following: First, Proposition 3.10 gives a recipe to recover the divisorial
subgroups of ΠK , and based on that, Proposition 3.11 gives a group theoretical recipe to re-
cover the total decomposition graph GDtot

K
of K|k, as introduced/defined in [P3], see section 3.

Second, using the Construction 4.6, one gives in Proposition 4.7 a recipe to recover the geo-
metric rational quotients of GDtot

K
. Moreover, the group theoretical recipes to recover these

objects are preserved under all the automorphisms Φ ∈ Autc
Θ(ΠK) and/or Φ ∈ AutΘ(Gal

t

K),
see Propositions 4.7 and Lemma 7.6 below. Thus by the main result of [P3], Introduction,
it follows that every Φ ∈ Autc

Θ(ΠK) originates from geometry, i.e., there exists ε ∈ Z×` such
that ε · Φ is defined by some automorphism φ : K i|k → K i|k, etc.

Remark 2.10. In very recent work, Topaz [To3] gives yet another refinement of the (bira-
tional) pro-` abelian-by-central I/OM from [P5], in the spirit of the comments in the middle
of the Introduction/Motivation above. He introduces, namely, and proves mod-` abelian-by-
central variants of I/OM as follows: First, consider the mod-` abelian-by-central and mod-`
abelian, quotients π1 → πc1 → πa1 of π1. Second, for Ua ⊆ U0 open, consider categories
Ua similar to the categories VX above, but satisfying extra conditions, e.g., Θ = k0(X)\k0

consists of all the non-constant functions (as done in [P5] as well), and the dimension re-
striction dim(X) > 4. Then Autc(πaUa) = Galk0 , thus giving a purely combinatorial de-
scription of Galk0 . Nevertheless, for the time being, it is unclear whether any of the mod-`
abelian-by-central variants of I/OM from [To3] holds for the “coarser” categories VX and/or
V which satisfy Hypothesis (H) as introduced above, e.g., Θ finite, and/or 1< dim(X)<5.

3. Recovering the total decomposition graph

A) Recalling basics about (quasi) divisorial subgroups

We begin by recalling a few basic definitions/notations from valuation theory, including
Hilbert decomposition/ramification theory in pro-` abelian field extensions, ` 6= char.

First, for an arbitrary field Ω containing µ`∞ , and a valuation v of Ω, let Tv ⊂ Zv be the
inertia/decomposition groups of v in ΠΩ, and ΩZ ⊂ ΩT be the corresponding fixed fields
in the maximal pro-` abelian extension Ω′|Ω. (Note that because ΠΩ is abelian, Tv ⊂ Zv

depend on v only, and not on the prolongation of v to Ω′ used to define them.) Further,
let U1

v := 1 + mv ⊂ O×v =: Uv be the principal v-units, respectively the v-units in Ω×. Then
by [P1], Fact 2.1, see also Topaz [To1], [To2], one has that ΩZ ⊆ ΩZ1

:= Ω[ `
∞√
U1
v ], and

ΩT ⊆ ΩT1
:= Ω[ `

∞√
Uv ]. We denote T 1

v := Gal
(
Ω′ |ΩT1) ⊆ Tv, Z

1
v := Gal

(
Ω′ |ΩZ1) ⊆ Zv

and call T 1
v ⊆ Z1

v the (minimized) inertia/decomposition groups of v. Since vΩ = Ω×/Uv and
Ωv× = Uv/U

1
v , by Kummer theory and Pontrjagin duality, setting δ := dim(vΩ/`), one has:

(†) T 1
v = Homcont

(
vΩ,Z`(1)

) ∼= Zδ` , Π1
Ωv := Z1

v/T
1
v = Homcont

(
Ωv×,Z`(1)

)
.
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We notice the following: First, if char(Ωv) 6= `, then by [P1], Fact 2.1, one has that Z1
v = Zv

and Π1
Ωv = ΠΩv. Second, if char(Ωv) = `, one has: Since ` 6= char(Ω), one must have

char(Ω) = 0. Further, T 1
v ⊆ Z1

v ⊆ Tv, thus Π1
Ωv ⊆ Tv/T

1
v has trivial image in ΠΩv = Zv/Tv,

and the residue field of OZ1

v contains `∞
√

Ωv.

Second, let Ω|κ be a function field, say Ω = κ(Z) is the function field of some (geometri-
cally) integral κ-variety Z. A defectless valuation, or a valuation without defect, of Ω|κ is any
valuation v of Ω which satisfies the Abhyankar equality

td(Ω|κ) = td(Ωv|κv) + rr(vΩ/vκ),

where we denote rr(A) := dimQA ⊗ Q the rational rank of any abelian group A. Suppose
that κ = κ. Then given a defectless valuation v of Ω|κ, the following hold, see e.g., [Kh]:

a) vΩ/vκ is a finitely generated free abelian group, and Ωv|κv is a function field.

b) The restriction v1 := v|Ω1 of v to any function subfield Ω1|κ ↪→ Ω|κ is defectless.

Coming back to the context from Introduction, recall that a prime divisor of K|k is a discrete
valuation v of K which is trivial on k and has a function field Kv as residue field satisfying
td(Kv|k) = td(K|k) − 1. We call Tv ⊂ Zv a divisorial subgroup of ΠK . It turns out that
knowing the divisorial subgroups Tv ⊂ Zv of ΠK is one of the key technical ingredients in
reconstructing the function field K|k from its pro-` abelian-by-central Galois group Πc

K .

Unfortunately, at the moment there is no group theoretical recipe to recover the divisorial
groups Tv ⊂ Zv from the group theoretical information encoded in Πc

K in the case of an
arbitrary algebraically closed base field k. The best one can do so far in general is to recover
the larger class of all the (minimized) quasi divisorial subgroups T 1

v ⊂ Z1
v of ΠK from the group

theoretical information encoded in Πc
K . The precise definitions and result are as follows:

First, a valuation v of K|k, which is not necessarily trivial on k, is called a quasi prime divisor
of K|k provided it satisfies the following:

i) vK 6= vk and td(Kv|kv) = td(K|k)− 1.

ii) No proper coarsening of v satisfies these properties.

Condition i) implies that v is defectless on K|k, hence vK/vk ∼= Z, and Kv|kv is a function
field. Second, a quasi prime divisor v of K|k is a prime divisor of K|k iff v is trivial on k.

Let L|k ↪→ K|k be a function subfield of K|k, and w := v|L for some quasi prime divisor
v of K|k. Since both the residual transcendence degree and the rational rank are additive
in towers of function field extension, one has the following:

Remark 3.1. In the above notations, there are only two possibilities for v and w, namely:

a) rr(wL/wk) = 1, or equivalently, w is a quasi prime divisor of L|k.

b) td(L|k) = td(Lw|kw), thus w is by definition a constant reduction (à la Deuring) of L|k.

The first point we want to make is that Galois theory encodes the nature of the above
restriction w = v|L of v to L|k as follows:

Fact 3.2. Let pL : ΠK → ΠL be the canonical projection. Then the following hold:

1) pL maps T 1
v ⊂ Z1

v into T 1
w ⊂ Z1

w, and pL(Z1
v ) ⊆ Z1

w, pL(T 1
v ) ⊆ T 1

w are open subgroups.

2) Therefore, w is a quasi prime divisor of L|k if pL(T 1
v ) 6= 1, respectively a constant

reduction of L|k if pL(T 1
v ) = 1.
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The second point we make is the result about recovering the quasi divisorial subgroups of
ΠK from Πc

K is as follows, see [P1] and Topaz [To1], [To2]:

Fact 3.3. Let Πc
K → ΠK be the canonical projection, and for subgroups G ⊂ ΠK, let G′′ ⊂ Πc

K

be their preimages in Πc
K. Then the following hold:

1) Let d be the maximal positive integer such that ΠK contains subgroups ∆ ∼= Zd` with
abelian preimage ∆′′ ⊂ Πc

K. Then d = td(K|k).

2) The minimized quasi divisorial subgroups of ΠK are precisely the pairs T ⊂ Z which
are maximal satisfying the following:

i) Z contains subgroups ∆ ∼= Zd` having an abelian preimage ∆′′ ⊂ Πc
K.

ii) T ∼= Z`, and its preimage T ′′ ⊂ Πc
K is the center of Z ′′ ⊂ Πc

K.

B) Recovering the projection pκt : ΠK → Πκt from πt : ΠK → ΠU0

In the context and notations of Theorem 2.6, let t ∈ K\k be any non-constant function,
and κt ⊂ K be the relative algebraic closure of k(t) in K. Then κt|k(t) is a finite field
extension, hence the projection Πκt → ΠU0

defined by t0 7→ t has an open image. Therefore,
since the canonical projection pκt : ΠK → Πκt is (by mere definitions) surjective, it follows
that the canonical projection πt : ΠK → ΠU0

defined by k(t0) ↪→ K, t0 7→ t, has an open
image in ΠU0

. Our aim is to show that there exist group theoretical recipes to recover the
projection pκt : ΠK → Πκt from the given group theoretical projection πt : ΠK → ΠU0

.

Notations 3.4. In the above context, consider/define:

a) The set Q0
t of all the quasi prime divisors v of K|k with πt(Z

1
v ) ⊂ ΠU0

open.

b) The closed subgroup T0
t := 〈T 1

v | v ∈ Q0
t 〉 ⊂ ΠK generated by the minimized inertia

groups T 1
v , v ∈ Q0

t , and the resulting canonical projection p0
t : ΠK → Π0

t := ΠK/T
0
t .

c) The set Qt of all the quasi prime divisors v of K|k such that image p0
t (Z

1
v ) ⊂ Π0

t of
Z1

v under p0
t : ΠK → Π0

t := ΠK/T
0
t is not a topologically finitely generated group.

d) The closed subgroup Tt := 〈T 1
v | v ∈ Qt 〉 ⊂ ΠK generated by the minimized inertia

groups T 1
v , v ∈ Qt, and the resulting canonical projection pt : ΠK → Πt := ΠK/Tt.

We proceed by shedding some light on the objects defined above.

Lemma 3.5. For every quasi prime divisor v of K|k the following are equivalent:

i) v ∈ Q0
t .

ii) t is a v-unit and residually transcendental, that is, t ∈ Kv is non-constant.

iii) The restriction of v to k(t) is the Gauss valuation defined by vk := v|k and t. In
particular, v|κt is a constant reduction of κt|k.

Proof. First, the equivalence of ii), iii) follows by mere definitions. For the reverse implication
ii), iii)⇒ i), we notice that ΠU0

∼= Z2
` is noting but the Galois group of the maximal extension

K0|k(t0) unramified outside t0 = 0, 1,∞. On the other hand, since t, t − 1 ∈ Kv generate a
Z-submodule of rank two in (Kv)×/(kv)×, it follows by mere definitions, that the image of
Z1

v in ΠU0
under t0 7→ t, is isomorphic to Z2

` as well, thus open in ΠU0
∼= Z2

` .

Finally, for the implication i) ⇒ ii), suppose that πt(Z
1
v ) is open in ΠU0

. Then by mere

definitions, it follows that there exist v-units θ ∈ tk×, η ∈ (t−1)k×, such that their images θ,
η in Kv× generate a Z-module of rank two in (Kv)×/(kv)×. Hence setting θ = t/a, η = b(t−1)
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with a, b ∈ k×, we must have t = aθ, and η = baθ−b. We claim that a, b are vk-units. Indeed,
one has the following case-by-case analysis:

- vk(b) < 0. Since η = b(aθ−1) is a v-unit, we must have v(aθ−1) > 0, hence aθ ∈ 1+mv.
Since θ is v-unit, so must be a, and a θ = 1 in Kv. Hence θ = 1/a ∈ kv, contradiction!

- vk(b) > 0. Then v(aθ− 1) < 0, hence v(aθ) < 0. Thus η = (ba)θ− b implies that ab is a
vk-unit, and η, θ have equal images in (Kv)×/(kv)×, contradiction!

- vk(b) = 0, i.e., b is a vk-unit. Then aθ = b−1η + 1 is a v-unit (because the RHS is so),
and since θ is a v-unit, so is a. Thus conclude that a, b both are vk-units.

To proceed, notice that we have t = θ/a. Since a is a vk-unit, and θ is v-residually transcen-
dental, it follows that t is a v-unit, and t is v-residually transcendental. �

For the next Lemma, we recall the following basic facts about the pro-` abelian birational
fundamental group Π1,K|k of K|k (and correspondingly, for its subfield κt|k, etc.), see [P3],
Appendix for further details. First, for every set of quasi prime divisors Q of K|k, let
TQ ⊆ ΠK be the closed subgroup generated by (T 1

v )v∈Q. We set Π1,Q := ΠK/TQ and call
Π1,Q the pro-` abelian fundament group of Q. The pro-` abelian fundamental group of the set
of all the prime divisors DK|k of K|k is called the (pro-` abelian) birational fundamental group
of K|k, and is denoted by Π1,K|k. Notice/recall that Π1,K|k equals the abelian pro-` (quotient
of the) fundamental group ΠX of any complete regular model X of K|k —if such models
exist. In any case, ΠX is a quotient of Π1,K|k for every complete normal model X, and there
always exist normal projective models X of K|k such that Π1,K|k = ΠX . In particular Π1,K|k
is topologically finitely generated, or equivalently, it is a finite Z`-module.

Lemma 3.6. In the above notations, set k̃ := κt, and K̃ := Kk̃. The following hold:

1) pκt : ΠK → Πκt factors through p0
t : ΠK → Π0

t , say pκt = q0
t ◦ p0

t with q0
t : Π0

t → Πκt.

2) ∆0
t := ker(q0

t ) = ker(Π0
t → Πκt) is a quotient of Π1,K̃|k̃ hence a finite Z`-module.

Proof. To 1): First, recall that Πκt = Gal
(
κ′t |κt

)
is the Galois group of the maximal pro-`

abelian extension κ′t|κt of κt. Hence one has ker(pκt) = Gal
(
K ′ |Kκ′t

)
. Second, by mere

definitions, for every valuation v of K one has that T 1
v = Gal

(
K ′ |KUv

)
, where Uv is the

group of v-units, and KUv := K[`
∞√
Uv ]. Third, the fact that pκt : ΠK → Πκt factors through

p0
t : ΠK → Π0

t is equivalent to ker(p0
t ) ⊂ ker(pκt). On the other hand, since ker(p0

t ) is
generated by T 1

v , v ∈ Q0
t , one has: ker(p0

t ) ⊂ ker(pκt) iff T 1
v ⊆ ker(pκt), v ∈ Q0

t . Switching
to field extensions via the Galois correspondence, the inclusion T 1

v ⊆ ker(pκt) is equivalent
to Kκ′t ⊂ KUv , v ∈ Q0

t , hence equivalent to κ′t ⊂ KUv for all v ∈ Q0
t . On the other hand,

since k is algebraically closed, k× is `-divisible, hence `∞
√
Uv = `∞

√
k× · Uv. Hence by Kummer

theory and mere definition, the inclusion κ′t ⊂ KUv is equivalent to

(∗) κ×t ⊆ k× · Uv .

To conclude, we notice that the above inclusion follows from the fact that v|κt is a constant
reduction of κt|k. Indeed, since k is algebraically closed, hence vk is divisible, it follows that
v(κt) = v(k). Hence every u ∈ κt is of the form u = au1 for some a ∈ k with v(a) = v(u),
and u1 ∈ Uv ∩ κ×t . This concludes the proof of assertion 1) of the Lemma.

To 2): First, we notice that a prime divisor v of K|k lies in Q0
t if and only if v is trivial on

k(t) if and only if v lies in Qt. Hence the set Dt of all such prime divisors v of K|k is nothing
but the set of prime divisors DK|κt of the function field K|κt. Let Kt ⊂ K ′ be the maximal
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subextension in which all v ∈ Dt are unramified. Equivalently, if TDt ⊂ ΠK is the closed
subgroup generated by T 1

v = Tv, v ∈ Dt, it follows that Gal
(
Kt |K

)
= ΠK/TDt . Clearly,

κ′t ⊂ K ′, and recalling that k̃ := κt, one has that κ′t = k̃ ∩K ′, and therefore, k̃ and K ′ are
linearly disjoint over κ′t. Hence one has an exact sequence of the form

(†) 1→ Gal
(
Ktκ′t |Kκ′t

)
↪→ Gal

(
Kt |K

)
= Π0

t

q0
t−→Gal

(
κ′t |κt

)
= Πκt → 1,

in which ∆0
t := Gal

(
Kt |Kκ′t

)
= ker(Π0

t → Πκt) is the κt-geometric part of Π0
t = Gal

(
Kt |K

)
.

Next recalling that K̃ := Kk̃, we set K̃t := Ktk̃ ⊂ K ′k̃. Then since k̃ and K ′ are linearly
disjoint over κ′t, it follows that the canonical projection below is an isomorphism:

∆̃t := Gal
(
K̃t |K̃

)
→ Gal

(
Ktκ′t |Kκ′t

)
= ∆0

t.

Let D̃t be the set of all the prolongations ṽ | v of all the valuations v ∈ Dt to K̃. Since

K̃|k̃ is the base change of K|κt under the algebraic extension(s) κt ↪→ κ′t ↪→ k̃, the following
hold: First, since Dt is the set of all the prime divisors of K|κt, it follows that D̃t equals the

set DK̃|k̃ of all the prime divisors of K̃|k̃. Second, since each v ∈ Dt is unramified in Kt|K, it

follows that each prolongation ṽ of v to K̃ = Kk̃ is unramified in K̃t|K̃ (because the latter

is the base change of Kt|K under κt ↪→ k̃). Hence since D̃t = DK̃|k̃, we conclude that all the

prime divisors of K̃|k̃ are unramified in K̃t|K̃. Therefore, ∆̃t = Gal
(
K̃t |K̃

)
is a quotient of

Π1,K̃|k̃, and so is its isomorphic quotient ∆̃t → ∆0
t = ker(Π0

t → Πκt). �

Lemma 3.7. In the Notations 3.4, the following hold:

1) The set Qt consists of all the quasi prime divisors v of K|k such that v|κt is a constant
reduction of κt|k. Hence Q0

t ⊂ Qt, thus by mere definitions T0
t ≤ Tt, and pt : ΠK → Πt

factors through p0
t : ΠK → Π0

t , say pt = qt ◦ p0
t for a unique qt : Π0

t → Πt.

2) pκt : ΠK → Πκt factors through pt : ΠK → Πt, say pκt = qt ◦ pt with qt : Πt → Πκt.
Thus since ∆0

t = ker(q0
t ) is a quotient of Π1,K̃|k̃, so is ∆t := ker(qt) = ker(q0

t )/ ker(qt).

Proof. To 1): First, if w := v|κt is a constant reduction of κt|k, then the minimized decom-
position group Z1

w ⊂ Πκt is not topologically finitely generated (by mere definitions). On
the other hand, pκt(Z

1
v ) ⊆ Z1

w is an open subgroup, hence pκt(Z
1
v ) ⊂ Πκt is not topologically

finitely generated. Thus finally, p0
t (Z

1
v ) is not finitely topologically generated either. Con-

versely, let v be a quasi prime divisor such that p0
t (Z

1
v ) is not finitely topologically generated.

By contradiction, suppose that w := v|κt is not a constant reduction. Then w is a quasi
prime divisor of κt|k, and therefore Z1

w = T 1
w, because td(κt|k) = 1. Since T 1

w
∼= Z`, one

finally has Z1
w
∼= Z`. Finally, recalling that ker(Π0

t → Πκt) is finitely generated, and that
pκt(Z

1
v ) ⊂ Z1

w has finite index, it follows that p0
t (Z

1
v ) ⊂ Π0

t is topologically finitely generated,
contradiction! The remaining assertions from assertion 1) of the Lemma are clear.

To 2): First, as in the proof of assertion 1) of the Lemma 3.6 above, especially the proof
of the inclusion (∗), it follows that T 1

v ⊂ ker(pκt) for all v ∈ Qt. Hence pκt : ΠK → Πκt
factors through pt : ΠK → Πt, i.e., there exists qt : Πt → Πκt such that pκt = qt ◦pt. Second,
q0
t : Π0

t → Πκt factors through qt : Πt → Πκt , precisely, q0
t = qt ◦ qt, with qt : Π0

t → Πt as
introduced at 1). Therefore, ker(qt) = ker(q0

t )/ ker(qt) is a quotient of ker(q0
t ), as claimed. �

We next announce the group theoretical recipe to recover pκt from πt.
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Proposition 3.8. In the above notations, in order to simplify notations, for quasi divisorial

subgroups T 1
v ⊂ Z1

v of ΠK, we set T
1

v := pt(T
1
v ), Z

1

v := pt(Z
1
v ) ⊂ Πt. Then the following hold:

1) ∆t is the unique Z`-submodule ∆ ⊂ Πt satisfying the following:

i) For all v 6∈ Qt one has that Z
1

v ⊆ ∆ · T 1

v and ∆ ∩ T 1

v = 1.

ii) There exist v 6∈ Qt such that ∆ ⊂ Z
1

v, hence Z
1

v = ∆ · T 1

v.

(∗) Therefore, the discussion above gives a group theoretical recipe to recover/reconstruct
pκt : ΠK → Πκt from Πc

K endowed with πt : ΠK → ΠU0
.

2) The above recipe to recover pκt is invariant under ΠU0
-isomorphisms as follows: Let

L|l be a function field with l algebraically closed field, and for u ∈ L\l, let κu ⊂ L and
pκu : ΠL → Πκu, πu : ΠL → ΠU0

defined by t0 7→ u ∈ L, be correspondingly defined.
Let Φ : ΠK → ΠL be the abelianization of an isomorphism Φc : Πc

K → Πc
L satisfying

ker(πu) = Φ
(

ker(πt)
)
. Then one has:

a) Φ maps (T 1
v )v∈Q0

t
, (T 1

v ⊂ Z1
v )v∈Qt isomorphically onto (T 1

w)w∈Q0
u
, (T 1

w ⊂ Z1
w)w∈Qu,

respectively, thus gives rise to isomorphisms Φ0
t : Π0

t → Π0
u, Φt : Πt → Πu which

map ∆0
t, ∆t isomorphically onto the corresponding ∆0

u, ∆u.

b) Hence one has that ker(pκu) = Φ
(

ker(pκt)
)
. Moreover, the induced canonical

isomorphism Φt,u : Πκt → Πκu defined by Φ maps the quasi divisorial subgroups of
Πκt isomorphically onto the ones of Πκu.

Proof. To 1): We begin by showing that ∆t satisfies the requirement 1), i) from Propo-
sition 3.8. First, let v be a quasi prime divisor of K|k whose restriction to κt is not a

constant reduction of κt|k. We claim that Z
1

v ⊆ ∆t · T
1

v. Indeed, by Remark 3.1, it follows
that v(κ×t )/v(k×) ∼= Z. Further, by Fact 3.2 combined with the fact that td(κt|k) = 1, it

follows that pκt(T
1
v ) = pκt(Z

1
v ). Hence Z1

v ⊆ T 1
v · ker(pκt), thus Z

1

v ⊆ T
1

v · pt
(

ker(pκt)
)
.

Hence taking into account that pt
(

ker(pκt)
)

= ker(qt) = ∆t, we get Z
1

v ⊆ T
1

v · ∆t. Next,
since T 1

v
∼= Z` ∼= pκt(T

1
v ), it follows that pκt maps T 1

v isomorphically onto pκt(T
1
v ). Hence

pκt = qt ◦ pt implies that pt : T 1
v → T

1

v and qt : T
1

v → pκt(T
1
v ) are isomorphisms as well.

Finally, since ∆t = ker(pt), it follows that ∆t ∩ T
1

v = 1, as claimed.

We next prove that there exists a family (vi)i∈I of prime divisors vi 6∈ Qt satisfying:

- pκt(Tvi) ∩ pκt(Tvj) = 1 for all i 6= j.

- pκt(Tvi), i ∈ I, consists of almost all the divisorial subgroups of Πκt .

- Zvi = ∆t · Tvi , i ∈ I. In particular, ∆t and Zvi satisfy condition 1), ii) for all i.

The proof of this is not difficult, but a little bit involved, and we will do it a few steps:

a) First, recall that q0
t = qt ◦ qt, and in the notations from (the proof of) Lemma 3.6, let

K := Kker(qt)
t be the corresponding fixed field in Kt. Then Gal

(
K|Kκ′t

)
= ∆t, and one has

an exact sequence of abelian groups

(‡) 1→ Gal
(
K|Kκ′t

)
= ∆t ↪→ Gal

(
K|K

)
= Πt

pκt−→Gal
(
κ′t |κt

)
= Πκt → 1,

which is a quotient of the exact sequence (†) from the proof of Lemma 3.6, 2). Since Πκt is
a pro-` abelian free group (being the `-adic dual of κ×t /k×), the exact sequence (‡) above is
split. Hence there exists a Z/`-elementary abelian extension K1|K with Gal

(
K1 |K

) ∼= ∆t/`,

and satisfying: K1 and Kκ′t are linearly disjoint over K, thus K1|K and K̃ = Kk̃ are linearly
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disjoint over K as well.3 Hence K̃1 := K1k̃ is an abelian extension K̃1|K̃ with Galois group
∆t/`, and recall that ∆t/` is finite, because ∆t was a finite Z`-module.

b) Let Xt be the projective smooth k-curve with k(Xt) = κt, and consider a ∆t/` cover of
(proper/normal) geometrically integral Xt-schemes X1 → X with generic geometric fiber the
field extension K1|K. Then there exists an open subset Ut ⊂ Xt such that for all s ∈ Ut, the
fiber X1,s → Xs at s is a ∆t/`-cover of (proper/normal) integral k-varieties. In particular,
if X1 3 η1,s 7→ ηs ∈ X are the generic points of X1,s → Xs, the corresponding extension of
local rings Oηx ↪→ Oη1,s is an étale and totally inert extension of local rings, i.e., one has
[K1 : K] = [κ(η1,s) : κ(ηs)]. On the other hand, X1,s ⊂ X1 and Xs ⊂ X are Weil prime
divisors. Thus the corresponding valuations v1 of K1, respectively v of K are prime divisors
of K1|k, respectively K|k, which satisfy: v1 is the unique prolongation of v to K1, and the
residue field extension of v1|v is nothing but κ(η1,s)|κ(ηs). Further, v|κt = vs is the valuation
of κt defined by s ∈ Xt. Hence if w is a prolongation of v to Kκ′t, then w is totally inert
in K1κ′t|Kκ′t, and in particular, the decomposition group Z1,w of w in Gal

(
K1κ′t |Kκ′t

)
is

nothing but Z1,w = Gal
(
K1κ′t |Kκ′t

)
.

c) Recall that K|K is the subextension of K ′|K with Galois group Πt, or equivalently, the
fixed field of Tt in K ′, one has that ∆t = Gal

(
Kκ′t |Kκ′t

)
, and K1κ′t|Kκ′t is the Galois subex-

tension of Kκ′t|Kκ′t with Galois group Gal
(
K1κ′t |Kκ′t

)
= ∆t/`. Hence the decomposition

group Zw of w in Kκ′t|Kκ′t satisfies: Zw ↪→ ∆t and Zw � Z1,w = Gal
(
K1κ′t |Kκ′t

)
= ∆t/`.

Since ∆t is a finite Z`-module by Lemma 3.7, 2), Nakayama Lemma implies Zw = ∆t.

Finally, by general decomposition theory, one has that: First, Zw = Zt,v ∩∆t, where Zt,v
is the decomposition group of v in Πt. Second, Zt,v = pt(Zv) = Zv is the image of Zv ⊂ ΠK

under pt : ΠK → Πt. Thus one has that

∆t = Zw ⊆ Zv.

We thus conclude that for almost all closed points si ∈ Xt, the local ring OX ,ηi of the
generic point ηi of Xsi is a DVR whose valuation vi satisfies the following:

a) vi(K) = vsi(κt), because the special fiber Xsi is reduced. Hence pκt(Tvi) = Tvsi .

b) ∆t ⊂ Zvi , hence Zvi = ∆t · T vi .

Finally, to complete the proof of assertion 1) of the Proposition, we have to prove that ∆t is
the only closed subgroup of Πt satisfying the conditions i), ii) from assertion 1). The proof of
this assertion is easily to axiomatize as follows: Let ∆ ⊂ Πt be a further subgroup satisfying
the conditions i), ii) from assertion 1). Since ∆ satisfies ii), there exists v 6∈ Qt such that

∆ · T 1

v = Z
1

v, and since ∆t satisfies i), it follows that Z
1

v ⊆ ∆t · T
1

v, thus finally, ∆ ⊂ ∆t · T
1

v.
Similarly, ∆t ⊂ ∆ · T vi for all vi. Finally, since pκt(Tvi) ∩ pκt(Tvj) = 1 for i 6= j, we can

choose vi such that pκt(Tv)∩ pκt(Tvj) = 1. Equivalently, we have (∆t · T
1

v)∩ (∆t · T vi) = ∆t.

Thus the equality ∆t = ∆ will follows from the following quite general assertion:

Fact 3.9. Let G be an arbitrary group, T, T1 ⊂ G be subgroups, and ∆,∆1 C G be normal
subgroups satisfying: First, ∆ ⊂ ∆1T , ∆1 ⊂ ∆T1, and second, ∆1 ∩ T1 = 1 = ∆ ∩ T ,
(∆1T1) ∩ (∆1T ) = ∆1. Then ∆ = ∆1.

3 Recall that k̃ := κt.
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Proof. First, since ∆1 ⊂ ∆T1, every δ1 ∈ ∆1 is of the form δ1 = δτ1 with δ ∈ ∆, τ1 ∈ T1.
Second, ∆ ⊂ ∆1T , implies that δ = δ′1τ with δ′1 ∈ ∆1, τ ∈ T . Therefore, the following holds:

δ1 = δτ1 = δ′1ττ1, hence δ1τ
−1
1 =: g := δ′1τ.

Since g = δ1τ
−1
1 ∈ ∆1T1, g = δ′1τ ∈ ∆1T , and by hypothesis (∆1T1)∩ (∆1T ) = ∆1, it follows

that g ∈ ∆1, thus concluding that τ, τ1 ∈ ∆1. Since ∆1 ∩ T1 = 1, we get τ1 = 1, hence
concluding that δ1 = δτ1 = δ ∈ ∆. And since δ1 ∈ ∆1 was arbitrary, we finally get ∆1 ⊆ ∆.
For the converse inclusion, let δ ∈ ∆ be arbitrary. Since ∆ ⊂ ∆1T , one has δ = δ1τ with
δ1 ∈ ∆1, τ ∈ T . Hence τ = δ−1

1 δ, and δ1 ∈ ∆1 ⊆ ∆ implies τ ∈ ∆, and therefore, τ = 1
(because ∆ ∩ T = 1). Hence finally δ1 = δ ∈ ∆, and since δ1 ∈ ∆1 was arbitrary, we get
∆1 ⊆ ∆. Thus finally ∆ = ∆1, as claimed. �

To 2): The proof is an easy exercise of sorting through the proof of assertion 1), using the
Φ maps the quasi divisorial subgroups of ΠK onto those of ΠL. �

C) Recovering the divisorial groups in ΠK from Πc
K endowed with πt, πt′ for κt 6= κt′

In this subsection we give a group theoretical recipe which recovers the divisorial subgroups
Tv ⊂ Zv of ΠK from Πc

K endowed with two projections πt, πt′ : ΠK → ΠU0
for t, t′ ∈ K such

that κt 6= κ′t (that is, t, t′ are algebraically independent over k).

First, by the discussion in the previous subsection, the projection pκt : ΠK → Πκt can be
recovered/reconstructed by a group theoretical recipe from Πc

K endowed with the projection
πt : ΠK → ΠU0

defined by t0 7→ t. Further, for every quasi divisororial subgroup T 1
v ⊂ Z1

v of
ΠK , one has the following: pκt(T

1
v ) 6= 1 iff w := v|κt is a quasi prime divisor of κt|k, and if

so, then by Fact 3.2, one has that pκt(T
1
v ) = pκt(Z

1
v ) ⊆ T 1

w = Z1
w is open (and these groups

are isomorphic to Z`). And pκt(T
1
v ) = 1 if and only if pκt(Z

1
v ) has infinite Z`-rank, and if

so, then w := v|κt is a constant reduction of κt|k and pκt(Z
1
v ) ⊆ Z1

w is an open subgroup.
Clearly, the same holds, correspondingly, about pκt′ .

Proposition 3.10. In the above notations the following hold:

1) A quasi divisorial group T 1
v ⊂ Z1

v of ΠK is divisorial, i.e., v is a prime divisor of K|k
if and only if one of the following conditions is satisfied:

i) pκt(Z
1
v ) ⊆ Πκt is an open subgroup.

ii) pκt(Z
1
v ) = pκt(T

1
v ) and there exists a quasi divisorial group T 1

v′ ⊂ Z1
v′ of ΠK satisfy-

ing: First, pκt′ (Z
1
v′) ⊂ Πκt′ is an open subgroup, and second, pκt(T

1
v )∩pκt(T 1

v′) 6= 1.

2) The above recipe to recover the divisorial subgroups Tv ⊂ Zv of ΠK from Πc
K endowed

with πt, πt′ is invariant under ΠU0
-isomorphisms as follows: Let L|l be a function

field with l algebraically closed field, and πu, πu′ : ΠL → ΠU0
be the projections de-

fined by t0 7→ u, respectively t0 7→ u′ for some u, u′ ∈ L\l. Let Φ : ΠK → ΠL be
the abelianization of an isomorphism Φc : Πc

K → Πc
L satisfying Φ

(
ker(πt)

)
= ker(πu),

Φ
(
ker(πt′)

)
= ker(πu′). Then Φ maps the divisorial groups Tv ⊂ Zv of ΠK isomorphi-

cally onto the divisorial groups Tw ⊂ Zw of ΠL.

Proof. To 1): For the implication “⇒ ” let Tv ⊂ Zv be a divisorial group of ΠK , and set
w := v|κt . First, if w is trivial, then Zw = Πκt . On the other hand, by Fact 3.2, one has
that pκt(Zv) is open in Zw = Πκt is open. Hence the first condition from assertion 1) is
satisfied. Second, if w is non-trivial, then w|k = v|k being trivial, implies that w is a prime
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divisor of κt|k. Recalling that κt 6= κt′ , that is, t, t′ are algebraically independent, there
exists a transcendence basis T = (t2, . . . , td) of K|κt with t2 = t′. Let wT be the Gauss
valuation of K|κt, and v′ be any prolongation of wT to K. Then since wT is trivial on k(t′),
it follows that v′ is trivial on κt′ . Further, by mere definitions, v′|κt = w = v|κt . Therefore
we get: pκt(Tv), pκt(Tv′) ⊆ Tw are open, thus pκt(Tv) ∩ pκt(Tv′) 6= 1, and pκt(Tv) = pκt(Zv),
pκt(Tv′) = pκt(Zv′). Second, pκt′ (Zv′) ⊂ Πκt′ is open, because v′|κt′ is trivial. Hence the

second condition of assertion 1) is satisfied.

For the converse implication ⇐ , let T 1
v ⊂ Z1

v be a quasi divisorial group in ΠK satisfy-
ing the hypotheses from assertion 1). Set w := v|κt and recall that pκt(Z

1
v ) ⊆ Z1

w is an
open subgroup. Fist, suppose that pκt(Z

1
v ) ⊂ Πκt is open. Then by the discussion above,

Z1
w is open in Πκt . Since κt|k is a function field, every non-trivial valuation w of κt has

Zw ⊂ Πκt of infinite index. Hence we conclude that w must be the trivial valuation, hence
w|k = v|k is trivial on k. Thus finally, v is a prime divisor of K|k. Second, suppose that
pκt(Z

1
v ) = pκt(T

1
v ), and pκt(T

1
v ) = pκt(T

1
v′) for some quasi prime divisorial group T 1

v′ ⊂ Z1
v′

with pκt′ (Z
1
v′) ⊂ Πκt′ open. By the discussion above with respect to pκt′ and T 1

v′ ⊂ Z1
v′ , it

follows that v′ is actually a prime divisor of K|k, and therefore, w′ := v′|κt is a prime divisor
of κt|k, and pκt(T

1
v′) ⊂ T 1

w′
∼= Z` is an open subgroup. Hence since pκt(T

1
v ) ⊂ T 1

w is open
as well (by the discussion before the Proposition 3.10), the fact that pκt′ (T

1
v ) ∩ pκt′ (T

1
v′) is

non-trivial, implies finally that T 1
w∩pκt(T 1

v′) 6= 1. On the other hand, since the inertia groups
of distinct quasi prime divisors in Πκt have trivial intersection, we conclude that w = w′,
thus w is a prime divisor of κt|k. Hence w|k is trivial, and since v|k = w|k is trivial, it follows
that v|k is trivial. Therefore, v is a prime divisor of K|k.

To 2): This is an easy exercise involving sorting through the proof of assertion 1). �

D) Recovering the total decomposition graph from Πc
K endowed with πt, πt′ for κt 6= κt′

We begin by recalling some facts from [P4], especially Proposition 3.5 of loc.cit. Recall
that a valuation ṽ of K|k is called a prime r-divisor if ṽ is the valuation theoretical composition
ṽ = vr ◦ · · · ◦ v1, where v1 is a prime divisor of K, and inductively, vi+1 is a prime divisor of
the residue function field Kṽi |k, where ṽi := vi ◦ · · · ◦ v1. By definition, the trivial valuation
will be considered a generalized prime divisor of rank zero. We also notice that r ≤ td(K|k),
and that in the above notations, one has ṽr(K

×) ∼= Zr lexicographically.

Since generalized prime divisors ṽ are trivial on k, hence char(Kṽ) 6= `, one has T 1
ṽ = Tṽ,

and Z1
ṽ = Zv. A flag of generalized divisorial subgroups of ΠK consists of the sequences of

the decomposition/inertia groups Zṽ1 ≥ · · · ≥ Zṽr , Tṽ1 ≤ · · · ≤ Tṽr defined by a flag of
generalized (quasi) prime divisors ṽ1 ≤ · · · ≤ ṽr, where ṽs is a prime s-divisor, 1 ≤ s ≤ r.

The total prime divisor graph Dtot
K and its Galois theoretical counterpart, the total decom-

position graph GDtot
K

, were introduced in [P3]. First, Dtot
K is defined as follows:

a) The vertices of Dtot
K are the residue fields Kṽ of all the generalized prime divisors ṽ of

K|k viewed as distinct function fields.

b) For a prime r-divisor ṽ and a prime s-divisor w̃, there are edges from Kṽ to Kw̃ only
if ṽ ≤ w̃ and s ≤ r + 1, and if so, the edges are:

i) If ṽ = w̃, then the trivial valuation is the only edge from Kṽ = Kw̃ to itself.

ii) If ṽ < w̃, then the prime divisor w̃/ṽ of Kṽ|k is the only edge from Kṽ to Kw̃.
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Via the Galois correspondence and the Hilbert decomposition theory for valuations, the total
decomposition graph GDtot

K
of K|k is in bijection with Dtot

K , and is defined as follows:

a) The vertices of GDtot
K

are the residue Galois groups ΠKṽ of all the generalized prime

divisors ṽ of K|k viewed as distinct groups.

b) The unique edge from ΠKṽ to ΠKw̃, if it exists, is endowed with the divisorial subgroup
Tw̃/ṽ ⊂ Zw̃/ṽ of ΠKṽ. Note that if w̃ = ṽ, then the groups are {1} = Tw̃/ṽ ⊂ Zw̃/ṽ = ΠKṽ.

Finally, notice that by [P3], Section 2, it follows that knowing GDtot
K

is equivalent to knowing
the flags of generalized divisorial groups Zṽ1 ≥ · · · ≥ Zṽr , Tṽ1 ≤ · · · ≤ Tṽr of ΠK .

We next show that GDtot
K

can be recovered by a group theoretical recipe from Πc
K endowed

with any two projections πt, πt′ : ΠK → ΠU0
satisfying κt 6= κt′ . First, recall that by Propo-

sition 3.10, there exists a group theoretical recipe which recovers all the divisorial groups
Tv ⊂ Zv, v ∈ DK|k, from Πc

K endowed with with any two projections πt, πt′ : ΠK → ΠU0

satisfying κt 6= κt′ . Hence given κt 6= κt′ and Πc
K endowed with πt, πt′ : ΠK → ΠU0

, via that
group theoretical recipe, one recovers the set Inr.div(K|k) := ∪v∈DK|kTv of all the divisorial
inertia elements in ΠK . Further, if Φ ∈ Autc(ΠK) is compatible with πt, πt′ , i.e., satisfies
Φ
(
ker(πt)

)
= ker(πt), Φ

(
ker(πt′)

)
= ker(πt′), then by Proposition 3.10, it follows that Φ

maps {Tv |v ∈ DK|k} onto itself, hence Φ
(
Inr.div(K|k)

)
= Inr.div(K|k). Further, by Theo-

rems A and B from [P2], Introduction, it follows that the topological closure of Inr.div(K|k)
in ΠK is precisely the set of the inertia elements Inrk(K) at all the k-valuations of K. Thus
κt 6= κt′ and Φ ∈ Autc(ΠK) compatible with πt, πt′ implies that Φ

(
Inrk(K)

)
= Inrk(K).

Proposition 3.11. In the above notations, let d = td(K|k). Then the following hold:

1) Let Πc
K → ΠK be the canonical projection, and for subgroups G ⊂ ΠK, let G′′ ⊂ Πc

K be
their preimages in Πc

K. Then a flag of closed subgroups Z1 ≥ · · · ≥ Zr, T1 ≤ · · · ≤ Tr of
ΠK is a flag of generalized divisorial subgroups if and and only if Zr contains a subgroup
∆ ∼= Zd` with ∆′′ abelian, the Ts, Zs are maximal subgroups satisfying:

i) Ts ≤ Zs, Ts ∼= Zs` and T ′′s ⊂ Πc
K is the center of Z ′′s ⊂ Πc

K, s = 1, . . . , r.

ii) Ts ⊂ Inrk(K), s = 1, . . . , r.

In particular, this gives a group theoretical recipe which recovers GDtot
K

from Πc
K endowed

with the set of k-inertia elements Inrk(K).

2) Moreover, the recipe under discussion is invariant under isomorphisms as follows: Let L|l
be a function field with l algebraically closed field, and Φ : ΠK → ΠL be the abelianization
of an isomorphism Φc : Πc

K → Πc
L satisfying Φ

(
Inrk(K)

)
= Inrl(L). Then Φ maps the

set of all the flags of generalized divisorial subgroups of ΠK bijectively onto those of ΠL,
and therefore defines an automorphism Φ : GDtot

K
→ GDtot

L
.

Proof. The proof of Proposition 3.11 above is virtually identical with the one of [P4], Propo-
sition 3.5, but using Inr.div(K) ⊂ Inrk(K) instead of Inr.q.div(K) ⊂ Inr.tm(K).

To 1): First, Tr consists of inertia elements from Inrk(K), hence of tame inertia elements,
and by hypothesis, Tr is commuting liftable. For σ ∈ T ⊂ Inrk(K), let v be any valuation
of K trivial on k such that σ ∈ Tv. Then if vσ is the canonical valuation of σ, as defined
in Fact 3.3 from [P1], one has σ ∈ Tvσ and vσ ≤ v. Thus vσ is trivial on k as well. Therefore,
the valuation ṽ := supσ∈Td vσ defined in Proposition 3.4 of loc.cit., satisfies Tr ⊂ Tṽ, and

ṽ is trivial on k as well. Second, notice that ∆ := Tr ∼= Zd` is contained Zr, thus in every
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Zs, and its preimage ∆′′ = T ′′r in Πc
K is commutative. Hence by [P4], Proposition 3.5, it

follows that there exists a flag of generalized quasi prime divisors v1 ≤ · · · ≤ vr such that
Ts = T 1

vs ⊂ Z1
vs = Zs for s = 1, . . . , r. Finally, since Tr = Tvr ⊆ Tṽ, it follows that vr ≤ ṽ,

thus v1 ≤ · · · ≤ vr ≤ ṽ. Therefore, since ṽ is trivial on k, so are all the vs, i.e., they are
actually generalized prime divisors. The last assertion from 1) is clear.

To 2): Since Φ maps Inrk(K) homeorphically onto Inrl(L), the arguments from the proof
of assertion 1) show that Φ maps (flags of) generalized divisorial groups of ΠK isomorphically
onto (flags of) generalized divisorial groups in ΠL. �

4. Recovering the rational quotients

A) Generalities about 1-dimensional quotients
Let K|k be a function field with k algebraically closed, andDK|k be the set of prime divisors

of K|k. Recall that for every u ∈ K\k, we denote by κu ↪→ K the relative algebraic closure
of k(u) in K, and notice that κu ⊂ K strictly iff td(K|k) > 1. Further define/consider:

D1
κu := {v ∈ DK|k | v non-trivial on κu }

The inclusion κu ↪→ K gives rise to a quotient pκu : ΠK → Πκu , which we call a geometric
1-dimensional quotient of ΠK . And we say that pκu : ΠK → Πκu is a rational quotient of ΠK

if κu is a rational function field, i.e., of the form κu = k(x) for some x ∈ K.

Recall that we identify (once and for all) the Tate module Z`(1) of Gm,K with Z`, and
do the same compatibly for all subfields of K. Hence by Kummer theory, Homcont(ΠK ,Z`)
is identified with the `-adic completion K̂ of the multiplicative group K×, 4 and considering
`-adic duals, one has: Giving the projection pκu : ΠK → Πκu is equivalent to giving its
`-adic dual ıκu , which is the embedding of the `-adic completions:

(∗) ıκu : κ̂u = Homcont(Πκu ,Z`) ↪→ Homcont(ΠK ,Z`) = K̂.

For every prime divisor v of K|k, we denote by v : K̂ → Homcont(Tv,Z`) the `-adic dual
of the embedding Tv ↪→ ΠK , and notice that this v is nothing but the `-adic completion of

v : K× → Z (after identifying v(K
×
) = K

×
/Uv with Z, Uv ⊂ K× is the group of v-units).

Further, the `-adic completion Ûv of Uv is precisely Ûv = ker(v). Finally, let v : Ûv → K̂v

be the `-adic dual of ΠKv = Zv/Tv ↪→ ΠK/Tv, and notice that ker(v) = Û1
v is precisely the

`-adic completion of the group of principal v-units U1
v ⊂ Uv of v.

Recall that a set of prime divisors D is called geometric, if there exists a normal model X
of K|k, such that D coincides with the set of Weil prime divisors DX of X, and notice that
one can choose X to quasi-projective and normal. Further, the family of all the geometric
sets of prime divisors is closed under finite intersections and unions, and any two geometric
sets of prime divisors are almost equal. We define

K̂fin := ∪D {xxx ∈ K̂ | v(xxx) = 0 for all but finitely many v ∈ D}, D geometric.

Notice that K̂fin is a birational invariant of K|k, and for every geometric set of prime

divisors D and every xxx ∈ K̂fin, the set of all the v ∈ DX such that v(xxx) 6= 0 is finite.

Further, if K : K×→ K̂ is the `-adic completion morphism, then K(K×) ⊂ K̂fin, hence K̂fin

is `-adically dense in K̂. Clearly, the same is true correspondingly for the function subfields

4 In order to simplify notations, we denote the `-adic completion of K× simply by K̂, an not by K̂×.
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κu|k, and under the embedding κ̂u ↪→ K̂ one has κ̂u,fin = κ̂u ∩ K̂fin. And since K̂fin ⊂ K̂

and κ̂u,fin ⊂ κ̂u are `-adically dense subgroups, and κ̂u ↪→ K̂ is a topological embedding, it

follows that the image of κ̂u ↪→ K̂ is the closure of the image of κ̂u,fin ↪→ K̂fin inside K̂.

Lemma 4.1. In the above notations, the following hold:

(∗) κ̂u,fin = {xxx ∈ K̂fin | ∀ v ∈ D1
κu one has: If xxx ∈ Ûv, then v(xxx) = 1}

Proof. To the inclusion ”⊆”: Recall that v ∈ D1
κu if and only if v is non-trivial on κu.

Hence for all v ∈ D1
κu one has: Since κu|k is a function field in one variable, it follows that

the residue field is κuv = k, thus (Uv ∩ κu)v = k, and therefore v is trivial on the `-adic

completion of Uv ∩ κu, which is Ûv ∩ κ̂u. Thus the inclusion “⊆ ” follows.

For the reverse inclusion “⊇ ” one has: Let xxx ∈ K̂fin\ κ̂u,fin and let ∆ be the Z`-submodule

generated by xxx, hence ∆ ⊂ K̂fin. Since one has K̂fin/κ̂u,fin ↪→ K̂/κ̂u, and the latter Z`-module

is torsion free, it follows that K̂fin/κ̂u,fin is torsion free too, thus ∆∩ κ̂u,fin is trivial. But then

by [P3], Proposition 40, 3), it follows that for “many” valuations v ∈ D1
κu one has: ∆ ⊂ Ûv

and v maps ∆ injectively into K̂v and therefore, v(xxx) 6= 1, etc. �

B) Divisorial lattices and 1-dimensional quotients

For readers sake, we first recall a few basic facts from [P3] as systemized in [P4]. Recall
that a set D of prime divisors of K|k is called geometric, if there is a quasi-projective normal
model X of K|k such that D = DX is the set of Weil prime divisors of X. If so, then
UD := Γ(X,OX)× depends on D only (and not on X), and the canonical exact sequence

1→ UD → K×→ Div(D)→ Cl(D)→ 0

gives rise to its `-adic completion

(∗)D 0→ TD,` → K̂ → D̂iv(D)→ Ĉl(D)→ 0,

where TD,` is the `-adic Tate module of the Weil divisor class group Cl(D) of X.5 Finally, let
Div0(D) ⊂ Div(D) be the preimage of the maximal `-divisible subgroup Cl0(D) ⊂ Cl(D).6

Fact 4.2. Recall that a subgraph G ⊂ GDtot
K

is called geometric, if for every vertex ΠKṽ of G
with ṽ a prime r-divisor, r < td(K|k), the set Dṽ of all the edges originating from ΠKṽ is a
geometric set. The following hold, see [P3] for details:

I) There are group theoretical recipes which recover from GDtot
K

the following:

- the geometric sets of prime divisors D, and the geometric decomposition graphs G.

- the complete regular like geometric setsD, as introduced in [P3], Definition/Remark 21,
and the complete regular like geometric decomposition graphs, see [P3], Proposition 22.

If D is complete regular like, the group theoretical recipes recover:

- the exact sequence (∗)D above, see [P3], Proposition 23.

- Div0(D)(`) ⊂ D̂iv(D) up to multiplication by `-adic units ε ∈ Z×` .7

5 It turns out that the above exact sequences depend on D = DX only, and not on the concrete normal
quasi-projective X with D = DX .

6 By the structure of Cl(X), see [P3], Appendix, there is a unique maximal divisible subgroup in Cl(X).
7 Recall that for every abelian group A we denote A(`) := A⊗ Z(`).
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• If D is complete regular like, then ÛK := TD,` and Div0(D)(`) are birational invariants

of K|k, thus so is the preimage LK ⊂ K̂ of Div0(D)(`) under K̂ → D̂iv(D). Hence

LK ⊂ K̂ can be recovered from GDtot
K

up to multiplication by `-adic units ε ∈ Z×` .
- Finally, K(K×) ⊂ LK and K(K×) ∩ ÛK = 1, and if K(K×) ⊂ ε · LK , then ε ∈ Z×(`) .

(∗) We call LK the canonical ÛK-divisorial lattice of GDtot
K

.

II) By [P3], Proposition 39, the recipes to recover the above objects from GDtot
K

are invariant

under isomorphisms of total decomposition graphs as follows: Let L|l be a further
function field with l algebraically closed, and HDtot

L
be its total decomposition graph.

Let Φ : ΠK → ΠL be an isomorphism which maps GDtot
K

isomorphically onto HDtot
L

, and

φ̂ : L̂→ K̂ be the Kummer isomorphism of Φ, i.e., the `-adic dual of Φ. Then:

- Φ maps the (complete regular like) geometric decomposition graphs of K|k isomor-
phically onto the such ones of L|l.

- One has φ̂(ÛL) = ÛK , and there exist ε ∈ Z×` such that φ̂(LL) = ε · LK , and ε is
unique up to multiplication by elements η ∈ Z×(`).

• In particular, if one replaces Φ by its multiple Φε := ε·Φ, then the Kummer isomorphism
φ̂ε of Φε satisfies φ̂ε(LL) = LK .

Language. We say that Φ is adjusted, if φ̂(LL) = LK .

Remark 4.3. In the above notation, the following hold:

1) For u ∈ K× let u ∈ Z(`) · K(u) and uuu ∈ Z` · u be non-trivial (equivalently, u is non-
constant and u = α · K(u), uuu = β · u with α, β 6= 0). Then for every prime divisor v of

K|k the following hold: u ∈ Uv iff u ∈ Ûv iff uuu ∈ Ûv. And if so, then v
(
K(u)

)
6= 1 iff

v(u) 6= 1 iff v(uuu) 6= 1 in K̂v. Therefore, the following sets of prime divisors are equal:

a) Du := {v | u ∈ Uv and v
(
K(u)

)
6= 1}

b) Du := {v | u ∈ Ûv and v(u) 6= 1}
c) Duuu := {v | uuu ∈ Ûv and v(uuu) 6= 1}

and Du = Du = Duuu = Dκu := {v | v is trivial on κu} = DK|k\D1
κu . Hence one has:

(†) Given any of the following: u ∈ K\k and Du as at a); and/or u ∈ Z(`) · K(u) and Du

as at b); and/or uuu ∈ Z` · u and Duuu as at c), enables one to recover the set D1
κu ⊂ DK|k.

(‡) Hence using Lemma 4.1 one can first recover κ̂u,fin ↪→ K̂fin and second, taking `-adic
duals, one finally recovers the projection of Galois groups pκu : ΠK → Πκu .

2) Let u ∈ K be a non-constant function. Then κu|k is a function field in one variable,
hence it has a unique complete normal model Xu → k, which is a projective smooth
curve over k. Then Xu(k) is in a canonical bijection with the set of prime divisors of
κu|k, say Xu(k) 3 a ↔ va ∈ Dκu|k, and we denote the total prime divisor graph of
κu|k simply by Gκu . The canonical divisorial lattice Lκu corresponds to the canonical
system of inertia generators (τa)a∈Xu(k) of the inertia groups Tva , a ∈ Xu(k). This system

of generators satisfies the unique relation Πaτa = 1 in Πκu . In particular, if (τ ′a)a is
another system of inertia generators satisfying Πaτ

′
a = 1, then there exists a unique
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`-adic unit ε ∈ Z×` such that τ ′a = τ εa for all a ∈ Xu(k). If so, the divisorial lattice
corresponding to (τ ′a)a is nothing but ε−1 ·Lκt . See [P3], Sections 4.2, 5.2 for details.

• In particular, let Xt, Xu be complete smooth k-curves, and κt := k(Xt), κu := k(Xu).
Then for an isomorphism Φt,u : Πκt → Πκu , the following are equivalent:

i) Φt,u maps {Tvb | b ∈ Xt(k)} bijectively onto {Tva | a ∈ Xu(k)}.
ii) There is a bijection Xt(k)→ Xu(k), b 7→ a, such that Φt,u(Tvb) = Tva .

iii) If (τb)b∈Xt(k) and (τa)a∈Xu(k) are the canonical inertia generators, then there exists
ε ∈ Z×` such that Φt,u(τb) = (τ εa) for all b 7→ a.

iv) Φt,u defines an isomorphism of decomposition graphs Φt,u : Gκt → Gκu .

3) In the above notations, one can recover Gκu from GDtot
K

endowed with the 1-dimension

quotient pκu : ΠK → Πκu as follows: Let v be a prime divisor of K|k. Then v ∈ D1
κu iff

v is non-trivial on κu iff pκu(Tv) ⊂ Πκu is non-trivial. And if so, and va is the restriction
of v to κu, then pκu(Tv) ⊆ Tva is an open subgroup, and moreover, Tva is a maximal
pro-cyclic subgroup of Πκu , and the maximal one containing pκu(Tv). Conversely, for
every prime divisor va of κu|k there exists some prime divisor v ∈ D1

κu which restricts
to va, thus pκu(Tv) ⊆ Tva is non-trivial. Since for all prime divisors va of κu|k one has
Tva = Zva , it follows that the above procedure recovers Gκu from GDtot

K
endowed with

the group theoretical 1-dimension quotient pκu : ΠK → Πκu .

Moreover, the above procedure does not only recover Gκu , but it recovers as well the
morphism of total decomposition groups pκu : GDtot

K
→ Gκu defined by pκu : ΠK → Πκu .

(∗) Since pκu : ΠK → Πκu originates from the embedding of function fields κu|k ↪→ K|k, the
induced morphism of total decomposition graphs pκu : GDtot

K
→ Gκu is divisorial in the

sense of [P3], Definition/Remark 31 and Proposition 40. And the Kummer morphism

ıκu : κ̂u → K̂ maps Ûκu ⊂ Lκu injectively into ÛK ⊂ LK . Thus by loc.cit., 5) and the

discussion above, it follows that LK is the unique divisorial ÛK-lattice for K|k with
ıκu(Lκu) ⊂ LK , i.e., if L′K = ε · LK and ıκu(Lκu) ⊂ L′K , then L′K = LK , hence ε ∈ Z×(`) .

Moreover, LK/Lκu ⊂ K̂/κ̂u are torsion free (because ΠK → Πκu is surjective).

4) Finally, let Φ ∈ Autc(ΠK) define an isomorphism Φ : GDtot
K
→ GDtot

K
. Suppose that

t, u ∈ K are non-constant functions such that pκt : ΠK → Πκt , pκu : ΠK → Πκu
satisfy Φ

(
ker(pκt)

)
= ker(pκu), or equivalently, there exists Φt,u : Πκt → Πκu satisfying

Φt,u◦pκt = pκu ◦Φ. (Note that Φt,u is actually unique.) By the discussion at items 2), 3)
above, Φt,u maps the set of divisorial groups Tva = Zva , a ∈ Xt(k), of Πκt isomorphically
onto the the divisorial groups Tvb = Zvb , b ∈ Xu(k). Hence the isomorphism Φt,u defined
by Φ satisfies the equivalent condition i)–iv) from item 2) above.

5) The fact that a 1-dimensional quotient pκu : GDtot
K
→ Gκu is an abstract rational quotient

of GDtot
K

in the sense of [P3], section 5, B), and/or [P4], Definition 5.2, is equivalent to

the fact that κu is a rational function field by [P3], Proposition 41, i.e., κu = k(x) for
some x ∈ K. On the other hand, κu|k is a rational function field iff Xu = P1

k iff

the inertia groups (Tva)va generate Πκu iff Ûκu = 1. These equivalent conditions are
encoded in GDtot

K
endowed with pκu : ΠK → Πκu and are equivalent to the fact that the

canonical divisorial Ûκu-lattice Lκu for κu|k is nothing but Lκu = κu(κu×)(`).
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C) The behavior of K
(
〈Θ , 1−Θ 〉

)
(`)

under weakly Θ-compatible automorphisms

Recall the automorphism group Autc
Θ(ΠK) as introduced in Definition/Remark 2.8. In

this subsection we show that ΣΘ := K
(
〈Θ , 1−Θ 〉

)
(`)

can be reconstructed from Πc
K endowed

with πt, t ∈ Θ , by a group theoretical recipe invariant under all Φ ∈ Autc
Θ(ΠK).

Remark 4.4. In the notation/context from Definition/Remark 2.8, let |Θ | > 1. Then given
Πc
K endowed with the projections pt : ΠK → ΠU0

, t ∈ Θ , and Φ ∈ Autc
Θ(ΠK), one has:

1) By Proposition 3.8, all pκt : ΠK → Πκt can be recovered/reconstructed from πt, t ∈ Θ .

Further, pu◦Φ = Φ0◦pt for some t, u ∈ Θ and Φ0 ∈ Aut(ΠU0
) iff Φ

(
ker(pκt)

)
= ker(pκu).

2) By Propositions 3.10 and 3.11, one can recover the total decomposition graph of GDtot
K

of K|k. Further, Φ defines an automorphism of decomposition graphs Φ : GDtot
K
→ GDtot

K
.

3) By Fact 4.2, II), after replacing Φ by a properly chosen `-adic multiple, we can suppose

that Φ is adjusted, hence its Kummer isomorphism φ̂ satisfies φ̂(LK) = LK .

4) By Remark 4.3, 2)–5) above, the group theoretical isomorphism Φt,u : Πκt → Πκu
satisfying Φt,u ◦ pκt = pκu ◦ Φ defines an isomorphism Φt,u : Gκt → Gκu .

5) Therefore, one can recover the Kummer homomorphisms ıκt : κ̂t ↪→ K̂ of pκt for t ∈ Θ ,

and if φ̂t,u : κ̂u → κ̂t is the Kummer morphism of Φt,u, one has φ̂ ◦ ıκu = ıκt ◦ φ̂t,u.
6) Claim. In the above context, suppose that φ̂(LK) = LK. Then φ̂t,u(Lκu) = Lκt.
Proof of the Claim. By Remark 4.3, 3) above, applied to Φt,u : Gκt → Gκu , it follows that

φ̂t,u(Lκu) = ε · Lκt for some ε ∈ Z×` . Now since ıκt(Lκt) ⊂ LK , one must have

ε · LK ⊃ ε · ıκt(Lκt) = ıκt(ε · Lκt) = ıκt
(
φ̂t,u(Lκu)

)
= φ̂

(
ıκu(Lκu)

)
⊂ LK ,

hence (ε · LK) ∩ LK 6= 1. Therefore, ε ∈ Z×(`), and φ̂t,u(Lκu) = ε · Lκt = Lκt , as claimed.

Proposition 4.5. In the above context, for every non-constant t ∈ K, let 〈t, 1−t〉 ⊂ K×

be the subgroup generated by t, 1 − t, and set Σt := K(〈t, 1− t〉)(`) ⊂ LK. Further set

ΣΘ := 〈Σt | t ∈ Θ 〉. Let Φ ∈ Autc(ΠK) be adjusted, i.e., φ̂(LK) = LK. Then one has:

1) If t, u ∈ K× are such that Φ
(

ker(πt)
)

= ker(πu), then φ̂(Σu) = Σt.

2) In particular, if Φ is weakly Θ-compatible, then φ̂(Σ) = Σ.

Proof. Let T0, T1, T∞ ⊂ ΠU0
be the inertia groups above the points t0 = 0, t0 = 1, t0 = ∞,

correspondingly. Then T0, T1, T∞ are the only maximal cyclic subgroups of ΠU0
containing

the non-trivial images πt(Tv), v ∈ DK|k. Further, these inertia groups have canonical gen-
erators τ0, τ1, τ∞, respectively, satisfying the unique relation τ0τ1τ∞ = 1. Hence if Φ0 is an
automorphism of ΠU0

which maps {T0, T1, T∞} onto itself, there exist a unique ε0 ∈ Z×` and

a permutation
(

0 1∞
α β γ

)
such that Φ0(τ0) = τ ε0α , etc. The `-adic dual of ΠU0

is the Z`-module

L̂U0 with generators l0, l1, l∞ defined by li(τj) = δij for i, j ∈ {0, 1,∞}, thus satisfying the
only relation l0 + l1 + l∞ = 0. And after identifying the Tate module Z`(1) with Z`, and
setting Σt0 := 〈t0, 1−t0 〉(`), via Kummer Theory there is a canonical isomorphism

(†) Σ̂t0 → L̂U0 , t0 7→ l0−l∞, 1−t0 7→ l1−l∞
By mere definition, the `-adic dual φ̂0 : L̂U0 → L̂U0 of Φ0 is given by (l0, l1, l∞) 7→ ε0·(lα, lβ, lγ).
To give φ̂0 in terms of Σ̂t0 , recall that for every li− lj, i 6= j, i,j ∈ {0, 1,∞}, there is a unique
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ti,j ∈ Ut0 with ti,j 7→ li − lj, where Ut0 := {t0, 1− t0, 1/t0, 1/(1− t0), t0/(t0 − 1), (t0 − 1)/t0}.
Hence the above bijection (l0, l1, l∞) 7→ ε0 · (lα, lβ, lγ) translates into:

(‡) φ̂0 : Σ̂t0 → Σ̂t0 , t0 7→ tε0α,γ, 1−t0 7→ tε0β,γ.

To 1): For Φ ∈ Autc(ΠK), let t, u ∈ K\k and Φ0 ∈ Aut(ΠU0
) be such that Φ0 ◦ πt = πu ◦ Φ.

Then by Remark 4.4, Φ gives rise to an isomorphisms Φt,u : Πκt → Πκu which is an iso-
morphism of decomposition graphs Φt,u : Gκt → Gκu . Further, by Remark 4.4, Claim, it

follows that the Kummer isomorphism φ̂t,u of Φt,u satisfies: φ̂t,u(Lκu) = Lκt . Hence taking
into account the commutative diagram

ΠK → Πκu → ΠU0

↓Φ ↓Φt,u ↓Φ0

ΠK → Πκt → ΠU0

it follows that its `-adically dual diagram is:

(∗)
LK ← Lκu ← Σε0

t0

↑ φ̂ ↑ φ̂t,u ↑ φ̂0

LK ← Lκt ← Σt0

Arguing as in the proof of the Claim from Remark 4.4, it follows that ε0 · Lκu ∩ Lκu 6= 1,

and therefore, ε0 ∈ Z×(`). Thus taking into account (‡), it follows that φ̂0(Σt0) = Σt0 .

Next recall the canonical projection qt : Πκt → ΠU0
defined by t0 7→ t ∈ κt, which gives rise

to the factorization πt = qt◦pκt . Then the `-adic dual of qt, i.e., its Kummer homomorphism,

is an embedding Σ̂t0 ↪→ κ̂t whose restriction to Σt0 satisfies:

Σt0 ↪→ Lκt , t0 7→ κt(t), 1− t0 7→ κt(1− t).

Hence Σt := κt(〈t, 1−t〉)(`) ⊂ Lκt can be recovered from qt : Πκt → ΠU0
, as being:

(∗)t Σt := κt(〈t, 1−t〉)(`) = im(Σt0 ↪→ Lκt).

The same holds correspondingly for qu : Πκu → ΠU0
defined by t0 7→ u ∈ κu, and we finally

get that Σu := κt(〈u, 1−u〉)(`) ⊂ Lκu can be recovered from qu : Πκu → ΠU0
, as being

(∗)u Σu := κu(〈u, 1−u〉)(`) = im(Σt0 ↪→ Lκu).

Hence by the commutativity of the diagram (∗) above, φ̂(Σu) = Σt.

To 2): Let θ : Θ → Θ be the bijection defining Φ as weakly Θ-compatible, and recall that
ker(πu) = Φ

(
ker(πt)

)
for θ(t) = u. Thus Φ bring adjusted, it follows by assertion 1), that

φ̂(Σu) = Σt for θ(t) = u. Proceed by taking into account that θ is a bijection, etc. �

D) Recovering the rational projections

Recall that the non-constant functions x ∈ K such that κx = k(x), for short general ele-
ments of K, are quite abundant in K. Indeed, by the discussion from [P3], Fact/Definition 43,
one has: Let x, t ∈ K be fixed algebraically independent functions over k, with x separable,
e.g., general. For later use, we notice that the following hold:

a) ta := t+ ax is a general element of K for almost all a ∈ k.

b) ta′,a := t/(a′x+ a) is a general element of K for all a′ ∈ k× and almost all a ∈ k.
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c) ta′′,a′,a := (a′′t+ a′x+ a+ 1)/(t+ a′x+ a) is a general element of K for all a′′ ∈ k and
almost all a′, a ∈ k.

d) Moreover, setting α := a′′ − 1, an obvious direct computation shows the following:

ta′′,a′,a =
a′x+ a+ 1

a′x+ a
· a
′′ta′,a+1 + 1

ta′,a + 1
, αt+ 1 = (ax′ + a)(ta′′,a′,a − 1)/(ta′,a + 1) .

e) Finally, suppose that t, t′ are algebraically independent over k, and let 〈t, t′〉 ⊂ K×

be the multiplicative subgroup generated by t, t′. Then if there is no prime number q
such that both t and t′ are qth powers in K, then 〈t, t′〉 contains general elements. In
general, if there are prime numbers q such that t, t′ are qth powers in K, consider the
maximal number n such that t, t′ are both nth powers in K, say t = tn0 , t′ = t′n0 . Then
there is no prime number q such that both t0 and t′0 are qth powers in K. Hence 〈t0, t′0〉
contains general elements, say x = tr0t

′s
0 with r, s ∈ Z. Hence setting u := xn, one has:

i) u = trt′s ∈ 〈t, t′〉.
ii) κu = k(x) is a rational function field.

Recall that given any u ∈ K(K×)(`), say u = θ · K(u) with u ∈ K× non-constant and some
non-zero θ ∈ Z(`), the Lemma 4.1 above gives a recipe to recover the 1-dimensional quotient
pκu : ΠK → Πκu , and shows that pκu does not depend on the specific u and/or u, but
only on Z(`) · u. Further, by Remark 4.3 above, especially item 5), among the 1-dimensional
projections pκu , one can single out the rational quotients, i.e., satisfying κu = k(x), x ∈ K.

Construction 4.6. In the context of Theorem 2.9, we will construct inductively a sequence
(Σn)n of subsets and a sequence of Z(`)-submodules (Kn)n of K(K×)(`) as follows:

Step 1: Constructing Σ1, K1:

By the hypothesis of Theorem 2.9, one has K = k(Θ). Hence since td(K|k) > 1, there
are algebraically independent t, t′ ∈ Θ . Thus by item e) above, there exists u ∈ 〈Θ , 1−Θ 〉
such that κu = k(x) for some x ∈ K = k(X). In particular, the set Σ1 of all the rational
quotients pκu with u ∈ 〈Θ , 1−Θ 〉 is non-empty. This being said, we let K1 ⊂ LK be the
Z(`)-submodule generated by ΣΘ and the images ıκu(Lκu) = K(κu)(`) for all the pκu ∈ Σ1.

Step (n+ 1): Constructing Σn+1, Kn+1:

Supposing that Σn and Kn ⊆ K(K×)(`) ⊆ LK are constructed, we proceed as follows: For
u ∈ Kn, u 6= 1, let u ∈ K× be such that u ∈ Z(`) · K(u), and pκu : ΠK → Πκu be the 1-dim-
ensional quotient defined by u as indicated at Remark 4.3, 1) above. By Remark 4.3, 5), we
can recover the fact κu|k is a rational function field from GDtot

K
endowed with pκu . Define

Σn+1 to be the set of rational quotients pκu : ΠK → Πκu , u ∈ Kn. We also notice that
by the discussion at Remark 4.3, 4) and 5), it follows that for every pκu ∈ Σn+1 one has
that Lκu = κu(κu

×)(`) is the unique divisorial lattice for κu|k such that ıκu(Lκu) ⊂ LK ,

and therefore ıκu(Lκu) ⊂ K(K×)(`) ⊆ LK . Finally, let Kn+1 ⊆ LK be the Z(`)-submodule

generated by ΣΘ and all the images ıκu(Lκu), pκu ∈ Σn+1, and notice that Kn+1 ⊆ K(K×)(`).
And obviously, Σn ⊆ Σn+1 and therefore, Kn ⊆ Kn+1 for all n ≥ 1.

Proposition 4.7. In the above notations, let Σ := ∪nΣn, K := ∪nKn. Then one has:

1) K = K(K×)(`) and Σ is the set of all the rational quotients pκx : ΠK → Πκx of ΠK.

2) Let the Kummer morphism of Φ ∈ Autc
Θ(ΠK) satisfy φ̂(LK) = LK. Then φ̂(K) = K,

and for every pκx ∈ Σ there exists pκy ∈ Σ such that Φ
(

ker(pκx)
)

= ker(pκy).
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Proof. To 1): We first show that K = K(K×)(`). By hypothesis one has K = k(Θ), hence

every element t ∈ K× is a fraction t′/t′′, where t′, t′′ 6= 0 are polynomials in the elements
of Θ . In particular, it suffices to prove that all the polynomials t′ =

∑n
i aiMi, with ai ∈ k×

and Mi monomials in the elements of Θ , lie in K. For that, we make induction on n.

n = 1: Then t′ = a1M1 with a1 ∈ k× and M1 a monomial in the elements of Θ . But then
K(M1) ∈ ΣΘ , and since by definition one has ΣΘ ⊂ K1 ⊂ K, we are done.

n⇒ (n+ 1): Let t′ =
∑n+1

i aiMi, where n ≥ 1, hence n + 1 ≥ 2, and ai ∈ k×. Setting
bi := ai/an+1 for i = 1, . . . , n and u′ :=

∑n
j=1 bjMj, it follows by the induction hypothesis that

K(u′) ∈ K, hence there exist m > 0 such that K(u′) ∈ Km. Thus setting t := u′/Mn+1, one
has that K(t) = K(u′)/K(Mn+1), hence K(t) ∈ Km, and notice that t′ = an+1Mn+1(t+ 1).
Hence in order to prove that K(t′) ∈ K, it is sufficient to prove that K(t+ 1) ∈ K.

Claim. K(t+ 1) ∈ Km+2.

Indeed, first recall that by the discussion at Step 1, there exists some u ∈ 〈Θ , 1−Θ 〉 such
that κu = k(x) for some x ∈ K, i.e., pκu is a rational quotient of ΠK . Hence by the definition
of K1, one has K(κx×) ⊂ K1, thus K(a′x+ a) ∈ K1 for all a′ ∈ k× and a ∈ k. Hence in the
notations and by the discussion at the beginning of this subsection, one has:

- Since K1 ⊆ Km and K(t) ∈ Km, one has that K(ta′,a) ∈ Km. Further, ta′,a is a general
element of K for all a′ ∈ k× and almost all a ∈ k, a 6∈ a′ · Σt,x for some finite set Σt,x.
Hence by mere definitions, one has that pκta′,a

∈ Σm+1, and therefore, K(κta′,a
× ) ⊂ Km+1.

In particular, setting b := a+1, for almost all a′, a ∈ k one has that a′x+a, a′x+b, ta′,a+1
are general elements of K whose images under K lie in Km+1. And if a′′ := α + 1 ∈ k×,
the element a′′ta′, b + 1 is general as well, and its image under K lies in Km+1 as well.

- Second, taking into account the formula given above under d), it follows that for all
a, a′′ ∈ k and a′ ∈ k×, one has that K(ta′′,a′,a) ∈ Km+1. Further, for all a′′ ∈ k and
and almost all a, a′ ∈ k, it follows that ta′′,a′,a is a general element of K, hence by mere
definitions one has pκta′′,a′,a

∈ Σm+2. Thus concluding that K(κta′′,a′,a
× ) ⊂ Km+2.

Hence we finally conclude that of all α ∈ k and almost all a, a′ ∈ k, one has:

αt+ 1 = (a′x+ a)(ta′′,a′,a − 1)/(ta′,a + 1),

and therefore, K(αt + 1) ∈ Km+2 for all α ∈ k. This concludes the proof of the Claim,
thus of the fact that K = K(K×). Finally, the assertion that ∪nΣn consists of all rational
quotients of ΠK is more or less clear: Let namely x ∈ K be such that pκx : ΠK → Πκx is a
rational quotient. Since K(x) ∈ K, and K = ∪nKn, one has K(x) ∈ Kn for n sufficiently
large. But then by mere definitions, for every such n, one has that pκx ∈ Σn+1.

To 2): We first claim that for every n > 0 and every pκx ∈ Σn there exists some pκy ∈ Σn

such that Φ
(
ker(pκx)

)
= ker(pκy) and φ̂(Kn) = Kn. We prove this by induction on n:

n = 1: Recall that Σ1 consists of all the rational quotients pκx : ΠK → Πκx of the form
k(x) = κu, u ∈ ΣΘ . Notice that pκu being a rational quotient of ΠK depends on Z(`) · K(u)
only, and not on the specific u. Now let Φ ∈ Autc

Θ(ΠK) be adjusted, i.e., its Kummer

isomorphisms φ̂ satisfies φ̂(LK) = LK . Then by Proposition 4.5, one has that φ̂(ΣΘ) = ΣΘ .

For pκu ∈ Σ1, let φ̂(u) = α · K(t) for some t ∈ 〈Θ , 1−Θ 〉 and α ∈ Z(`). Then pκt ◦ Φ = pκu
is a rational projection of ΠK , hence pκt ∈ Σ1, as claimed. In particular, for Φ ∈ Autc

Θ(ΠK)
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and φ̂ are as above, one has φ̂(Lκu) = Lκt ⊂ K1. Since this is true for all pκu ∈ Σ1 and for

ΣΘ as well, we conclude that φ̂(K1) = K1.

n⇒ (n+ 1): By the induction hypothesis, we have φ̂(Kn) = Kn, and by the construction

of Kn one has Kn ⊂ K(K×)(`). Thus ∀ x ∈ Kn ∃ y ∈ Kn such that φ̂(x) = y. Now if x, y ∈ K×
are such that x ∈ Z(`)·K(x) and y ∈ Z(`)·K(y), let pκx and pκy be the 1-dimensional quotients
defined by κx and κy as indicated at Remark 4.3, 3). Then by loc.cit., 1), and reasoning
as in the proof of Lemma 4.8, 1) below, it follows that {Tv ⊂ Zv | v ∈ D1

x } is mapped by
Φ isomorphically onto the {Tw ⊂ Zw | w ∈ D1

y }. But then by Lemma 4.8 below, it follows
there is an isomorphism of profinite groups Φx,y : Πκx → Πκy satisfying Φx,y ◦ pκx = pκy ◦Φ
and defining an isomorphism of decomposition graphs Φx,y : Gκx → Gκy , and the Kummer

morphism φ̂x,y : κ̂y → κ̂x of Φx,y satisfies φ̂x,y(Lκy) = Lκx . In particular, pκx is a rational
quotient iff pκy is so. Thus we conclude that for every rational quotient pκx ∈ Σn+1, there
exists pκy ∈ Σn+1 and an isomorphism Φx,y as above such that Φx,y ◦ pκx = pκy ◦Φ. Clearly,
Σn+1 → Σn+1 via pκx 7→ pκy , defines a bijection. And notice that the Kummer isomorphism

φ̂ of Φ satisfies φ̂
(
ıκy(Lκy)

)
= ıκx(Lκx). Thus since Kn+1 is generated by ΣΘ and all the

K(κ×x ) with pκx ∈ Σn+1, we get: φ̂(Kn+1) = Kn+1, hence Kn+1 is invariant under φ̂. Finally,
since K := ∪nKn and Σ := ∪nΣn, the above discussion concludes the proof. �

Lemma 4.8. In the above notations, let Φ ∈ AutcΘ(ΠK) be such that its Kummer isomor-

phism φ̂ satisfies φ̂(LK) = LK. Then for x, y ∈ K\k, one has:

1) The automorphism Φ maps the divisorial subgroups Tv ⊂ Zv, v ∈ D1
x isomorphically

on the divisorial subgroups Tw ⊂ Zw, w ∈ D1
y if and only if Φ

(
ker(pκx)

)
= ker(pκy).

2) Let ker(pκy) = Φ
(
ker(pκx)

)
. Then the abstract isomorphism Φx,y : Πκx → Πκy

induced by Φ defines an isomorphism of decomposition graphs Φx,y : Gκx → Gκy
whose Kummer isomorphism φ̂x,y : κ̂y → κ̂x satisfies φ̂x,y(Lκy) = Lκx.

Proof. For every divisorial subgroup Tv ⊂ Zv of ΠK and its image Φ(Tv) = Tw ⊂ Zw = Φ(Tv)
under Φ, one has the following, see e.g., [P3], Remark 26:

a) φ̂ maps Ûw isomorphically onto Ûv.

b) φ̂ maps ker(w) isomorphically onto ker(v).

In particular, v ∈ D1
x iff x ∈ Ûv and v(x) 6= 1 iff y ∈ Ûw and w(y) 6= 1 iff w ∈ D1

y.

Thus using a), b) above, by Lemma 4.1, we conclude that {Tv ⊂ Zv | v ∈ D1
x } is mapped

isomorphically onto {Tw ⊂ Zw | w ∈ D1
y } iff φ̂ maps κ̂y,fin isomorphically onto κ̂x,fin. On the

other hand, hand, by taking `-adic duals, we conclude that φ̂ maps κ̂y,fin isomorphically onto
κ̂x,fin iff Φ

(
ker(pκx)

)
= ker(pκy). This concludes the proof of assertion 1).

To 2): By 1) above, Φ maps {Tv ⊂ Zv | v ∈ D1
x } isomorphically onto {Tw ⊂ Zw | w ∈ D1

y }.
Further, by Remark 4.3, 3), we have: Let v ∈ D1

x be given, and vα be the restriction of v on
κx. Then Φ(Tv) = Tw for some prime divisor w of K|k such that pκy(Tw) = Φx,y

(
pκx(Tv)

)
,

thus pκy(Tw) is non-trivial, because pκx(Tv) is so, and Φx,y is an isomorphism. Therefore,
the restriction wβ of w to κy is non-trivial. Further, since Φx,y is an isomorphism, and Tva is
the unique maximal pro-cyclic subgroup of Πκx containing pκx(Tv), it follows that Φx,y(Tva)
is the unique maximal pro-cyclic subgroup of Πκy which contains pκy(Tw). We conclude that

Φx,y(Tva) = Twb for some b ∈ Xy(k), where Xy is the projective smooth model of κy|k. Thus
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Φx,y : Gκx → Gκy is an (abstract) isomorphism of decomposition groups. Finally, one has

ıκx(Lκx) ⊂ LK and ıκy(Lκy) ⊂ LK . Since φ̂◦ıκy = ıκx ◦φ̂x,y, it follows that L′κx := φ̂x,y(Lκy)
is a divisorial lattice for κx|k such that

ıκx(L′κx) = ıκx
(
φ̂x,y(Lκy)

)
= φ̂

(
ıκy(Lκy)

)
⊂ φ̂(LK) = LK .

Thus ıκx(L′κx) ⊂ LK . Hence by the uniqueness of Lκx with the property that ıκx(Lκx) ⊂ LK ,

it follows that L′κx = Lκx . Thus we conclude that φ̂x,y(Lκy) = L′κx = Lκx , as claimed. �

5. Concluding the proof of Theorem 2.9

The injectivity of AutΘ(K i)→Autc
Θ(ΠK) follows from the one of Aut(K i)→Autc(ΠK),

which is well known, and we will not repeat the quite standard arguments here.

For the surjectivity of AutΘ(K i) → Autc
Θ(ΠK), let Φ ∈ Autc

Θ(ΠK) be given. Then by
Proposition 4.7 above, Φ defines an isomorphism GDtot

K
→ GDtot

K
which is compatible with all

the rational quotients Φκx : GDtot
K
→ Gκx . Hence by the Main Theorem from [P3], Intro-

duction, it follows that there exists an isomorphism of fields φ : K i → K i and some `-adic
unit ε ∈ Z×` such that ε · Φ is defined by φ, i.e., if φ′ is some prolongation of φ to K ′, then

ε ·Φ(g) = φ′−1g φ′ for all g ∈ ΠK . This proves assertion i) of Theorem 2.9. For assertion ii),
we notice that replacing Φ by Φε := ε · Φ,8 we can suppose that actually ε = 1, and there-
fore, the Kummer isomorphism of Φ is simply the `-adic completion of the multiplicative
isomorphism φ : K×→ K×. Then by the commutativity of the diagram (∗) from the proof

of Proposition 4.5, one has that φ̂(Lκu) = Lκt , hence φ̂(κ̂u) = κ̂t. Thus since κ̂x 6= κ̂y for

κx 6= κy, we conclude that φ(κui ) = κti. Further, by loc. cit., one has that φ̂(Σu) = Σt.

For t ∈ Θ consider the corresponding u ∈ Θ and Φ0 ∈ Aut(ΠU0
) such that Φ0◦πt = πu◦Φ.

Then recalling the notations and facts from the first part of the proof of Proposition 4.5,
especially the facts (†) and (‡), it follows that the `-adic dual of Φ0 is defined by

φ̂0 : Σ̂t0 → Σ̂t0 , t0 7→ tεα,γ, 1−t0 7→ tεβ,γ,

where ti,j ∈ Ut0 := {t0, 1− t0, 1/t0, 1/(1− t0), t0/(t0 − 1), (t0 − 1)/t0} is the unique function
with divisor i− j for i, j ∈ {0, 1,∞}, i 6= j. Further, the commutative diagram (∗) from the
proof of Proposition 4.5, gives rise canonically to the commutative diagram below:

(∗)
Σt0 → Σu t0 7→ u
↓ φ̂0 ↓ φ̂t,u ↓ ↓
Σt0 → Σt φ̂0(t0) 7→ φ̂t,u(u)

Finally, recalling that ε ∈ Z(`), let us write ε = m/n with m,n ∈ Z, n > 0. Then the

equalities φ̂0(t0) = tεα,γ, φ̂0(1−t0) = tεβ,γ are equivalent to φ̂0(t0)n = tmα,γ, φ̂0(1−t0)n = tmβ,γ.

Thus recalling that φ̂0 and φ̂t,u are induced by the field isomorphism φ : K i → K i, it follows
that there exists a field isomorphism φ0 : k(t0)i → k(t0)i, and a, b ∈ k× such that:

φ0(t0)n = atmα,γ, φ0(1−t0)n = btmβ,γ,

where tα,γ, tβ,γ ∈ Ut0 are as introduced above.

On the other hand, since φ0 ∈ Aut(k(t0)i), it follows that t0, tα,γ, tβ,γ are purely inseparable
over the field k(t0) = k(tα,γ) = k(tβ,γ). Hence we conclude that m,n are actually powers of

8 Note that by mere definition, Φ and Φε represent the same element in AutcΘ(ΠK).
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the characteristic exponent p, thus ε = m/n = pe for some e ∈ Z, and one has: φ0(t0) = atp
e

α,γ,

φ0(1−t0) = btp
e

β,γ, and since φ0 is a field morphism, we finally get:

1− atpeα,γ = btp
e

β,γ for some a, b ∈ k×

Recalling that (tα,γ) = α − γ, (tβ,γ) = β − γ are the divisors of tα,γ, respectively tβ,γ, and
that the functions from Ut0 = {t0, 1 − t0, 1/t0, 1/(1 − t0), t0/(t0 − 1), (t0 − 1)/t0} take only
the values 0, 1,∞ on {α, β, γ} = {0, 1,∞}, one has:

a) Since tβ,γ(β) = 0, one has 1− a tα,γ(β) = 0, and therefore, a = 1.

b) Since tα,γ(α) = 0, one has 1 = b tβ,γ(α), and therefore, b = 1.

Thus going back to φt,u : κui → κti via t0 7→ u, we get:

∀ t∈Θ ∃ e∈ Z ∃u∈Θ s.t. φ(u) = tp
e

φ , tφ ∈ {t, 1− t, 1/t, 1/(1− t), t/(t− 1), (t− 1)/t},
and this completes the proof of assertion ii) of Theorem 2.9.

6. Proof of Theorem 2.6

A) Proof of assertion 1)

Recall that k := k, K0 = k0(X), and K = k(X), hence Galk0 = Auti(k|k0) = Auti(K|K0).
Therefore, the injectivity of the canonical maps Galk0 → Autc

VX (K i) → Autc
VX (ΠK) follows

by the fact that the canonical maps Galk0 = Auti(K|K0)→ Aut(ΠK) are obviously injective.

Concerning the surjectivity of Galk0 → Autc
VX (ΠK), let Φ ∈ Autc

VX (ΠK) be given. Then
by mere definition, Φ satisfies condition i) from Definition/Remark 2.4, 1), hence Φ is Θ-
compatible with respect to the bijection θ = idΘ of Θ . Therefore by Theorem 2.9, there
exists a φ ∈ AutΘ(K i) which defines Φ as indicated in loc.cit. Recalling that K ′|K is the
maximal abelian pro-` extension of K i, let φ′ : K ′ → K ′ be the prolongation of φ to K ′.

Claim. φ is VX-compatible in the sense of Definition/Remark 2.2, 2).

Indeed, since φ is Θ-compatible with respect to idΘ : Θ → Θ , it follows that φ satis-
fies condition i) from Definition/Remark 2.2, 2). To show that φ satisfies condition ii), from
loc.cit., let ϕ : X 99KX be the birational map corresponding to φ. Since Φ ∈ Autc

VX (ΠK) is
VX-compatible, one has by mere definitions: First, for all Ui ∈ B on which ϕ is defined, one
has Φ

(
ker(pUi)

)
= ker(pUi), where pUi : ΠK → ΠUi

is the canonical projection. In particu-
lar, if KUi |K is the fixed field of ker(pUi) in K ′, it follows that φ′ maps KUi isomorphically
onto itself. On the other hand, setting Vi := ϕ(Ui), it follows by Galois functionality that
the fix field KVi of ker(pVi) in K ′ is nothing but KVi = φ′(KU i

). Hence we conclude that

ker(pVi) = ker(pU i). Hence by Definition/Remark 2.1 one has: First, Vi,max = Ui,max. Second,

since Vi = ϕ(Ui), it follows by mere definitions that Vi,max = ϕ(Ui)max. Third, if ϕ is defined
on Ui,max, one has ϕ(Ui,max) = ϕ(Ui)max. Hence finally, if ϕ is defined on Ui,max, one must
have ϕ(U i,max) = Ui,max, thus proving condition ii) from Definition/Remark 2.2, 2).

Finally, since φ is VX-compatible, it follows by Remark/Definition 2.2, 3), that φ lies in
the image of Galk0 → Aut(K i). This completes the proof of assertion 1) of Theorem 2.6.

Language: If Φσ := ρc
VX (σ), we will simply say that Φσ is defined by σ.
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B) Proof of assertion 2)

For every X ∈ V , let K0 := k0(X) ↪→ k(X) =: K be the corresponding embedding
of function fields, and consider the subextension KX |K of K ′|K defining the canonical
projection ΠK → ΠX = Gal

(
KX |K

)
. Let ΦV := (ΦX′)X′ ∈ Autc(ΠV) be given, thus

ΦX′ ∈ AutGGGout(ΠX′) for every X ′ ∈ V .

Lemma 6.1. For every X ∈ V there exists σX ∈ Galk0 such that ΦX = ρc
X(σX). Moreover,

if Y ≺ X, and ΠY is torsion free, then ΦY = ρc
Y (σX).

Proof. First, suppose that X ∈ V is such that dim(X) > 1, and V contains some category
VX which satisfies Hypothesis (H). Then the restriction of ΦV to ΠVX is an automorphism

ΦVX := (ΦU)U∈VX ∈ Autc(ΠVX ) ↪→ Autc
VX (ΠK).

Hence by the now proven assertion 1) of Theorem 2.6, there exists a unique σ ∈ Galk0 with

ΦVX = ρc
VX (σ) =

(
ρc
U(σ)

)
U∈VX

.

Now let X ∈ V be arbitrary. Since V satisfies Hypothesis (H), by Definition 2.5, there exists
X̃ ∈ V such that the following hold: First, V contains a subcategory VX̃ which satisfies
Hypothesis (H), and second, there exists U ∈ VX̃ such that X ≺ U and ΠU → ΠX is
surjective. In particular, by the discussion above, there is a unique σ ∈ Galk0 such that

ΦVX̃ = ρc
VX̃

(σ) =
(
ρc
U(σ)

)
U∈VX̃

.

Hence since ΦV = (ΦX′)X′ is compatible with V-morphisms, one gets: Let U → X be
the dominating morphisms defining X ≺ U , thus giving rise to the surjective projection
pUX : ΠU → ΠX . Then ΦU = ρc

U(σ) together with compatibility with pUX give:

ΦX ◦ pUX = pUX ◦ ΦU = pUX ◦
(
ρc
U(σ)

)
=
(
ρc
X(σ)

)
◦ pUX .

Hence ΦX(g) =
(
ρc
X(σ)

)
(g) for all g ∈ im(pUX) = ΠX , thus concluding that ΦX = ρc

X(σ).

Next let Y ≺ X, thus by definition, there exists a dominant morphism X → Y which
is a V-morphism. Then the canonical projection pXY : ΠX → ΠY defined by X → Y has
open image. Hence reasoning as above, it follows that ΦY ◦ pXY and

(
ρc
Y (σ)

)
◦ pXY coincide

on im(pXY ), which is an open subgroup of ΠY . Since ΠY has no torsion, we conclude that
actually ΦY = ρc

Y (σ). �

We now complete the proof of assertion 2) as follows. Let X ∈ V be such that dim(X) > 1
and V contains a subcategory VX satisfying Hypothesis (H), and σ ∈ Galk0 be the unique ele-
ment such that ΦVX = ρc

VX (σ). We claim that ΦX′ = ρc
X′(σ) for all X ′ ∈ V . By contradiction,

suppose that there exists Y ∈ V such that ΦY 6= ρc
Y (σ). Since V satisfies Hypothesis (H),

by Definition 2.5, it follows that there exists Ỹ ∈ V with dim(Ỹ ) > 1 such that V contains
a subcategory VỸ satisfying Hypothesis (H), and there is some V ∈ VỸ with ΠV → ΠY

surjective. Hence if τ ∈ Galk0 is the unique element with ΦVỸ = ρc
VỸ

(τ), then reasoning as

in the proof of Lemma 6.1, it follows that ΦV = ρc
V (τ) for all V ∈ VỸ , thus ΦY = ρc

Y (τ) as
well. Hence τ 6= σ, implies that there exists a finite quotient

ψ : Galk0 → G such that ψ(σ) 6= ψ(τ).
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Since by assertion 1) of the Theorem, the representations ρc
VX̃

and ρc
VỸ

are injective, by mere

definitions one has: For all small enough U ∈ VX̃ , V ∈ VỸ , one has:

ker(ρc
U), ker(ρc

V ) ⊂ ker(ψ), thus ΦU = ρc
U(σ) 6= ρc

U(τ), ΦV = ρc
V (τ) 6= ρc

V (σ),

and further, for U, V small enough, ΠU and ΠV have no torsion.

Since V is connected, there exist m > 0 and Xi ∈ V , 0 6 i < 2m, such that X0 = U ,
X2m = V and X2i, X2i+2 ≺ X2i+1. We will get a contradiction by induction on m.

m = 1: We have U = X0, V = X2, thus U, V ≺ X1. Then if ΦX1 = ρc
X1

(σ1), it follows
by Lemma 6.1 applied to U, V ≺ X1 that ΦU = ρc

U(σ1), ΦV = ρc
V (σ1); thus finally getting

ρc
U(σ) = ΦU = ρc

U(σ1) and ρc
V (τ) = ΦV = ρc

V (σ1). We thus get a contradiction, because
ρc
U(σ) = ρc

U(σ1), ρc
V (τ) = ρc

V (σ1) together with ker(ρc
U), ker(ρc

V ) ⊂ ker(ψ) imply:

ψ(σ) = ψ(σ1) = ψ(τ).

m ⇒ (m+ 1): By the induction hypothesis, it follows that ΦX2m = ρc
X2m

(σ). Second, since
X2m, X2m+2 ≺ X2m+1, it follows by the case m = 1 that ΦX2m+2 = ρc

X2m+2
(σ). Thus since

X2m+2 = Y , conclude that ΦY = ρc
Y (σ), as claimed.

The proof of Theorem 2.6 is complete.

7. Proof of Theorem 2.7

We first notice that assertion 2) follows from assertion 1) in the same way as assertion 2)
of Theorem 2.6 was deduced from assertion 1) of Theorem 2.6, that is, in more or less
formal way. Therefore, we will not repeat this standard arguments, but rather concentrate
on giving a proof of assertion 1) of Theorem 2.7. Moreover, we will prove this assertion
–hence Theorem 2.7 as a whole– in a more general situation , see subsection B) below.

A) Absolute/tame Galois theory of generalized (quasi) prime divisors

To begin with, let K̃|K be a Galois extension of K which is `-closed, i.e., satisfying the
equivalent conditions: i) K̃ has no cyclic `-extensions; ii) Every a ∈ K̃ is an ` th power in K̃.

We denote by G̃K := Gal
(
K̃ |K

)
the Galois group of K̃|K, and for subextensions L|K of

K̃|K, we set L̃ := K̃, and G̃L := Gal
(
L̃ |L

)
. For valuations v of K, and their prolongations

ṽ to K̃, we set w := ṽ|L, and notice that w prolongs v to L, and w̃ := ṽ is a prolongation of
w to L̃ := K̃. Let Tṽ ⊆ Zṽ be their inertia/decomposition groups in G̃K . By general decom-
position theory we have: The prolongations ṽ of a fixed v, thus their inertia/decomposition
groups Tṽ ⊆ Zṽ, are G̃K-conjugated. Further, Tw̃ = Tṽ ∩ G̃L and Zw̃ = Zṽ ∩ G̃L. Finally,
if L|K is Galois, then denoting by Tw|v ⊆ Zw|v the inertia/decomposition groups of w in

Gal
(
L |K

)
, it follows that Tw|v ⊆ Zw|v are the images of Tṽ ⊆ Zṽ under G̃K → Gal

(
L|K

)
.

Remark 7.1. Let L|K be a finite subextension of K̃|K. Then since K̃ is `-closed, K̃
contains (isomorphic copies of) the maximal pro-` abelian, respectively abelian-by-central,
extensions L′|L ↪→ L′′|L ↪→ K̃|L of L; in particular, K ′|K ↪→ K ′′|K ↪→ K̃|K holds as well.
Recalling the canonical projection Πc

L → ΠL, in the above notation, one has:

a) Πc
L → Πc

K , ΠL → ΠK have open images, and if L|K is Galois, so are L′|K, L′′|K.

b) For ṽ |v and w := ṽ|L, etc., as above, the images of Tw ⊂ Zw ⊂ ΠL under ΠL → ΠK

are open subgroups of Tv ⊂ Zv ⊂ ΠK , respectively.
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c) Moreover, v is (quasi) prime divisor iff w is a (quasi) prime divisor, and if so, T 1
v ⊂ Z1

v

is the only (quasi) divisorial subgroup of ΠK containing the image of T 1
w ⊂ Z1

w.

d) Conclusion. The divisorial subgroups Tw ⊂ Zw of ΠL are precisely the quasi divisorial
subgroups of ΠL which are mapped into divisorial subgroups of ΠK.

Lemma 7.2. In the above notations, for every finite Galois subextension L|K of K̃|K,
consider the action of Gal

(
L|K

)
on the subsets of ΠL defined by the conjugation. Then for

every generalized (quasi) divisorial subgroup Tw ⊆ Zw of ΠL one has: Zw|v ⊆ Gal
(
L |K

)
is

precisely the stabilizer of Tw ⊆ Zw in Gal
(
L|K

)
.

Proof. For g ∈ Gal
(
L |K

)
arbitrary, consider the prolongation wg := w ◦ g of v to L. Then

wg is a generalized (quasi) prime divisor of L|k. And since every generalized (quasi) prime
divisor of L|k is uniquely determined by its decomposition group in ΠL, we have: Zw = Zwg iff
w = wg iff g ∈ Zw|v. Now suppose that g ∈ Zw|v. Then by the functoriality of decomposition

theory as briefly explained above, there exists a preimage g′ ∈ Gal
(
L′ |K

)
of g which lies in

the decomposition group Zw′|v of some prolongation w′ of w to L′. But then w′ ◦ g′ = w′,

hence g′−1Zw′|vg
′ = Zw′|v, thus also g′−1Zw′|wg

′ = Zw′|w, because Zw′|w ⊆ Zw′|v is a normal
subgroup. Thus conclude that g stabilizes Zw := Zw′|w. In the same way, if g 6∈ Zw|v, then

wg 6= w, thus Zwg 6= Zw. Then reasoning as above, if g′ is some preimage of g in Gal
(
L′ |K

)
and w′g := w′ ◦ g′, then w′g is a prolongation of wg to L′, thus Zw′|w =: Zw 6= Zwg := Zw′g |wg .

On the other hand, Zw′g |w = g′−1Zw′|wg
′, thus we conclude that Zw 6= Zg

w, as claimed. �

Remarks 7.3. As a corollary of the Lemma 7.2 above we have a description of the inertia/de-
composition groups of generalized (quasi) prime divisors v in G̃K as follows: Let Li|K be
the inductive family of all the finite Galois subextensions of K̃|K. Then K̃ = ∪iLi, and G̃K

is the projective limit of the projective surjective system of finite groups Gi := Gal
(
Li |K

)
.

And if ṽ|v are as above, and vi := ṽ|Li for every i, then Tṽ ⊂ Zṽ is the projective system of
all the Tvi|v ⊆ Zvi|v. Therefore we have:

1) Giving a compatible system (vi)i of generalized (quasi) prime divisors of (Li)i above v,
i.e., such that vi = vj|Li for all Li ⊂ Lj, and v = vi|K , is equivalent to giving a
compatible system (Zvi)i of generalized (quasi) divisorial subgroups in (ΠLi

)i , i.e.,
such that the canonical projection pLjLi : ΠLj

→ ΠLi
maps Zvj into Zvi for all Li ⊂ Lj,

and pLi : ΠLi
→ ΠK maps Zvi into Zv.

(∗) Giving the compatible system (vi)i with v = vi|K is equivalent to giving a prolongation
of ṽ of v to K̃ which is defined by ṽ|Li := vi.

2) For ṽ↔ (vi)i as above, the decomposition groups Zvi|v ⊆ Gi are precisely the stabilizers
of Zvi in Gi. And (Zvi|v)i is a surjective projective subsystem of (Gi)i, which has

Zṽ ⊂ G̃K as a projective limit. Thus one can recover Zṽ ⊂ G̃K from the system of
group extensions 1 → ΠLi

→ Gal
(
L′i |K

)
→ Gal

(
Li |K

)
= Gi → 1 together/endowed

with the decomposition groups Zvi ⊂ ΠLi
for all Li|K.

3) We finally notice that the canonical projection p̃Li : G̃Li → ΠLi
maps Tṽi ⊆ Zṽi onto

Tvi ⊆ Zvi for all Li. In particular, p̃K : G̃K → ΠK maps Tṽ ⊆ Zṽ onto Tv ⊆ Zv.
32



Next let Φ̃ : G̃K → G̃K be an automorphism of G̃K . Since (G̃Li)i is the system of all the

open normal subgroups of G̃K , it follows that Φ̃ maps each G̃Li isomorphically onto some

G̃Mi
, where (Mi)i is some degree and inclusion preserving permutation of the (Li)i.

4) Since the kernels of the canonical projections p̃c
K : G̃K → Πc

K and p̃K : G̃K → ΠK are

characteristic in G̃K , it follows that Φ̃ gives rise to isomorphisms Φc
K : Πc

K → Πc
K and

ΦK : ΠK → ΠK such that ΦK is the abelianization of Φc
K .

5) Moreover, if L|K is one of the Li|K, and M |K is the corresponding Mi|K, the same is
true correspondingly for each of the canonical projections p̃c

L : G̃L → Πc
L, p̃L : G̃L → ΠL,

respectively p̃c
M : G̃M → Πc

M , p̃M : G̃M → ΠM . Moreover, Φ̃ : G̃K → G̃K gives rise

to isomorphisms Φc
L : Πc

L → Πc
M , ΦL : ΠL → ΠM which satisfy: Φc

L ◦ p̃c
L = p̃c

M ◦ Φ̃,

respectively ΦL ◦ p̃L = p̃M ◦ Φ̃.

6) If pc
L : Πc

L → Πc
K and pL : ΠL → ΠK are the canonical projections, then p̃c

K = pc
L ◦ p̃c

L

and p̃K = pL ◦ p̃L, and correspondingly for M |K. Finally Φc
L and ΦL are compatible

with p̃c
L and p̃c

M , respectively, p̃L and p̃M , i.e., one has commutative diagrams:

(∗)
Πc
L

Φc
L−→ Πc

M ΠL

ΦL−→ ΠM

↓ pc
L ↓ pc

M ↓ pL ↓ pM
Πc
K

Φc
K−→ Πc

K ΠK

ΦK−→ ΠK

7) Since ΦLi is the abelianization of Φc
Li

, by the characterization of the quasi r-divisorial
subgroups, see [P4], especially Proposition 3.5, one has: Let Tvi ⊆ Zvi be a quasi r-
divisorial subgroup for Li|k. Then ΦLi(Tvi) ⊆ ΦLi(Zvi) is a quasi r-divisorial subgroup
of ΠMi

, say equal to Twi ⊆ Zwi for some quasi prime r-divisor wi of Mi|k. Further,
setting v := vi|K , w := wi|K , one has that pLi(Tvi) ⊆ pLi(Zvi) are open subgroups in
Tv ⊆ Zv, respectively, and correspondingly for wi|w. Finally, ΦK : ΠK → ΠK maps
Tv ⊆ Zv isomorphically onto Tw ⊆ Zw.

8) Performing the above steps for every finite Galois subextension Li|K of K̃|K and the
corresponding Mi|K, one has: The isomorphism ΦLi|K : Gal

(
Li |K

)
→ Gal

(
Mi |K

)
induced by Φ̃ maps the stabilizer of Zvi in Gal

(
Li |K

)
isomorphically onto the stabilizer

of Zwi in Gal
(
Mi |K

)
. Thus taking limits we get: If the system (vi|v)i is compatible,

say defining ṽ|v on K̃|K, then the system (wi|w)i is compatible as well, and defines
w̃|w on K̃|K, and Φ̃ maps Tṽ ⊆ Zṽ isomorphically onto Tw̃ ⊆ Zw̃.

B) Proof of assertion 1) of Theorem 2.7

We will prove actually a stronger result, in which we replace the maximal tame subex-
tension Kt|K of K|K, as used in Theorem 2.7, by any subextension K̃|K of Kt|K such
that K̃ is `-closed. Equivalently, K̃|K is a Galois extension such that K̃ is `-closed, and for
all prime divisors v of K|k satisfies the following equivalent conditions:

i) K̃|K is tamely ramified above v.

ii) The inertia group Tṽ of ṽ|v is a procyclic group of order prime to char(k0).

The proof uses in an essential way Theorem 2.6. Reasoning as in the proof of assertion 1)
of Theorem 2.6, we instantly see that assertion 1) of Theorem 2.7 is equivalent to the fact
that for every Φ̃ ∈ AutΘ(G̃K) there exists an automorphism φ̃ of K̃ which maps k0(X)i onto
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itself and satisfies Φ̃(g) = φ̃
−1
g φ̃ for all g ∈ G̃K . Note that if φ̃ exists, then φ̃ is unique up

to Frobenius twists, because k0 is perfect, thus k0(X) ↪→ k(X) = K is a Galois extension.

• Let Φ̃ ∈ AutΘ(G̃K) be given.

First recall that since the kernels of the homomorphisms G̃K → Πc
K → ΠK are characteris-

tic, one has canonical homomorphisms Aut(G̃K)→ Aut(Πc
K)→ Aut(ΠK), and furthermore,

the image of Aut(G̃K) → Aut(ΠK) equals the image of Out(G̃K) → Aut(ΠK), and these
images are contained in Autc(ΠK). And obviously, directly from the definition, it follows

that since Φ̃ ∈ AutΘ(G̃K), its image ΦK ∈ Autc(ΠK) lies actually in Autc
Θ(ΠK). Hence

by Theorem 2.6, 1), it follows that there exists (a unique) σ ∈ Galk0 which defines ΦK , i.e.,
ΦK ∈ Autc(ΠK) is the image of σ under the canonical representation Galk0 → Autc(ΠK).
Equivalently, recalling that K0 := k0(X), one has by mere definitions: There exist ε ∈ Z×`
and a prolongation φ′σ of σ to K ′ such that

ε · ΦK(g) = φ′σ ◦ g ◦ φ′σ
−1

for all g ∈ ΠK .

Thus setting Φσ := ε · ΦK , and letting Φ̃σ be any prolongation of Φσ to K̃, it follows that

Φ̃σ ∈ AutΘ(G̃K), and Φ̃σ equals ρt
VX (σ) up to inner G̃K-conjugation. Hence Φ̃

−1◦ Φ̃σ satisfies:

a) Φ̃
−1◦ Φ̃σ ∈ AutΘ(G̃K), because Φ̃, Φ̃σ ∈ AutΘ(G̃K).

b) The image Φ−1
K ◦ Φσ of Φ̃

−1◦ Φ̃σ in Aut(ΠK) is the multiplication by ε ∈ Z×` on ΠK .

Hence after replacing Φ̃ by Φ̃
−1◦ Φ̃σ, the assertion 1) of Theorem 2.7 follows from:

Key Lemma 7.4. Let Φ̃ ∈ AutΘ(G̃K) be such that its image ΦK ∈ Aut(ΠK) is ΦK = ε · id
for some ε ∈ Z×` . Then Φ̃ is the conjugation by some φ̃ ∈ G̃K on G̃K, hence ε = 1.

In order to prove the Key Lemma above, we first notice that by Remarks 7.3, 3), above,
in the notations from there, it follows that for every (quasi) prime divisor v of K|k and some
prolongation ṽ to K̃ one has: pK(Tṽ) = Tv and pK(Zṽ) = Zv. Thus letting w and w̃ be the
unique (quasi) prime divisor K|k, respectively its prolongation to K̃, with Φ̃(Tṽ) = Tw̃ and
Φ̃(Zṽ) = Zw̃ one has: pK(Zw̃) = ΦK(Zv) = ε · Zv = Zv and pK(Tw̃) = ΦK(Tv) = ε · Tv = Tv.
We therefore conclude that v = w, thus w̃ is itself a prolongation of w = v to K̃. In other
words, for every (quasi) prime divisor v of K|k, the automorphism Φ̃ maps the conjugacy
class of inertia/decomposition groups {σTṽ σ−1 ⊂ σZṽ σ

−1 | σ ∈ G̃K} onto itself.

We next recall some facts about valuation-tame fundamental groups. Let X → k be a
proper normal model of K|k. For every Zariski open subset U ⊂ X, let DU be the set of
prime divisors of K|k which have a non-trivial center on U , and T tDU ⊆ Gt

K be the closed
subgroup of Gt

K generated by Tṽ for all ṽ|v, v ∈ DU . We set πtDU := Gt
K/T

t
DU and call πtDU

the valuation-tame fundamental group of U . Obviously, if U ′′ ↪→ U ′, then there is a canonical
surjective projection πtDU′′ → πtDU′ , and if (Ui)i∈I is a basis of Zariski open neighborhoods of

the generic point ηX , then πtDUi
, i ∈ I, is a projective surjective system of profinite groups

having G t
K as projective limit. See e.g., [K–S] for other forms of tame fundamental groups.

Claim 1. πtDU is topologically finitely generated.

Indeed, by the alteration theory, there exists a generically finite cover Z → X such that
letting V ⊂ Z be the preimage of U under Z → X, one has:
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a) Z is a projective smooth k-variety.

b) Z \V is a normal crossings divisor in Z.

Let K = k(X) ↪→ k(Z) =: N be the generic fiber of Z → X, and DN |k → DK|k, w 7→ v,
be the (surjective) restriction map for the prime divisors. Then the canonical projection
Gal

t

N → Gal
t

K has an open image, and for w 7→ v one has: w has a center on V if and only
if v has a center on U . Therefore, Gal

t

N → Gal
t

K maps T tDV into T tDU , thus gives rise to a
projection πtDV → πtDU which has open image. On the other hand, since Z is smooth and Z\V
is a normal crossings divisor, one has that πt1(V ) = πtDV , and πt1(V ) is topologically finitely
generated. (More precisely, by Grothendieck’s theory of tame fundamental groups, one has
that ker

(
πt1(V ) → πt1(Z)

)
is generated by properly chosen tame inertia elements above the

irreducible components of Z \V .) Since πtDV → πtDU has open image, and the former group
is finitely generated, we conclude that πtDU is finitely generated as well, as claimed.

Let T̃DU ⊂ G̃K be the image of T tDU under the surjective canonical projection Gal
t

K → G̃K .

Then T̃DU is generated by all the inertia groups Tṽ with ṽ|v, v ∈ DU , and π̃DU := G̃K/T̃DU
is topologically finitely generated. Further, G̃K is the projective limit of the surjective
projective system π̃DUi , i ∈ I.

Claim 2. T̃DU ⊂ G̃K is Φ̃ invariant, i.e., Φ̃(T̃DU ) = T̃DU .

Indeed, by the Lemma 7.2 above, the equlity Φ̃(Tṽ) = Tw̃ implies that ṽ|K = w̃|K . Hence
Φ̃ defines a permutation of the system of generators Tṽ, ṽ|v, v ∈ DU , of T̃DU , etc.

An immediate consequence of Claim 1 and Claim 2, above is the following: First, Φ̃ gives
rise to an isomorphism Φ̃U : π̃DU → π̃DU which is compatible with projections πtDU′′ → πtDU′
for U ′′ ↪→ U ′, and Φ̃ is the projective limit of the system of isomorphisms (Φ̃Ui)i. Second,
since π̃DU is topologically finitely generated, for every positive bound c > 0, there exist only
finitely many open normal subgroups ∆ ⊂ π̃DU with |π̃DU/∆| 6 c. Hence the intersection
∆c := ∩

∆
∆ of all such ∆ is an open characteristic subgroup of π̃DU . In particular, if KU,c|K

is the finite Galois subextension of K̃|K with Gal
(
KU,c |K

)
= π̃DU/∆c, then Gal

(
K̃ |KU,c

)
is invariant under Φ̃.

Using this we get: Let L|K be a finite Galois subextension of K̃|K, and set c := [L : K].
Since G̃K is the projective limit of the projective surjective system π̃DUi , i ∈ I, there exists

some Ui such that the canonical projection G̃K → Gal
(
L |K

)
factors through G̃K → π̃DUi .

Thus in the above notations, Gal
(
K̃ |KUi,c

)
is invariant under Φ̃.

We conclude that there exists an inductive system (Gµ)µ of open normal subgroups of

G̃K having ∩µGµ = 1 such that Φ̃(Gµ) = Gµ for all µ. For every Gµ, let Kµ|K be the

finite Galois subextension of K̃|K with GKµ = Gµ, hence K̃ = ∪µKµ. Further, Φ̃ gives rise

to a compatible system of automorphisms Φµ : Gal
(
Kµ |K

)
→ Gal

(
Kµ |K

)
, and Φ̃ is the

projective limit of the system (Φµ)µ.

To simplify notations, let L := Kµ be fixed, Φ := Φµ, and G := Gal
(
L |K

)
. Using the

usual notation, let L′|L ↪→ L′′|L be the maximal abelian, respectively abelian-by-central
pro-` extensions of L. Then L′|K ↪→ L′′|K are Galois extensions, and L|K being invariant
under Φ̃, implies that L′|K ↪→ L′′|K are Galois extensions which are invariant under Φ̃ as
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well. Hence Φ̃ gives rise by restriction to an automorphism ΦL ∈ Autc(L), which fits into
the canonical diagram below, having exact rows and isomorphism as columns:

1→ ΠL → Gal
(
L′ |K

)
→ G → 1

↓ ΦL ↓ ΦLK ↓ Φ

1→ ΠL → Gal
(
L′ |K

)
→ G → 1

Lemma 7.5. ΦL maps the set of generalized divisorial groups of ΠL isomorphically onto
itself, thus defines to an isomorphisms ΦL : GDtot

L
→ GDtot

L
.

Proof. Indeed, by Remark 7.1, c), d), it follows that ΦL : ΠL → ΠL maps the set Tw ⊂ Zw
of divisorial groups in ΠL isomophically onto itself. Therefore ΦL maps the set of divisorial
inertia elements ∪wTw homomorphically onto itself. Thus recalling that the set of all the
k-inertia Inrk(L) ⊂ ΠL is the topological closure of ∪wTw, it follows that ΦL maps Inrk(L)
homomorphically onto itself. Thus by Proposition 3.11, it follows that the total decompo-
sition graph GDtot

L
can be reconstructed from Πc

L → ΠL and ΠL endowed with Inrk(L), and
further, ΦL : GDtot

L
→ GDtot

L
is an isomorphism. �

We next show that ΦL is compatible with the rational quotients of GDtot
L

. Let Y → k

be some projective normal model of L|k on which G = Gal
(
L |K

)
acts. Without loss of

generality, we can assume that Y is complete regular like (in the sense of the discussion
in Remark 3.2, 4), and that the quotient X := G\Y of Y by G is a complete regular like
model for K|k. Further, let ũ ∈ L be such that its G-conjugates (ũg)g∈G are K-linearly
independent. Let t ∈ K be non-constant such that the pole divisor (ũ)∞ of ũ is contained
in the pole divisor (t)∞ of t, and t is not in the k-subspace generated by (ũg)g. Then for
almost all c ∈ k, all the G-conjugates ug = g(u) of u := ũ/t+ c ∈ L satisfy:

a) ug are general elements of L, i.e., κug := k(ug) are relatively algebraically closed in L.

b) (ug)g are K-linearly independent.

c) The pole divisor of ug is (ug)∞ = (t)0 thus it lies in the image of Div(X)→ Div(Y ).

Next recall that denoting by P1
ug the projective ug-line over k, the embedding k(ug) ↪→ L is

defined by a k-rational map ϕg : Y 99K P1
ug , and let Ug ⊆ Y be the domain of ϕg. Notice that

if g′ = hg in G, then ug′ = h(ug), and ϕg′ = ϕhg . Thus in particular, Ug′ = Uh
g . Therefore,

setting V := ∩g Ug, it follows that G acts on V ⊂ Y , and all the rational maps ϕg are defined
on V . Finally, since Y \V is G-invariant, after performing a properly chosen sequence of G-
invariant blowups and normalizing again, one can suppose that V = Y , i.e., the rational
maps ϕg are actually morphisms ϕg : Y → P1

ug . Now since the geometric generic fiber of

each ϕg is integral –which is equivalent to the fact that k(ug) is relatively algebraically closed
in L, it follows that the fibers of the k-morphisms ϕg : Y → P1

ug are geometrically integral

on an open subset U ⊂ P1
ug . This means that for all a ∈ U(k) and all g ∈ G, the fibers

Xg,a ⊂ Y of ϕg at ug = a are geometrically integral Weil prime divisors of Y . In other
words, the Y -divisor of the function ug − a is of the form (ug − a) = vg,a − (t)0 with (t)0 the
zero-divisor of t on Y, thus the image of the zero-divisor of t on X under Div(X)→ Div(Y ),
and vg,a = (ug−a)0 the zero diver of ug−a. Notice that since h(ug−a) = h(ug)−a = uhg−a,
one has that vhg,a = vhg,a. In other words, the free action of G on {ug}g gives rise to a free

action of G on {vg,a}g via vhg,a = vhg,a.
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Recall the `-adic completion morphisms K : K× → K̂ and L : L× → L̂, and that the

canonical divisorial ÛL-lattice LL ⊂ L̂ is the unique divisorial ÛL-lattice in L̂ which contains
L(L×). Further, via pL : ΠL → ΠK one gets a commutative diagram with exact rows:

1 → ÛK → K̂ div−→ D̂iv(X)(`) → Ĉl(X)

↓ ı ↓ ı ↓ divpL ↓ canpL

1 → ÛL → L̂ div−→ D̂iv(Y )(`) → Ĉl(Y )

and ΦL give rise to a commutative diagram with exact rows of the form:

1 → ÛL → L̂ div−→ D̂iv(Y ) → Ĉl(Y )

↓ ψ̂ ↓ ψ̂ ↓ divΦL ↓ canΦL

1 → ÛL → L̂ div−→ D̂iv(Y ) → Ĉl(Y )

where ψ̂ is the Kummer homomorphism of ΦL (that is, the `-adic dual of ΦL), divΦL is
the canonical abstract divisor map defined by ΦL, and canΦL is the canonical isomorphism
making the diagram commutative. We proceed as follows:

Since div
(
L(ug − a)

)
= vg,a − (t)0, and (t)0 is G-invariant, and taking into account the

identity div ◦ ψ̂ = divΦL ◦ div, it follows that the divisor of ψ̂
(
L(ug − a)

)
is of the form

div
(
ψ̂ ◦ L(ug − a)

)
= divΦL

(
div(K(ug − 1))

)
= divΦL

(
vg,a − (t)0

)
= divΦL(vg,a)− divΦL

(
(t)0

)
.

On the other hand, one has that divΦL(vg,a) = η · w for some η ∈ Z`, where w is the image
of vg,a under ΦL, and divΦL

(
(t)0

)
= ε · (t)0, because t ∈ K, etc. Since by the discussion

above, w is G-conjugate to vg,a, one has w = vh,a for some h ∈ G. We thus conclude that

div
(
ψ̂◦L(ug−a)

)
= η·vh,a−ε·(t)0 for some h ∈ G and η ∈ Z`. Now since vh,a−(t)0 = (uh−a)

is a principal divisor, its image in Ĉl(X) is trivial, hence the image of

η · vh,a − ε · (t)0 = (η − ε) · vh,a + ε ·
(
vh,a − (t)0

)
= (η − ε) · vh,a + ε · (uh − a)

in Ĉl(Y ) equals (η − ε) · [vh,a], where [vh,a] is the image of vg,a in Ĉl(Y ). On the other
hand, vg,a − (t)0 = (ug − a) is principal and equals the divisor of L(ug − a), hence it has

a trivial image in Ĉl(Y ). Thus by the commutativity of the diagram above, it follows that
(η − ε) · [vh,a] = 0. Since [vh,a] 6= 0, we conclude that η = ε. Therefore, we get:

ψ̂
(
L(ug − a)

)
= ε ·

(
uuu L(uh − a)

)
for some uuu ∈ ÛL. Notice that for a fixed g ∈ G, the elements h ∈ G as well as uuu could
anteriori depend on a ∈ U(k) ⊂ P1

ug(k). The more precise assertion we prove is:

Lemma 7.6. There is a bijection θG : G→ G, g 7→ h, such that for all a ∈ U(k), one has:

a) ψ̂
(
L(ug − a)

)
= ε · L(uh − a)

b) ψ̂
(
L(κ×ug)

)
= ε · L(κ×uh)

Proof. Since U(k) is infinite, there exists h ∈ Gal
(
L |K

)
such that the set

Σh := {a ∈ U(k) | ψ̂
(
L(ug − a)

)
= ε ·

(
uuu L(uh − a)

)
for some uuu ∈ ÛL}
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is infinite. For a fixed b ∈ k, let x := L(ug − b) and xxx := ψ̂(x). To simplify notations, for

a ∈ U(k) and g, h ∈ G, let κg,a be the residue field of vg,a, and g,a : Ûvg,a → κ̂g,a be the
reduction homomorphism as introduced at the beginning of section 3. Further define κh,a
and h,a : Ûvh,a → κ̂h,a correspondingly. Then for all a ∈ U(k) with a 6= b, one has: x is a
vg,a-unit with vg,a-residue equal to a − b ∈ k×, thus g,a(x) = 1. Hence if a ∈ Σ, and vh,a is
the prime divisor of L|k corresponding to vg,a under ΦL, one gets commutative diagrams:

Ûvg,a
ψ̂−→ Ûvh,a

↓ g,a ↓ h,a
κ̂g,a

φ̂g,a−→ κ̂h,a
where φ̂g,a is defined by the residual isomorphism Φg,a : ΠKvg,a

→ ΠKvh,a
. Hence g,a(x) = 1

implies h,a
(
ψ̂(x)

)
= φ̂g,a

(
g,a(x)

)
= 1 for all a ∈ Σ. Next recall that by the discussion at the

beginning of Section 3, especially the proof of Proposition 3.1, for every yyy ∈ L̂fin\ κ̂uh and
almost all a ∈ k, one has: If vh,a is the (unique) zero of uh−a, then h,a(yyy) 6= 1. In particular,

since x = L(ug − a) ∈ LL ⊂ L̂fin and xxx := ψ̂(x) ∈ L̂fin satisfy h,a(xxx) = h,a
(
ψ̂(x)

)
= 1 for all

a ∈ Σ, it follows that xxx ∈ ε · LL ∩ κ̂uh = ε · L(κ×uh)(`). Since the set of all the x = L(ug − b)
with b ∈ k generate L(κ×ug), we conclude that ψ̂

(
L(κ×ug)

)
⊆ ε · L(κ×uh). By symmetry, the

opposite inclusion holds too, thus finally ψ̂
(
L(κ×ug)

)
= ε ·L(κ×uh). Moreover, for all a ∈ U(k)

one has ψ̂
(
L(ug − a)

)
= ε · L(uh − a). �

Coming back to the proof of Key Lemma 7.4, we notice that setting

ΘL := Θ ∪ {ug | g ∈ G}
one has: First, by the hypothesis of Theorem 2.7, one has K = k(Θ); and by the definition of
(ug)g one has L = K[(ug)g]; hence L = k(ΘL). Second using Lemma 7.6, it follows that the
map θL : ΘL → ΘL, defined by t 7→ t for t ∈ Θ , and ug 7→ uh for g ∈ G, is a bijection which
makes ΦL ∈ Autc(ΠL) into a weakly ΘL compatible automorphism. Thus ΦL ∈ Autc(ΠL) is
weakly ΘL-compatible as defined in Definition/Remark 2.8, hence Theorem 2.9 is applicable.
Therefore, there exists an automorphism φL ∈ AutΘL(Li) and a unique εL ∈ Z×` such that

ψ̂ = εL·φ̂L is the Kummer morphism of ψ̂. Thus recalling that ΦK : ΠK → ΠK is ΦK = ε−1·id
with ε from the Key Lemma 7.4, the functoriality gives rise to commutative diagrams:

(†)
ΠL

ΦL−→ ΠL L̂
ψ̂←− L̂

↓ pL ↓ pL ↑ ı ↑ ı
ΠK

ΦK−→ ΠK K̂ · ε←− K̂

in which · ε is the multiplication by ε. But from the commutativity of the right diagram

from (†), it follows that ψ̂ = εL · φ̂L and ε · id coincide on K̂. In particular, φ̂L must map

K̂ isomorphically onto itself, and therefore φL maps K i isomorphically onto itself. We thus

conclude that φ̂L equals ε · ε−1
L on K̂. Since φ̂L|K̂ is the completion of the field isomorphism

φL|K of K, one must have ε · ε−1
L = 1, hence εL = ε is indpendent of L.

Recalling the notations and discussion before Lemma 7.5, we conclude that for every
Kµ ⊆ K̃ as there, there is a (unique) field K-automorphism φµ : K i

µ → K i
µ such that ε · φ̂µ is

the Kummer isomorphism of the group automorphism ΦKµ : ΠKµ
→ ΠKµ

. Then reasoning
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as above, it follows immediately that for Kµ ⊂ Kν , one must have φµ = φν |Kµ . Thus finally

the compatible system of K-automorphisms (φµ)µ gives rise to a K-automorphism φ̃ of K̃
defined by φ̃|Kµ := φµ such that the Kummer isomorphisms of each Φµ is precisely ε · φµ.

Finally, in order to conclude the proof of the Key Lemma 7.4, let Φ̃φ be the automorphism

of G̃K defined by the φ̃-conjugation. Then Φ̃◦ Φ̃
−1

φ is an automorphism of G̃K which induces

on every ΠKµ
the multiplication by ε−1 for the fixed given ε ∈ Z×` independent of Kµ. We

claim that ε = 1. Indeed, let K̃ := K(`) be the maximal pro-` subextension of K̃|K. Then
by a standard argument it follows that the automorphism of GalK(`) := Gal

(
K̃ |K

)
defined

by Φ̃ ◦ Φ̃
−1

φ maps every g ∈ G̃K(`) to its power gε
−1

. From this easily follows that ε = 1.
This concludes the proof of the Key Lemma 7.4, thus of assertion 1) of Theorem 2.7.

References:
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