FINITE TRIPOD VARIANTS OF I/OM

ON IHARA’S QUESTION/ODA-MATSUMOTO CONJECTURE
FLORIAN POP

ABSTRACT. In this note we introduce and prove a wide generalization and sharpening of
Thara’s question / Oda-Matsumoto conjecture, for short I/OM. That leads to a quite con-
crete topological /combinatorial description of absolute Galois groups, in particular of

Galg = Aut(Q), as envisioned by Grothendieck in his Esquisse d’un Programme.

1. INTRODUCTION/MOTIVATION

A consequence of the results of this paper is a positive answer to a question by Ihara
from the 1980’s, which in the 1990’s became a conjecture by Oda—Matsumoto, for short
classical I/OM. In essence, the classical I/OM is about giving combinatorial /topological
descriptions of the absolute Galois group of the rational numbers Galg = Aut(Q). Before
giving the results in their full strength, let me briefly present the broader context in which the
classical I/OM evolved as one of the main problems in Grothendieck’s anabelian program,
which itself grew out of [G1], [G2] (see [GGA]). To fix notation and context, let G*** be
the category of profinite groups and outer homomorphisms. For geometrically integral Q-
varieties X, setting X = X XQ Q, one has: First, viewing the algebraic fundamental group
T1(X) = 7$(X, %) of X as an object in G°™ renders keeping track of base points irrelevant.
Further, X (C) endowed with the complex topology is a “nice” topological space, and 71(X)
is the profinite completion of the topological fundamental group 7" (X (C), *); hence 71 (X)
is in a precise sense an object of combinatorial /topological nature. Second, the canonical
exact sequence of étale fundamental groups 1 — 71 (X) — 75*(X) — Galg — 1 gives rise to
a canonical representation px : Galg — Out (7 (X)) = Autgew (71 (X)), which is compatible
with the canonical projections 7(X) — 7(Y') defined by morphisms X — Y of Q-varieties.
Hence if V is any category of geometrically integral Q-varieties, its algebraic fundamental group
functor Ty : V — G, X — 7 (X) is well defined, and one gets a canonical representation:

py : Galg — Aut(my), o~ (px(d))XeV

Thus the question of giving topological / combinatorial descriptions of Galgy would follow from
giving categories V of geometrically integral Q-varieties for which py, is an isomorphism.
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Among other things, GROTHENDIECK suggested to use subcategories V C T of the Teich-
miller modular tower T of all the moduli spaces M, ,,, and try to answer the two questions:
First, for which categories V is the representation py, injective. Second, describe the image
im(py) C Aut(7y), and particular decide whether py is surjective.

There was and is an intensive and extensive effort to answer the questions above and related
ones, starting with work by DELIGNE [De], IHARA [I1], see also [I2], [I3], DRINFELD [Dr], and
subsequently by many others, e.g. [An|, [F1], [F2], [H-Ma], [H-Sch], [H-Mz]|, [HLS], [I-M],
[LNS1], [LNS2], [L-Sch], [Ma], [M-T], [Nal, [N-Sch], [Sch], to mention a few. In particular,
there is a canonical embedding of Galg in the Grothendieck—Teichmiiller group

Galg — GT C Aut(F),’

as well as in its more sophisticated variants Galg — ﬁ.. On the other hand, it turns out
that all these more or less abstractly defined subgroups of Aut(F3) are actually of the form

GT, = Aut(my,)

for properly chosen categories V, of geometrically integral QQ-varieties; e.g. GT = ETVO,
where Vy:= {Mo4, Mys} is the full subcategory of T with objects My4, Mys, cf. HARBA-
TER—-SCHNEPS [H-Sch]. On the other hand, the other categories V, under discussion, are not
necessarily subcategories of 7.

Concerning concrete general results, the nature of py, in the above cases and in general is
only partially understood. First, concerning the injectivity of py, DRINFEL'D remarked that
using Belyi’s Theorem [Be] it follows that py is injective, provided Uy := My 4 = P'\{0, 1, 00}
lies in V, and VoEvoDsKY showed that the same is true if X € V, where X := E'\{x} is the
complement of a point in an elliptic curve E; MarsumoTo [Ma] showed that the same holds if
X €V for some affine hyperbolic curve X, and finally, Hosai-MocH1zukt [H-Mz] proved that
py is injective as soon as V contains any hyperbolic curve (complete or not). On the other
hand, the question about describing non-tautologically the image im(py), in particular the
question about the surjectivity of the representation py,, was/is less understood. THARA asked
in the 1980’s whether py is an isomorphism, provided V = Uatg; and ODA-MATSUMOTO
conjectured (based on some motivic evidence) in the 1990’s that Thara’s question has a
positive answer. Let classical |/OM stand for Thara’s question /Oda—Matsumoto conjecture:

Classical I/OM. Prove that if V = QBarg, then py : Galg — Aut(7Ty) is an isomorphism.

The author gave a proof (end of 1990’s) of the above classical I/OM, and slightly later,
ANDRE [An] showed that the p-adic tempered 1/OM holds. [This variant of the I/OM is
obtained by replacing Q by Q, and 7;(X) by the tempered fundamental group 7" (X),
which carries more information than 71(X).] Author’s original proof of the classical I/OM
was never published, because shortly later, he started developing a completely new approach
to tackle I/OM types questions. That approach allows —among other things— to formulate
and prove (birational) pro-{ abelian-by-central variants of 1/OM, which are much stronger
than and imply the classical I/OM, cf. [P5].? In a nutshell, the basic idea is as follows:

1 Here, F\Q is the profinite free group on two generators.
2 Among other things, the present note renders the “officially” unpublished [P5] obsolete.
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Let ko be an arbitrary field, k := ko. For a category V of geometrically integral ko-varieties,

let F be the category of the functions fields K := k(X), X € V having as morphisms the
k-embeddings L := k(Y) < k(X) =: K defined by the dominant V-morphisms X — Y. Let
C be a Serre class of groups, e.g., finite (abelian-by-central) [(-groups], unipotent /linear, etc.,
and 7¢(X) and Gal$ be the corresponding completions of 7, (X), respectively Galg. Then
paralleling the discussion above, one can formulate the pro-C 1/OM for V and the pro-C |/OM
for F, where the latter should be rather called the birational pro-C I/OM for V. Moreover,
if V contains a basis of open neighborhoods of the generic point nx for every X € V), e.g.,
V = Yary,, then by taking limits one gets: Every automorphism ®5 € Aut(7S) gives rise
to an automorphism ®¢ € Aut(Gal%), that is, to automorphisms ®$ € Galf,, K € F,
compatible with all F-morphisms L — K. And an easy verification shows that the pro-C
I/OM for V follows from the birational pro-C I/OM for V. In particular, for C the class of all
the finite abelian-by-central {-groups, ¢ # char(ky), one gets the (birational) pro-¢ abelian-by-
central I/OM for V, as introduced [P5] and proved there for “sufficiently rich” categories V
by using techniques developed to tackle the so called Bogomolov’s Program; see [P3], [P4] for
details about the latter. This also suggests that in the case of other classes C, like the ones
mentioned above, the corresponding pro-C I/OM type results might lead to Galois group like
objects of interest in arithmetic/algebraic geometry. See Remark 2.10 for such an instance.

For the rest of the paper, we introduce notations as follows:

Notations 1.1. Let ¢ be a fixed prime number, and kg an arbitrary base field, char(kg) # ¢.
For geometrically integral ko-varieties X, let 71(X) — II§ — Ilx be the pro-¢ abelian-by-
central, respectively pro-¢ abelian (quotients of the) algebraic fundamental group of X. We
notice the following:
1) First, the canonical projections 71 (X) — II§ — Ilx give rise canonically to projections
Autgon (71 (X)) = Autgon (I1§) — Aut(Ilx), which usually are not injective or surjective.
2) One has Iy = HY (X, Z)", and Aut®(Ily) := im(Autges (IIS) — Aut(Ily))/Z; con-
sists of the automorphisms compatible with u : H. (X, Z) x HL (X, Zs) — H% (X, Zy).
Finally, for categories V of geometrically integral kg-varieties, consider the corresponding
quotients of 7y and the resulting representation of Galg, below

my — 15, - 11, , py : Galy, — Aut(my) — Aut®(Il,,).

Notice that the classical I/OM is a rather theoretical question of foundational nature.
On the other hand, by the discussion above, the (birational) pro-¢ abelian-by-central I/OM
for V is quite concrete and relates in down-to-earth terms to the étale f-adic cohomology of
the category V. Further we notice that, strictly speaking, the “sufficiently rich” hypothesis
under which the (birational) pro-¢ abelian-by-central I/OM for V was proved in [P5] requires:

a) Every Y € V is dominated by some X € V satisfying: dim(X) > 1 and V contains some
basis By of Zariski open neighborhoods U; of the generic point nx € X.
b) For X and U; € By as above, V contains (virtually) all dominant morphisms U; — Uy,
where Uy = P'\{0, 1, 00} is the tripod.
Especially condition b) is quite restrictive and moves away from and beyond the Teichmiiller
tower type situation. This being said, the aim of this note is to

prove similar 1/OM type results but under much weaker hypotheses,
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by weakening hypothesis b) to the extent that V contains the morphisms U; — Uy defined by
only (finitely many) rational maps ¢; : X --+ Uy, given in advance, necessary to rigidify V.
This gives much more concrete descriptions of Galg, for ko global and/or local fields, that
might be used in studying representations of Galy, and the (birational) Tate conjectures.

Example. The birational Grothendieck—Teichmiiller groups @bir and éifir

Recall that Vy := { My, Mos}, and let @; : Mys — My 4 be the morphisms of V, defined by
“forgetting the i marked point” for 1 < i < 5. Further, one has My, = P'\{0, 1,00} = Uy,
and My 5 = UyxUy\ Ay, with Ay, the image of the diagonal morphism Uy < Uy x Uy. Hence

1 1 1 1 1 1 1
MOA = Spec @[t07 T 1—to ]a MO,S = Spec@[tht?v T e 1ty 1—t3) t1—to ]7

and the projections ¢; : Mys — My 4 are defined by the field embeddings Q(ty) < Q(t1, t2),

to — t € Oy, where Oy := {t1, ta, t1 —to, t, t"} with ¢/, t" € Q(t1,t2) explicitly computable.
We set O := {t1, ta, ta—1t1 }, and for an arbitrary but otherwise fixed basis B = {U; |i € I}

(w.r.t. inclusion) for the complements of curves C; = V/(f;) C My, consider the category:

Vobir 1= V0,0,8

with objects BU {Up}, and having as morphisms, first, the canonical inclusions U; < U; for
C; C C; and idy,, and second, the projections ¢, : U; — Uy defined by Q(to) — Q(t1,t2),
to — t € 6. Then in the above notation, one has the resulting canonical representations
(%) Py, : Galg — AUt(ﬁvo,biJ =: GTy,, pﬁ,o’bir : Galg — AutC(HV()’bir) =: GTy .
An easy verification shows that the category Vopi satisfies Hypothesis (H), from Defini-
tion /Remark 2.2 below. Hence in this concrete situation, by Theorem 2.6, 1) and Theo-
rem 2.7, 1) below, one gets the following far reaching generalization of the results from [P5]:

Theorem. The canonical representations py, . and pf5, from (x) above are isomorphisms.

Acknowledgemnets: [ would like to thank Ching-Li Chai, Franz Oort, Jakob Stix, Alexander
Schmidt and Tamés Szamuely for technical discussions and help, Pierre Lochak for insisting that
these facts should be thoroughly investigated, and many others who showed interest in this work:
Yves André, Pierre Deligne, R. Hain, Y. Ihara, Minhyong Kim, M. Matsumoto, N. Nakamura,
M. Saidi, A. Tamagawa for discussions on several occasions. Special thanks are due to the Univer-
sity of Heidelberg, University of Bonn, and there MPI Bonn, for the excellent working conditions
during my visits there as visiting scientist. Last but not least, many thanks to the referee, for the
careful reading of the manuscript and suggestions to improve the presentation.

2. PRESENTATION OF THE RESULTS

As already mentioned, the results of this note refine and generalize the ones from [P5].
Essential technical steps and tools for the proofs developed here are new and go beyond what
was done in loc.cit. The results presented here hold and will be proved over arbitrary perfect
base fields kq. In particular, the classical I/OM over Q is a consequence of the tame I/OM, as
given below in Theorem 2.7. We begin by introducing/recalling notation and terminology.

Recall that G°" is the category of profinite groups and outer (continuous) group homo-
morphisms, i.e., for given G, H € G, an element of Homgou (G, H) is of the form Inng o f

with f: G — H a continuous and Inng the inner automorphisms of H.
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We set k := ko, and given a geometrically integral ko-variey X and its base change
X 1= X x4, k, we view the algebraic fundamental group 7;(X) := 7$*(X, *) of X as an object
in G Hence the ambiguity resulting from base points vanishes, and by mere definitions
one has Out (71 (X)) = Autgeu (71(X)). Further, via the canonical exact sequence

1 =7 (X) = m'(X) — Galy, — 1

one gets a representation py : Galy, — Out(71(X)) = Autgeu(71(X)), and by the func-
toriality of the étale fundamental group, the collection of all the representations (px)x, is
compatible with the base changes of kp-morphisms f : X — Y of geometrically integral
ko-varieties. In particular, for every category V of geometrically integral varieties over ko,
its algebraic fundamental group functor Ty, :V — G gives rise to a representation

py - Galko — Aut(ﬁ];),

where Aut(7y) is the automorphism group of 7. In down to earth terms, the elements
® € Aut(Ty) are the families ® = (®x)xey, Px € Out(T1(X)) = Autgon (71 (X)), which
are compatible with 7 (f) : T1(X) — 71 (Y) for all V-morphisms f: X — Y.

Next we recall the pro-¢ abelian-by-central I/OM from [P5] in detail. Let 7, — II¢ — II
be the pro-f abelian-by-central and the pro-¢ abelian quotients of 7; as introduced in Nota-
tions 1.1. Then by mere definitions, I1$, — Il are the maximal pro-¢ quotients of 7 (X) with
IT abelian, and ker(II§ — II) in the center of IIS. Since the kernels in 7 (X) — 1§ — T
are characteristic subgroups, there are canonical projections:

Autgou (71 (X)) = Autgou (1IS) — Aut(Ily).

Hence for every category V of geometrically integral kq-varieties, the canonical morphisms
of functors m, — II§, — II,, give rise to homomorphisms Aut(7y,) — Aut(Il§,) — Aut(IL,,).
Further, Z; acts by multiplication on IIy, and by general group theoretical non-sense, that
action lifts to a Z/-action on II§. Hence we get naturally a representation:

5+ Galy, = Aut(I1),) := im (Aut(IL5,) — Aut(IL,))/Z;.

Conjecture (pro-¢ abelian-by-central I/OM over ky). Let V = Dary, be the category
of geometrically integral ko-varieties. Then pS, : Galy, — Aut®(1l,,) is an isomorphism.

We will prove more precise and much stronger assertions than the above pro-¢ abelian-by-
central I/OM over kgy. In order to present the results, we need some preparation as follows:

First, concerning general terminology, let px : X — S, py : Y — S be given S-schemes.
When speaking about a morphism f : X — Y, we mean a pair (f, fs), where fs : S — S
is a scheme isomorphism such that fs o px = py o f. In particular, if f¢ = idg, then f
is actually an S-morphism. We denote by Homg(X,Y) € Hom(X,Y) the corresponding
spaces of S-morphisms, respectively morphisms from X to Y. Second, if char(S) =p > 0,
we tacitly assume that the schemes are perfect, i.e., the absolute Frobenius is an isomorphism
of schemes, and identify two morphisms which differ by a Frobenius twist. To indicate this,
we will use the notation Hom'(X,Y'), and to reduce the amount of explanation, we will use
this notation in the case char(S) = 0 as well, where actually Hom'(X,Y) = Hom(X,Y).

Let ko be a fixed perfect field with ¢ # char(kg). By the convention above, when speaking
about a kg-variety X, we will actually mean its perfect closure X! and in particular, the

function field ko(X) will be replaced by ko(X)' = ko(X'). Finally, up to Frobenius twists, a
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morphism between kg-varieties X,Y is a morphism of schemes f : X — Y which induces a
field isomorphism fi, : kg — ko on ky. Finally, up to Frobenius twists, the dominant rational
maps ¢ : X --» Y are in bijection with the field embeddings ko(Y)! < ko(X)! which map
ko onto itself. In particular, up to Frobenius twists, the automorphisms ¢ : ko(X)' — ko(X)!
with ¢(ko) = ko are in canonical bijection with the birational maps ¢ : X --+ X, say ¢ <> ¢.

We also mention that in the case ky is replaced by its algebraic closure k, all the above
facts hold, but something new specific to the situation happens. Namely, since k C k(X)'
is the unique maximal algebraically closed subfield, one has: Every field isomorphism ¢ of
k(X) maps k isomorphically onto itself, and therefore originates from a unique birational
map ¢ : X --» X up to Frobenius twists. But since ¢ does not necessarily map kg onto/into
itself, ¢ is not necessarily induced by base change from a birational map X --+» X.

Recall that Uy := Spec ko[to, 1/to, 1/(1 —t9)] = P} \{0,1, 00} is the ko-tripod (terminology
by Hosur-MocHIzZUKI) with canonical parameter t, on P!, and that Aut'(Uy) = Aut!(kg) x &a,
and Auty (Up) = 63. Actually, setting 8y, := {to, 1—to, 1 /%o, 1/(1—to), o/ (to—1), (to—1)/to},
the representatives ¢ of elements in Autik0 (Up) are defined by to +— t’;: for somee € Z,t4 € Uy, .

Up to Frobenius twists, the rational dominant maps ¢; : X --+ Uy are in bijection with
the field embeddings ¢ : ko(to) — ko(X), to — t € ko(X) and ¢1(ko) = ko, and ¢, is defined
on all sufficiently small open subsets U C X.

Definition/Remark 2.1. In the above notations, for every open subset U C X there exists
a unique maximal open subset Uy, € X such that U C Uy, and the canonical projection
Iy — Iy, is an isomorphism, or equivalently, ker(Galg — II;;) = ker(Galg — II;; );
in particular, Upay is uniquely determined by ker(Il, — II;). We say that U is maximal, if
Umax = U, and notice that U C X is maximal if and only if U C X is maximal. For a set
of Zariski open subsets B of X, we denote Byax := {Unax | U € B}, and notice that the base
change Bax of Buax under kg < k is precisely {Viax |V € B}. Further, if B is a basis of
open neighborhoods of the generic point 7x, then so is Buax, thus so is Buay for ng. Finally,
let ¢ : X --» X be a birational map. Then ¢ is defined on U .y for all sufficiently small
open subsets U C X, and if ¢ is defined on some Upay, then o(Unpax) = ©(U)max-

Definition/Remark 2.2. In the above notations, let © C ko(X) be a subset of non-constant
functions, and ¢; : X --+ Uy, to — t € O, be the corresponding dominant rational ky-maps.

1) For a basis of neighborhoods B of the generic point nx € X, consider the small category

Vx = Vx, 0.8

with objects B U{Up}, and morphisms as follows: First, idy, and the canonical inclusions
U; — U;, and second, the restrictions ¢, ; := ¢¢|v,, t € O, provided ¢, is defined on U;.

2) Let ¢ : X' --» X' be a birational map. We say that ¢ is Vx-compatible, if ( satisfies:
i) There exists ¢y € Auti(Uy) such that g o @, = ¢, 0, t € O, as rational maps.
ii) If U € B and ¢ is defined on Upay, then ©(Unpax) = Unax.-
The set of all the Vyx-compatible birational maps is a subgroup Aut}, (K) < Aut'(K),
and the image of the canonical embedding Galy, — Aut(K") lies actually in Aut}, (K).
3) We say that Vy is rigid, if it satisfies the following equivalent conditions:
i) The restriction of every ¢ € Aut}, (K) to ko(X)'is a power of Frobenius.
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ii) The canonical embedding Galy,— Aut}, (K) is surjective, thus Aut}, (K)= Galy,.
Hypothesis (H): The following are satisfied: dim(X) > 1, k(X) = k(O), Vx is rigid.

Remark 2.3. The following hold (the proofs being straightforward verifications):
1) The fact that Vx satisfies Hypothesis (H) above is somehow the generic case. Indeed:
a) Vy is rigid, provided K'|kq is geometrically rigid, i.e., Auty(K') =1 = Aut!(K)|x, .
In general, if ¢ : X —= 2 X is not a Frobenius twist, there are arbitrarily small open
subsets U C X with ¢(Upax) 7 Umax- Hence if B is chosen randomly, then Vx is rigid.

b) K = k(©), provided O contains a basis of a linear space |L| for X which defines the
birational class of X, i.e, the canonical rational map X --» P(|L|) is a birational map.

c) Finally, if © is a linear space such that the canonical rational map X --» P(|0]) is a
birational map, then K = k(©) and Vx is rigid for all 5.
2) If Vy is rigid, then Aut®(II,, ) consists of all the systems of automorphisms ((®;);, )
with ®; € Aut®(Il;) and &y € Aut®(Il;,) such that for all U; — U; and ¢, : U; — U,
t € O, the diagrams below are commutative:

M, 5 1, M, -2 10,
(*> j/ can o \L can i H(‘Pt,i)(p \l, H(pt,i)
HUZ —’L> HUL HU() 0) HUO

Definition/Remark 2.4. In the above context, let ((@i)i, CIDO) € Aut(II,,, ) be given.
1) Since I3 — I is the projective limit of the projective system (I, — II;,),_,, it follows
from (x) above that (®; : II;; — II;;. ), defines a unique ® € Aut®(Ily) satisfying:
i) Let 7 : I — Il be the canonical projections defined by 7 : ko(to) — ko(X),
to >t € O. Then m 0 ® = o, and in particular, ®(ker(m)) = ker(m).
ii) Let py, : Il — I, be the canonical projection. Then py, o ® = ®; o py,, and in
particular, ®(ker(py,)) = ker(py,).
2) Given an automorphism ¢ € Aut®(Il,), we say that ® is Vx-compatible, if it satisfies

conditions i), ii) above, and let Auts, (IIj) be the set of all such automorphisms of IT.
An easy verification shows that one has canonical group embeddings:

Aut®(Tl,,, ) — Aut), () < Aut®(Iy) .

3) Recalling the group of Vx-compatible automorphisms Autivx (K) as introduced in Def-
inition/Remark 2.2, 2), one has that the canonical map Aut'(K) — Aut®(Il,) arising
from Galois Theory is injective, and gives rise by restriction to a canonical embedding:

Auty, (K) = AutS, (II).
The stronger /more precise form of the pro-¢ abelian-by-central I/OM for Vx is as follows:
Conjecture [(Birational) pro-¢ abelian-by-central I/OM for Vy].
If Vx satisfies Hypothesis (H), then Galy, — Aut®(Ily, ) — Aut§, (Ilx) are isomorphisms.

Definition 2.5. Let V be a category of geometrically integral ky-varieties.
1) For X, Y €V, we say that X dominates Y, denoted Y < X if there exists a dominant
morphism X — Y which is a V-morphism.
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2) We say that V is connected, if for every X,Y in V there exist X, ..., X, in V such
that Xo = X, Xy,, =Y, and for 0 <7 < m one has Xo;, Xoj10 < Xoj11.

3) We say that V satisfies Hypothesis (H), if for every X € V there exists some X € V
such that V contains a subcategory V¢ satisfying Hypothesis (H), and there is some
U € Vi with X < U and II; — Il surjective.

Theorem 2.6. Let ko be a perfect field. In the above notations the following hold:
1) Suppose that the category Vx satisfies Hypothesis (H). Then the resulting canonical
representations Galg, — Aut®(Il,, ) — AutS, (Ilg) are isomorphisms.

2) Let V be a connected category satisfying Hypothesis (H). Then the canonical represen-
tation pS, : Galg, — Aut®(IL},) is an isomorphism.

An application of Theorem 2.6 is the following strengthening of the classical I/OM:

In the general context above, replace 71, Gal by their valuation tame quotients 7¢, Gal'
Then for every category of geometrically integral ko-varieties )V one gets a representation

py : Galg, — Aut(7,).

Further, in the context of Vx above, every ®* € Aut(7,_ ), say given by @, (®});, defines
an automorphism ®* € Out(Galy), which is Vx-compatible, i.c., maps ker (Galy — 7}(U;))
onto itself, thus induces isomorphisms ®! : 7t (U;) — 7 (U;), U; € Vx, and pi o &' = &g o p!
for pj : Galy — II;, t € ©. Hence if Auty, (Gal,) < Out(Galy) denotes the subgroup of
Vx-compatible automorphisms, then one has a canonical embedding

Aut(Ty,, ) — Auty, (Galy).

Theorem 2.7. Let ko be a perfect field. In the above notations the following hold:

1) Suppose that the category Vx satisfies Hypothesis (H). Then the canonical representa-
tions Galy, — Aut(7}, ) — Auty, (Galg) are isomorphisms.

2) LetV be a connected category satisfying Hypothesis (H). Then the canonical represen-
tation p\, : Galy, — Aut(7,) is an isomorphism.

The essential technical tool in the proof of the above results is Theorem 2.9 below, which is
related to Bogomolov’s Program as initiated in [Bo], see rather [P3], Introduction.

Definition/Remark 2.8. In the above notations, let © C K\k be a non-empty set, en-
dowed with a bijection § : © — O, t +— u, and for t € O, recall ¢, : X --» Uy and the
corresponding 7; : I — TI;;. We say that ¢ : X --» X, respectively ® € Aut¢(Il,), are
weakly ©-compatible, if for every ¢ — u, there is g € Aut(Up), respectively @ € Aut(Il, ),
depending on ¢, u, such that ¢; 0 vy = @, © ¢, respectively &g o 7, = 7, 0 .

Notice that ¢ and/or ® being “weakly ©-compatible” is in general much weaker than con-
ditions i) from Definition/Remark 2.2, 2), respectively 2.4, 1) above. Further, the correspond-
ing subsets Autg(K') C Aut(K'), Aut$,(I1;) C Aut(Il,) are actually subgroups, and the
canonical embedding Aut(K') — Aut®(Il,) defines an embedding Autg(K') — Autg (Il,).

Theorem 2.9. Let K|k be a function field with td(K|k) > 1, and © C K satisfy K = k(6).

Then the canonical embedding Autg(K') — Autl (I, ) is an isomorphism. Equivalently, for

every ® € Autl (Il ) there exists ¢ € Aut(K"), unique up to Frobenius twists and satisfying:
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i) ¢ defines @, i.e., letting ¢’ be the prolongation of ¢ to the maximal pro-¢ abelian exten-
sion K'|K, there exists ¢ € 7 such that € - ®(g) = ¢/ ' g ¢’ for all g € T

ii) For t — u under 6 : @ — O, there existsty € {t,1—t,1/t,1/(1—1t),t/(t—1),(t—1)/t}
and a power p%, e € Z, of the characteristic exponent p of k, such that ¢(u) = tf;e.

It turns out that Theorem 2.6 follows relatively easily from Theorem 2.9, whereas The-
orem 2.7 follows from Theorem 2.6 and some extra (partially quite technical) work. The
techniques for the proof of Theorem 2.9 are the ones developed to tackle Bogomolov’s Pro-
gram, supplemented by some new ideas. Namely using 115 endowed with m; : I — Ty,
t € O, one has the following: First, Proposition 3.10 gives a recipe to recover the divisorial
subgroups of 11, and based on that, Proposition 3.11 gives a group theoretical recipe to re-
cover the total decomposition graph QD;(N of K|k, as introduced /defined in [P3], see section 3.
Second, using the Construction 4.6, one gives in Proposition 4.7 a recipe to recover the geo-
metric rational quotients of QD;{ot. Moreover, the group theoretical recipes to recover these
objects are preserved under all the automorphisms ® € Aut$,(I1,) and/or ® € Autg(Galy),
see Propositions 4.7 and Lemma 7.6 below. Thus by the main result of [P3], Introduction,
it follows that every ® € Aut (Il ) originates from geometry, i.e., there exists ¢ € Z; such
that € - ® is defined by some automorphism ¢ : K|k — K'|k, etc.

Remark 2.10. In very recent work, Toraz [To3] gives yet another refinement of the (bira-
tional) pro-¢ abelian-by-central I/OM from [P5], in the spirit of the comments in the middle
of the Introduction/Motivation above. He introduces, namely, and proves mod-£ abelian-by-
central variants of I/OM as follows: First, consider the mod-¢ abelian-by-central and mod-¢
abelian, quotients ™, — 7f — 7{ of ™. Second, for U, C U; open, consider categories
U, similar to the categories Vx above, but satisfying extra conditions, e.g., @ = ko(X)\ko
consists of all the non-constant functions (as done in [P5] as well), and the dimension re-
striction dim(X) > 4. Then Aut®(n§, ) = Galy,, thus giving a purely combinatorial de-
scription of Galy,. Nevertheless, for the time being, it is unclear whether any of the mod-/¢
abelian-by-central variants of I/OM from [To3] holds for the “coarser” categories Vx and/or
V which satisfy Hypothesis (H) as introduced above, e.g., © finite, and/or 1< dim(X) <5.

3. RECOVERING THE TOTAL DECOMPOSITION GRAPH

A) Recalling basics about (quasi) divisorial subgroups

We begin by recalling a few basic definitions/notations from valuation theory, including
Hilbert decomposition/ramification theory in pro-¢ abelian field extensions, ¢ # char.

First, for an arbitrary field €2 containing p, and a valuation v of €2, let T}, C Z, be the
inertia/decomposition groups of v in Il,, and Q7 C Q7 be the corresponding fixed fields
in the maximal pro-¢ abelian extension '|2. (Note that because Il is abelian, T, C Z,
depend on v only, and not on the prolongation of v to €’ used to define them.) Further,
let Ul :==1+m, C O =: U, be the principal b-units, respectively the v-units in Q*. Then
by [P1], Fact 2.1, see also Topaz [Tol], [To2], one has that Q7 C Q7' := Q[Y/UL], and
Q" C Q" = Q[V/U,]. We denote T} := Gal(Q'|Q") C T, Z! = Gal(?'|Q?") C Z,
and call T! C Z! the (minimized) inertia/decomposition groups of v. Since vQ) = Q*/U, and
Qo> = U,/U}, by Kummer theory and Pontrjagin duality, setting § := dim(0§2//), one has:

(1) T} = Homeons (092, Ze(1)) 2 Z), g, := Zy /T, = Homeen (20, Ze(1)).
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We notice the following: First, if char(Qv) # ¢, then by [P1], Fact 2.1, one has that Z! = Z,
and TI§,, = Ilg,. Second, if char(Qv) = ¢, one has: Since ¢ # char({2), one must have
char(Q) = 0. Further, T} C Z! C T,, thus I}, C T,,/T.} has trivial image in Ilg, = Z,/Ty,
and the residue field of O7" contains “V/Quv.

Second, let Q2|x be a function field, say 2 = k(Z) is the function field of some (geometri-
cally) integral x-variety Z. A defectless valuation, or a valuation without defect, of Q|x is any
valuation v of €2 which satisfies the Abhyankar equality

td(2|k) = td(Qo|kb) + (02 /0K),

where we denote rr(A) := dimg A ® Q the rational rank of any abelian group A. Suppose
that k = . Then given a defectless valuation v of Q|x, the following hold, see e.g., [Kh]:

a) v{)/vk is a finitely generated free abelian group, and Quv|xb is a function field.

b) The restriction vy := v|g, of v to any function subfield Q;|x < Q|x is defectless.
Coming back to the context from Introduction, recall that a prime divisor of K |k is a discrete
valuation v of K which is trivial on k and has a function field Kv as residue field satisfying
td(Kv|k) = td(K|k) — 1. We call T,, C Z, a divisorial subgroup of Il,. It turns out that
knowing the divisorial subgroups T, C Z, of Il is one of the key technical ingredients in
reconstructing the function field K|k from its pro-¢ abelian-by-central Galois group II5,.

Unfortunately, at the moment there is no group theoretical recipe to recover the divisorial
groups 1, C Z, from the group theoretical information encoded in II% in the case of an
arbitrary algebraically closed base field k. The best one can do so far in general is to recover
the larger class of all the (minimized) quasi divisorial subgroups T} C Z} of I, from the group
theoretical information encoded in II. The precise definitions and result are as follows:
First, a valuation v of K|k, which is not necessarily trivial on k, is called a quasi prime divisor
of K|k provided it satisfies the following:

i) K # vk and td(Kbv|kv) = td(K|k) — 1.
ii) No proper coarsening of v satisfies these properties.
Condition i) implies that v is defectless on K |k, hence vK /ok = Z, and Kb|kv is a function

field. Second, a quasi prime divisor v of K|k is a prime divisor of K|k iff v is trivial on k.

Let L|k — K|k be a function subfield of K|k, and v := v|; for some quasi prime divisor
v of K|k. Since both the residual transcendence degree and the rational rank are additive
in towers of function field extension, one has the following:

Remark 3.1. In the above notations, there are only two possibilities for v and tv, namely:
a) rr(twL/wk) = 1, or equivalently, tv is a quasi prime divisor of L|k.
b) td(L|k) = td(Lw|kto), thus w is by definition a constant reduction (a la Deuring) of L|k.

The first point we want to make is that Galois theory encodes the nature of the above
restriction to = v|, of v to L|k as follows:

Fact 3.2. Let py, : I, — II; be the canonical projection. Then the following hold:
1) pr, maps T} C Z} into T} C ZL, and pr(Z)) C ZL, pr(T}) C T are open subgroups.
2) Therefore, 1 is a quasi prime divisor of L|k if pr(T}) # 1, respectively a constant
reduction of L|k if pr(T}) = 1.
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The second point we make is the result about recovering the quasi divisorial subgroups of
T, from II5 is as follows, see [P1] and Toraz [Tol], [To2]:

Fact 3.3. Let 115, — Il be the canonical projection, and for subgroups G C I, let G" C 115
be their preimages in 115.. Then the following hold:

1) Let d be the mazimal positive integer such that 1, contains subgroups A = 74 with

abelian preimage A" C 115,. Then d = td(K|k).

2) The minimized quasi divisorial subgroups of Il are precisely the pairs T C Z which

are maximal satisfying the following:
i) Z contains subgroups A = 7 having an abelian preimage A" C IS,
ii) T = Zy, and its preimage T" C 115 is the center of Z" C 115.
B) Recovering the projection p, : U — I, from m : e — Iy,

In the context and notations of Theorem 2.6, let t € K'\k be any non-constant function,
and K; C K be the relative algebraic closure of k(t) in K. Then K|k(t) is a finite field
extension, hence the projection II;, — Il defined by to + ¢ has an open image. Therefore,
since the canonical projection pg, : Il — Il is (by mere definitions) surjective, it follows
that the canonical projection m, : I — II;; defined by k(ty) — K, to + t, has an open

image in II; . Our aim is to show that there exist group theoretical recipes to recover the
projection py, : l — I, from the given group theoretical projection m; : Iz — Iy .

Notations 3.4. In the above context, consider/define:

a) The set Qf of all the quasi prime divisors v of K|k with m(Z;) C I, open.

b) The closed subgroup ¥ := (T} | v € Q) C II,- generated by the minimized inertia
groups T\, v € QY. and the resulting canonical projection p) : 1, — T1? := I, /T?.

c¢) The set Q; of all the quasi prime divisors v of K|k such that image p?(Z}) C TI? of
Z} under pf : I, — II) := I /%7 is not a topologically finitely generated group.

d) The closed subgroup T; := (T} | v € Q;) C Il generated by the minimized inertia
groups T}, v € Q;, and the resulting canonical projection p; : Il — II; := 11,/ T;.

We proceed by shedding some light on the objects defined above.

Lemma 3.5. For every quasi prime divisor v of K|k the following are equivalent:
i) ve Q.
ii) t is a v-unit and residually transcendental, that is, t € Kv is non-constant.

iii) The restriction of v to k(t) is the Gauss valuation defined by v, = v|, and t. In
particular, v|x, is a constant reduction of K|k.

Proof. First, the equivalence of ii), iii) follows by mere definitions. For the reverse implication
ii), iii) = i), we notice that IT; = Z7 is noting but the Galois group of the maximal extension
Kolk(to) unramified outside ¢y = 0,1, 00. On the other hand, since ¢, — 1 € Kb generate a
Z-submodule of rank two in (Kv)*/(kv)*, it follows by mere definitions, that the image of
Z, in I under to — t, is isomorphic to Zj as well, thus open in 1T, = Zj.

Finally, for the implication i) = ii), suppose that m,(Z}) is open in II;; . Then by mere
definitions, it follows that there exist v-units € tk*, n € (t —1)k*, such that their images 0,

77 in Kv* generate a Z-module of rank two in (Kv)*/(kv)*. Hence setting 0 =t/a, n = b(t—1)
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with a,b € k>, we must have t = a#, and 1 = bafl —b. We claim that a, b are vi-units. Indeed,
one has the following case-by-case analysis:
- vE(b) < 0. Since n = b(ah —1) is a v-unit, we must have v(af —1) > 0, hence af € 1+m,.
Since  is v-unit, so must be a, and @@ = 1 in Kv. Hence § = 1/a@ € kv, contradiction!
- v(b) > 0. Then v(af — 1) < 0, hence v(af) < 0. Thus n = (ba)f — b implies that ab is a
vg-unit, and 7, § have equal images in (Kv)*/(kv)*, contradiction!
- vp(b) = 0, i.e., bis a vg-unit. Then af = b~'n + 1 is a v-unit (because the RHS is so),
and since 6 is a v-unit, so is a. Thus conclude that a,b both are v,-units.
To proceed, notice that we have t = 6/a. Since a is a vg-unit, and 6 is v-residually transcen-
dental, it follows that ¢ is a v-unit, and ¢ is v-residually transcendental. 0

For the next Lemma, we recall the following basic facts about the pro-¢ abelian birational
fundamental group II; g, of K|k (and correspondingly, for its subfield K|k, etc.), see [P3],
Appendix for further details. First, for every set of quasi prime divisors Q of Klk, let
To C I be the closed subgroup generated by (T )peo. We set II; o := 1, /To and call
I1; o the pro-¢ abelian fundament group of Q. The pro-¢ abelian fundamental group of the set
of all the prime divisors Dy, of K|k is called the (pro-¢ abelian) birational fundamental group
of K|k, and is denoted by Il k. Notice/recall that IT; . equals the abelian pro-¢ (quotient
of the) fundamental group IIx of any complete regular model X of K|k —if such models
exist. In any case, IIx is a quotient of II; g, for every complete normal model X, and there
always exist normal projective models X of K|k such that II; K|k = IIx. In particular II; g
is topologically finitely generated, or equivalently, it is a finite Z,~-module.

Lemma 3.6. In the above notations, set k := Ry, and K := Kk. The following hold:
1) pr, : Ux — 10, factors through pY : Ty — 119, say pk, = q; o p{ with ¢ : 11 — 11, .
2) A :=ker(q)) = ker(II} — 11, ) is a quotient of I1, gz hence a finite Ze-module.

Proof. To 1): First, recall that I, = Gal(K}|k;) is the Galois group of the maximal pro-¢
abelian extension Kj|k; of K;. Hence one has ker(py,) = Gal(K'| KK}). Second, by mere
definitions, for every valuation v of K one has that T, = Gal(K’|Ky,), where U, is the
group of v-units, and Ky, := K['3/T,]. Third, the fact that pg, : II,, — I, factors through
p? M — T2 is equivalent to ker(p?) C ker(pg,). On the other hand, since ker(p?) is
generated by T, v € Q). one has: ker(p}) C ker(pg,) iff T} C ker(pg,), b € QY. Switching
to field extensions via the Galois correspondence, the inclusion T} C ker(p,) is equivalent
to KK, C Ky,, v € QY, hence equivalent to Kk} C Ky, for all v € Q). On the other hand,
since k is algebraically closed, k* is ¢-divisible, hence /U, = ‘Vk*- U,. Hence by Kummer
theory and mere definition, the inclusion k; C Ky, is equivalent to

() kY Ck*U,.

To conclude, we notice that the above inclusion follows from the fact that v, is a constant
reduction of K;|k. Indeed, since k is algebraically closed, hence vk is divisible, it follows that
v(Kk;) = v(k). Hence every u € K, is of the form u = au; for some a € k with v(a) = v(u),
and u; € U, N K;. This concludes the proof of assertion 1) of the Lemma.

To 2): First, we notice that a prime divisor v of K|k lies in QY if and only if v is trivial on
k(t) if and only if v lies in Q;. Hence the set D; of all such prime divisors v of K|k is nothing

but the set of prime divisors D\, of the function field K|k;. Let K, C K’ be the maximal
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subextension in which all v € D; are unramified. Equivalently, if Tp, C Il is the closed
subgroup generated by T, = T, v € D, it follows that Gal(K;|K) = II/ ‘ZD, Clearly,
K, C K’, and recalling that & := Ky, one has that K} = k N K’, and therefore, k and K’ are
linearly dlsJomt over Kj. Hence one has an exact sequence of the form

— Gal(K,k, | KK, — al(K)| k) =10, — 1,
(1) 1 — Gal(K.k, | KK;) = Gal(K|K) = II? =% Gal(k} | k) = I, — 1

in which A? := Gal(K;| KK}) = ker(II) — I, ) is the k;-geometric part of II = Gal(K,|K).

Next recalling that K := Kk, we set K; := K;k C K’k. Then since k and K’ are linearly
disjoint over Ky, it follows that the canonical projection below is an isomorphism:

A, = Gal(K;| K) — Gal(Kk;| KK}) = Al

Let D; be the set of all the prolongations ¢ | v of all the valuations v € D; to K. Since
K|k is the base change of K|k, under the algebraic extension(s) k; < K} < k, the following
hold: First, since D, is the set of all the prime divisors of K|k, it follows that D, equals the
set Dy, of all the prime divisors of K|k. Second, since each v € D, is unramified in K| K, it

follows that each prolongation @ of v to K = Kk is unramified in ;| K (because the latter
is the base change of ;| K under k;, — k;) Hence since Dt D Kl We conclude that all the

prime divisors of K|k are unramified in K| K. Therefore, A, = Gal(K;| K ) is a quotient of
IT, %7, and so is its isomorphic quotient A; — A} = ker(ITY — TI,,). O

Lemma 3.7. In the Notations 3.4, the following hold:

1) The set Q; consists of all the quasi prime divisors v of K|k such that v|x, is a constant
reduction of K¢|k. Hence QY C Qy, thus by mere definitions T° < Ty, and py : [ — 11,
factors through p? : 1, — 112, say p; = G, o pY for a unique q, : 119 — T1;.

2) pi, : U — I, factors through p, : Iy — 1L, say px, = q: o py with q, : I, — 11,
Thus since AY = ker(q?) is a quotient of IL, ks S0 is Ay := ker(qr) = ker(g)/ ker(g,).

Proof. To 1): First, if v := v|k, is a constant reduction of K|k, then the minimized decom-
position group Z. C I1,;, is not topologically finitely generated (by mere definitions). On
the other hand, pg, (Z}) C Z1 is an open subgroup, hence py,(Z)) C II,;, is not topologically
finitely generated. Thus finally, p?(Z}) is not finitely topologically generated either. Con-
versely, let b be a quasi prime divisor such that pY(Z}) is not finitely topologically generated.
By contradiction, suppose that o := v, is not a constant reduction. Then to is a quasi
prime divisor of K|k, and therefore Z. = T} because td(k;|k) = 1. Since T,) = Z,, one
finally has Z,, = Z,. Finally, recalling that ker(II{ — II,;,) is finitely generated, and that
P, (ZY) C Z) has finite index, it follows that p?(Z!) C TI? is topologically finitely generated,
contradiction! The remaining assertions from assertion 1) of the Lemma are clear.

To 2): First, as in the proof of assertion 1) of the Lemma 3.6 above, especially the proof
of the inclusion (), it follows that T, C ker(pg,) for all v € Q,. Hence pg, : I — Il
factors through p; : I — Iy, i.e., there exists ¢, : II; — Il such that px, = q; op;. Second,

¢« II) — II,, factors through ¢ : II, — I, precisely, ¢ = q, o q;, with g, : II) — II, as
introduced at 1). Therefore, ker(q;) = ker(q?)/ker(g,) is a quotient of ker(q?), as claimed. [

We next announce the group theoretical recipe to recover py, from .
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Proposition 3.8. In the above notations, in order to simplify notations, for quasi divisorial
subgroups Ty} C Z} of T, we set Ttl, = pt(Tnl),7[1, = p(ZY) C IL;. Then the following hold:
1) Ay is the unique Zg-submodule A C 11, satisfying the following:
i) For all v & Q; one has that Ei - A~Ti and AﬂTi =1.
ii) There exist v ¢ Qy such that A C 72, hence ?i =A- Ti.
(%) Therefore, the discussion above gives a group theoretical recipe to recover/reconstruct
Pr, U — g, from 1% endowed with 7, : Tl — 1T, .
2) The above reczpe to recover pg, 1s invariant under I -isomorphisms as follows: Let
L|l be a function field with | algebraically closed field, and foru e L\l, let kK, C L and
Pr, Oy — g, m, 2 1 — I defined by to — u € L, be correspondingly defined.
Let @ : 11, — II; be the abelianization of an isomorphism ®¢ : 115 — 1I$ satisfying
ker(m,) = ®(ker(m)). Then one has:
a) ® maps (T )y, (Ty C Zy)oeg, isomorphically onto (T)wegn, (Ty C Zy)weo.
respectively, thus gives rise to isomorphisms ®° : 1Y — 10, ®, : 1T, — II, which
map AY, A; isomorphically onto the corresponding AV | A,,.
b) Hence one has that ker(pg,) = ®(ker(px,)). Moreover, the induced canonical
isomorphism @, : 11, — Il ~defined by ® maps the quasi divisorial subgroups of
I1,;, isomorphically onto the ones of Il

Proof. To 1): We begin by showing that A; satisfies the requirement 1),i) from Propo-
sition 3.8. First, let v be a quasi prime divisor of K|k whose restriction to K; is not a

constant reduction of K¢|k. We claim that Ei C A Ti. Indeed, by Remark 3.1, it follows
that v(K;)/v(k*) = Z. Further, by Fact 3.2 combined with the fact that td(k.|k) = 1, it

follows that py, (1)) = pk,(Zs). Hence Z} C T} - ker(pg,), thus Zﬁ C Ti - pe(ker(px,)).
Hence taking into account that pt(ker(p,{t)) = ker(qt) Ay, we get 71 C Tl A;. Next,
since T, = Zy = pg, (1)), it follows that Pr, Maps T isomorphically onto py, (Tl). Hence
Pk, = @ © p; implies that p;, : T} — Tn and ¢ : TU — pr, (T}) are isomorphisms as well.
Finally, since A; = ker(p,), it follows that A; N Ti =1, as claimed.

We next prove that there exists a family (v;);e; of prime divisors v; € Q, satisfying:

- pry (o) Mg, (To;) = 1 for all i # j.

- pr,(Ty,), 1 € I, consists of almost all the divisorial subgroups of II,;,

- Zy, = A+ T,,, i € I. In particular, A, and Z,, satisfy condition 1) ) for all 1.

The proof of this is not difficult, but a little bit involved, and we will do it a few steps:

a) First, recall that ¢! = ¢; 0 q,, and in the notations from (the proof of) Lemma 3.6, let
K := K@) be the corresponding fixed field in ;. Then Gal (K|KK};) = Ay, and one has
an exact sequence of abelian groups

(1) 1 — Gal(KC| KK}) = Ay — Gal(K| K) = I1, =% Gal (K} | k) = T1,;, — 1,

which is a quotient of the exact sequence (}) from the proof of Lemma 3.6, 2). Since II,;, is
a pro-¢ abelian free group (being the f-adic dual of K; /k*), the exact sequence (1) above is
split. Hence there exists a Z/(-elementary abelian extension K;|K with Gal([ﬁ |K) = AL,

and satisfying: Kj and Kk are linearly disjoint over K, thus K;|K and K = Kk are linearly
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disjoint over K as well.® Hence K, := Kik is an abelian extension [~(1|I~( with Galois group
Ay /¢, and recall that A;// is finite, because A; was a finite Z,-module.

b) Let X; be the projective smooth k-curve with k(X;) = k;, and consider a A;/¢ cover of
(proper /normal) geometrically integral X;-schemes X; — X with generic geometric fiber the
field extension Ki|K. Then there exists an open subset U; C X; such that for all s € Uy, the
fiber X s — X, at s is a A;/l-cover of (proper/normal) integral k-varieties. In particular,
it X1 > m s — ns € X are the generic points of &} ; — A&, the corresponding extension of
local rings O,, — O, is an étale and totally inert extension of local rings, i.e., one has
K : K] = [k(ms) : £(ns)]. On the other hand, &}, C X} and X; C X are Weil prime
divisors. Thus the corresponding valuations v; of K, respectively v of K are prime divisors
of K|k, respectively K|k, which satisfy: v; is the unique prolongation of v to Kj, and the
residue field extension of v |v is nothing but x(n; )|x(ns). Further, v|s, = v, is the valuation
of K; defined by s € X;. Hence if w is a prolongation of v to KK}, then w is totally inert
in KiK}|KK), and in particular, the decomposition group Zi,, of w in Gal(Kik||KK}) is
nothing but 2, = Gal(K k]| KK}).

c¢) Recall that K| K is the subextension of K'|K with Galois group II;, or equivalently, the
fixed field of T, in K', one has that A, = Gal(Kk}|Kk}), and KKKk} is the Galois subex-
tension of Krj| KK, with Galois group Gal(Kik}|KK]) = A;/¢. Hence the decomposition
group Z,, of w in KK}| KK} satisfies: Z,, — A, and Z,, - 2, = Gal(KlliHK/i;) = Ay/L.
Since Ay is a finite Z,~module by Lemma 3.7, 2), Nakayama Lemma implies Z,, = A,.

Finally, by general decomposition theory, one has that: First, Z,, = Z;, N A, where Z, ,
is the decomposition group of v in Il;. Second, Z;, = pi(Z,) = Z, is the image of Z, C I,
under p; : I, — II;. Thus one has that

At - Zw g ZU'
We thus conclude that for almost all closed points s; € X, the local ring Ox,, of the
generic point 7; of X, is a DVR whose valuation v; satisfies the following:
a) vi(K) = v, (K), because the special fiber A, is reduced. Hence p,(T,) = To,, -
b) A, C Z,,, hence Z,, = A, - T,,.
Finally, to complete the proof of assertion 1) of the Proposition, we have to prove that A, is
the only closed subgroup of I1; satisfying the conditions i),ii) from assertion 1). The proof of

this assertion is easily to axiomatize as follows: Let A C II; be a further subgroup satisfying
the conditions i),ii) from assertion 1). Since A satisfies ii), there exists v & Q; such that

A ~Ti = ?i, and since A satisfies i), it follows that 7i C Ay ~Ti, thus finally, A C A, ~Ti.

Similarly, A; C A - T, for all v;. Finally, since pg,(T.,) N pr,(To;) = 1 for i # j, we can

choose v; such that pg, (Ty) N pk,(T,,) = 1. Equivalently, we have (A, Ti) N(A-T,,) = A
Thus the equality A, = A will follows from the following quite general assertion:

Fact 3.9. Let G be an arbitrary group, T, Ty C G be subgroups, and A, Ay < G be normal

subgroups satisfying: First, A C AT, Ay C ATy, and second, Ay NTy =1 =ANT,
(AlTl) N (AlT) = Al. Then A = Al.

3 Recall that k := K.
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Proof. First, since Ay C ATj, every 6; € Ay is of the form §; = or with 6 € A, 7 € T7.
Second, A C AT, implies that 0 = §]7 with 6] € Ay, 7 € T. Therefore, the following holds:

61 = 01, = 8,77, hence 8,7t =: g := §|T.

Since g = 6,7 ' € ATy, g = 8,7 € AT, and by hypothesis (A;Ty) N (A T) = Ay, it follows
that ¢ € Ay, thus concluding that 7,77 € A;. Since Ay NT; = 1, we get 73 = 1, hence
concluding that ; = 073 = 0 € A. And since §; € A; was arbitrary, we finally get A; C A.
For the converse inclusion, let § € A be arbitrary. Since A C AT, one has § = d;7 with
61 € Ay, 7 €T. Hence 7 = 676, and §; € A; C A implies 7 € A, and therefore, 7 = 1
(because ANT = 1). Hence finally 6; = § € A, and since §; € A; was arbitrary, we get
A; C A. Thus finally A = Aq, as claimed. [

To 2): The proof is an easy exercise of sorting through the proof of assertion 1), using the
® maps the quasi divisorial subgroups of Il onto those of II; . 0

C) Recovering the divisorial groups in Il from 15 endowed with m, 7y for Ky # Ky

In this subsection we give a group theoretical recipe which recovers the divisorial subgroups
T, C Z, of Il from 11§ endowed with two projections 7, 7y : I — Il for ¢,#' € K such
that Ky # K, (that is, t,¢" are algebraically independent over k).

First, by the discussion in the previous subsection, the projection py, : Il — II,;, can be
recovered /reconstructed by a group theoretical recipe from I15 endowed with the projection
7y 2 [ — Iy, defined by ¢ — t. Further, for every quasi divisororial subgroup T C Z} of
I, one has the following: pg, (T}) # 1 iff w := v|k, is a quasi prime divisor of K;|k, and if
so, then by Fact 3.2, one has that pg, (T}) = pk,(Z)) C T = Z} is open (and these groups
are isomorphic to Z,). And pg,(T}) = 1 if and only if pk,(Z;) has infinite Z,-rank, and if
so, then tv := vk, is a constant reduction of K|k and pk,(Z}) C ZL is an open subgroup.
Clearly, the same holds, correspondingly, about py,, .

Proposition 3.10. In the above notations the following hold:
1) A quasi divisorial group T} C Z} of 1, is divisorial, i.e., v is a prime divisor of K|k

if and only if one of the following conditions is satisfied:

i) pr,(Zy) C I, is an open subgroup.
i) pr, (ZY) = pk, (T}) and there exists a quasi divisorial group Ty, C Z3 of 11 satisfy-
ing: First, pr,(Zy) C Il , is an open subgroup, and second, Py (T Npge, (T) # 1.
2) The above recipe to recover the divisorial subgroups T, C Z, of Il from 115 endowed
with m, mp is invariant under 11y -isomorphisms as follows: Let L|l be a function
Jield with | algebraically closed field, and m,,m, : Iy — Iy be the projections de-
fined by tg — u, respectively to — u' for some u,u’ € L\l. Let ® : II,, — II, be
the abelianization of an isomorphism ®° : 115, — 115 satisfying ® (ker(m;)) = ker(m,),
® (ker(my)) = ker(my). Then ® maps the divisorial groups T, C Z, of Il isomorphi-
cally onto the divisorial groups T, C Z,, of 1I;.

Proof. To 1): For the implication “=-" let T,, C Z, be a divisorial group of Il,, and set

w := v|g,. First, if w is trivial, then Z, = II,,. On the other hand, by Fact 3.2, one has

that pk,(Z,) is open in Z,, = Il is open. Hence the first condition from assertion 1) is

satisfied. Second, if w is non-trivial, then w|, = v being trivial, implies that w is a prime
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divisor of K;|k. Recalling that K; # Ky, that is, ¢,t' are algebraically independent, there
exists a transcendence basis T = (tg,...,tq) of K|k; with to = /. Let wy be the Gauss
valuation of K|k, and v’ be any prolongation of wy to K. Then since w7 is trivial on k(t'),
it follows that v’ is trivial on Ky. Further, by mere definitions, v'|x, = w = v|x,. Therefore
we get: pﬁt(Tv)vp/it (Tv’) C Tw are open, thus Pk, (Tv) ﬁp,k;t (Tv’) 7é 17 and p:‘it(Tv) = pl‘ft(Zv)v
Pr.(Ty) = pr,(Zy). Second, pg,(Zy) C Il , is open, because V|, is trivial. Hence the
second condition of assertion 1) is satisfied.

For the converse implication <, let T} C Z} be a quasi divisorial group in II satisfy-
ing the hypotheses from assertion 1). Set tv := v, and recall that pg,(Zl) C ZL is an
open subgroup. Fist, suppose that pk,(Z)) C 11, is open. Then by the discussion above,
Zy is open in Il . Since K|k is a function field, every non-trivial valuation w of K; has
Zy, C 1, of infinite index. Hence we conclude that o must be the trivial valuation, hence
|, = vl is trivial on k. Thus finally, v is a prime divisor of K|k. Second, suppose that
P (ZY) = pr,(TY), and pg, (1)) = pk,(T)) for some quasi prime divisorial group Ty, C Z},
with pg, (Zy) C I, open. By the discussion above with respect to py, and T, C Zy, it
follows that v’ is actually a prime divisor of K|k, and therefore, w’ := v'|, is a prime divisor
of K|k, and pg, (Ty) C T} = 7Z, is an open subgroup. Hence since p,(T,)) C T, is open
as well (by the discussion before the Proposition 3.10), the fact that px, (Ty) N pr, (Ty) is
non-trivial, implies finally that T3 Npk,(T,:) # 1. On the other hand, since the inertia groups
of distinct quasi prime divisors in Il have trivial intersection, we conclude that v = w’,
thus tv is a prime divisor of K;|k. Hence to|, is trivial, and since v|, = to|;, is trivial, it follows
that vl is trivial. Therefore, v is a prime divisor of K|k.

To 2): This is an easy exercise involving sorting through the proof of assertion 1). 0

D) Recovering the total decomposition graph from IS, endowed with 7, my for Ky # Ky

We begin by recalling some facts from [P4], especially Proposition 3.5 of loc.cit. Recall
that a valuation v of K|k is called a prime r-divisor if ¢ is the valuation theoretical composition
U = v, 0---0wvy, where v; is a prime divisor of K, and inductively, v;1 is a prime divisor of
the residue function field K; |k, where v; := v; 0 - - owvy. By definition, the trivial valuation
will be considered a generalized prime divisor of rank zero. We also notice that r < td(K|k),
and that in the above notations, one has 7, (K*) = Z" lexicographically.

Since generalized prime divisors © are trivial on k, hence char(Kv) # ¢, one has T} = T,
and Z} = Z,. A flag of generalized divisorial subgroups of II, consists of the sequences of
the decomposition/inertia groups Zz > - > Zz , Ty, < -+ < Tj_ defined by a flag of
generalized (quasi) prime divisors 7; < --- < 0,, where 0y is a prime s-divisor, 1 < s < r.

The total prime divisor graph D' and its Galois theoretical counterpart, the total decom-
position graph Gpeor, were introduced in [P3]. First, D" is defined as follows:

a) The vertices of D" are the residue fields Ko of all the generalized prime divisors v of
K|k viewed as distinct function fields.

b) For a prime r-divisor ¢ and a prime s-divisor w, there are edges from Ko to K only
if v <wand s <r+1, and if so, the edges are:
i) If © = w, then the trivial valuation is the only edge from Ko = K to itself.
ii) If o < w, then the prime divisor w/v of Kv|k is the only edge from Ko to Kw.
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Via the Galois correspondence and the Hilbert decomposition theory for valuations, the total
decomposition graph QD;{M of K|k is in bijection with Df°t, and is defined as follows:

a) The vertices of Gper are the residue Galois groups Il of all the generalized prime
divisors ¥ of K|k viewed as distinct groups.

b) The unique edge from I, to I, if it exists, is endowed with the divisorial subgroup
Ts/5 C Zgs of ;. Note that if w0 = 0, then the groups are {1} = Ty /5 C Zyj5 = Uy

Finally, notice that by [P3], Section 2, it follows that knowing Gpret 1s equivalent to knowing
the flags of generalized divisorial groups Zz, > --- > Z5 , 15, < -+ < T, of 1.

We next show that QD;{M can be recovered by a group theoretical recipe from IIj- endowed
with any two projections 7y, 7y : [, — I satisfying Ky # Ky . First, recall that by Propo-
sition 3.10, there exists a group theoretical recipe which recovers all the divisorial groups
T, C Z,, v € Dgy, from I3 endowed with with any two projections m, my @ I — Iy
satisfying Ky # Ky. Hence given Ky # Ry and 115 endowed with 7y, 7y @ I — I, via that
group theoretical recipe, one recovers the set Jnt.div(K|k) := Uvepy, Tv of all the divisorial
inertia elements in II,. Further, if & € Aut®(Il,) is compatible with m;, 7wy, i.e., satisfies
®(ker(m)) = ker(m), ®(ker(my)) = ker(my), then by Proposition 3.10, it follows that ®
maps {T,|v € Dy} onto itself, hence ®(Inr.div(K|k)) = Ine.div(K|k). Further, by Theo-
rems A and B from [P2], Introduction, it follows that the topological closure of Jnt.div(K|k)
in 1T, is precisely the set of the inertia elements Jnt,(K) at all the k-valuations of K. Thus
Ky # ky and ® € Aut®(Il) compatible with 7, my implies that @ (Iney,(K)) = Iney,(K).

Proposition 3.11. In the above notations, let d = td(K|k). Then the following hold:

1) Let IS, — I, be the canonical projection, and for subgroups G C Iy, let G" C 115 be
their preimages in 115-. Then a flag of closed subgroups 2y > --- > Z,., Ty < --- <T, of
I, is a flag of generalized divisorial subgroups if and and only if Z, contains a subgroup
A 2 7¢ with A" abelian, the Ty, Z, are mazimal subgroups satisfying:

1) Ts < Zs, Ts 2 Z; and T C 11 is the center of Z! C 1%, s=1,...,r.

i) Ts C Iney(K), s=1,...,r.
In particular, this gives a group theoretical recipe which recovers QD;{ot from 115 endowed
with the set of k-inertia elements Jnvy(K).

2) Moreover, the recipe under discussion is invariant under isomorphisms as follows: Let L|l
be a function field with | algebraically closed field, and @ : 11, — 11, be the abelianization
of an isomorphism ¢ : 1§, — 11§ satisfying ®(Jnv,(K)) = Ine)(L). Then ® maps the
set of all the flags of generalized divisorial subgroups of 11, bijectively onto those of 11, ,
and therefore defines an automorphism @ : Gpror — Gptor.

Proof. The proof of Proposition 3.11 above is virtually identical with the one of [P4], Propo-
sition 3.5, but using Jnr.0iv(K) C Inr,(K) instead of Inr.q.0iv(K) C Ine.tm(K).

To 1): First, T, consists of inertia elements from Jnt,(K), hence of tame inertia elements,
and by hypothesis, T, is commuting liftable. For o € T' C Jnty(K), let v be any valuation
of K trivial on k such that o € T,. Then if v, is the canonical valuation of o, as defined
in Fact 3.3 from [P1], one has ¢ € T, and v, < v. Thus v, is trivial on k as well. Therefore,
the valuation © := sup,cr, v, defined in Proposition 3.4 of loc.cit., satisfies T, C T5, and

¥ is trivial on k as well. Second, notice that A := T, = Z¢ is contained Z,, thus in every
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Zs, and its preimage A” = T in IIj; is commutative. Hence by [P4], Proposition 3.5, it
follows that there exists a flag of generalized quasi prime divisors v; < --- < v, such that
T, =T, C Zy = Z,for s =1,...,r. Finally, since T, = T, C T}, it follows that v, < o,
thus v; < --- < v, < 0. Therefore, since v is trivial on k, so are all the vy, i.e., they are
actually generalized prime divisors. The last assertion from 1) is clear.

To 2): Since ® maps JInri(K) homeorphically onto Int;(L), the arguments from the proof
of assertion 1) show that ® maps (flags of ) generalized divisorial groups of I1,; isomorphically
onto (flags of ) generalized divisorial groups in II; . O

4. RECOVERING THE RATIONAL QUOTIENTS

A) Generalities about 1-dimensional quotients

Let K|k be a function field with £ algebraically closed, and Dg i, be the set of prime divisors
of K|k. Recall that for every u € K\k, we denote by k, — K the relative algebraic closure
of k(u) in K, and notice that k, C K strictly iff td(K|k) > 1. Further define/consider:

Dy, = {v € Dy, | v non-trivial on £, }

The inclusion K, = K gives rise to a quotient pg, : II;x — II; , which we call a geometric
1-dimensional quotient of II,.. And we say that py, : II;; — II,; is a rational quotient of II,
if K, is a rational function field, i.e., of the form x, = k(x) for some z € K.

Recall that we identify (once and for all) the Tate module Z,(1) of G,, x with Z,, and
do the same compatibly for all subfields of K. Hence by Kummer theory, Homeon (I1x, Zy)

is identified with the f-adic completion K of the multiplicative group K** and considering
(-adic duals, one has: Giving the projection py, : Il — Il is equivalent to giving its
(-adic dual 1, , which is the embedding of the ¢-adic completions:

(%) 1, | Ry = Homeont (Il , Zg) — Homeone (g, Zyg) = K.

For every prime divisor v of K|k, we denote by 7" : K - Homeont (T, Z¢) the f-adic dual
of the embedding T, — I, and notice that this j¥ is nothing but the ¢-adic completion of
: K* — Z (after identifying U(K ) = K'/U, with Z, U, C K* is the group of v- units).
Further the f-adic completion U of U, is precisely U = ker(y¥). Finally, let 3, : U — Kv
be the (-adic dual of I, = Z, /T, — Il /T,, and notice that ker(y,) = (/]E is precisely the
(-adic completion of the group of principal v-units U} C U, of v.

Recall that a set of prime divisors D is called geometric, if there exists a normal model X
of K|k, such that D coincides with the set of Weil prime divisors Dx of X, and notice that
one can choose X to quasi-projective and normal. Further, the family of all the geometric
sets of prime divisors is closed under finite intersections and unions, and any two geometric
sets of prime divisors are almost equal. We define

Kgn = Up {z € K | 7°(z) = 0 for all but finitely many v € D}, D geometric.

Notice that [A(ﬁn is a birational invariant of Kk, and for every geometric set of prime
divisors D and every £ € Ky, the set of all the v € Dx such that 7 Y(x ) # 0 is finite.
Further, if j5 : K* — K is the f-adic completion morphism, then jx(K*) C Kﬁn, hence Kﬁn
is (-adically dense in K. Clearly, the same is true correspondingly for the function subfields

41n order to simplify notations, we denote the ¢-adic completion of K> simply by K , an not by K.
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K|k, and under the embedding R, < K one has /?;uﬁn /?‘,u N [?ﬁn And since IA(ﬁn c K
and R, g, C K, are (-adically dense subgroups, and k, — Kisa topologlcal embeddlng, it
follows that the image of K, — K is the closure of the image of /ﬁu fin Kﬁn inside K.

Lemma 4.1. In the above notations, the following hold:
(%) Rugn = {T € IA(ﬁn |V ve D/1<au one has: If x € ﬁv, then 3,(x) = 1}

Proof. To the inclusion "C”: Recall that v € D,liu if and only if v is non-trivial on K,.
Hence for all v € Dy, one has: Since K,|k is a function field in one variable, it follows that
the residue field is K,v = k, thus (U, N Ky)v = k, and therefore j, is tr1v1a1 on the (-adic

completion of U, N K,, which is U N K,. Thus the inclusion “C” follows.

For the reverse inclusion “27” one has: Let x € Kﬁn\ Rufin and let A be the Z,-submodule
generated by x, hence A C IA(ﬁn. Since one has I/(\—ﬁn/l‘?uﬁn — IA(/I%L, and the latter Z,-module
is torsion free, it follows that [?ﬁn / f/{\,u’ﬁn is torsion free too, thus AN /?%ﬁn is trivial. But then
by [P3], Proposition 40, 3), it follows that for “many” valuations v € Dj; one has: A C U,
and 7, maps A injectively into Kv and therefore, j,(x) # 1, etc. U

B) Divisorial lattices and 1-dimensional quotients

For readers sake, we first recall a few basic facts from [P3] as systemized in [P4]. Recall
that a set D of prime divisors of K|k is called geometric, if there is a quasi-projective normal
model X of K|k such that D = Dx is the set of Weil prime divisors of X. If so, then
Up :=T'(X,Ox)* depends on D only (and not on X), and the canonical exact sequence

1 —Up— K*— Div(D) —» €l(D) -0

gives rise to its f-adic completion

(*)p 0—Tp,— K — EE(D) — €I(D) — 0,
where Tp 4 is the f-adic Tate module of the Weil divisor class group €I(D) of X.” Finally, let
Div’(D) C Div(D) be the preimage of the maximal ¢(-divisible subgroup €I°(D) C €l(D).5
Fact 4.2. Recall that a subgraph G C Gper is called geometric, if for every vertex g of G
with ¥ a prime r-divisor, r < td(Kk), the set D; of all the edges originating from II,; is a
geometric set. The following hold, see [P3] for details:

I) There are group theoretical recipes which recover from Gpper the following:

- the geometric sets of prime divisors D, and the geometric decomposition graphs G.

- the complete regular like geometric sets D, as introduced in [P3], Definition/Remark 21,
and the complete regular like geometric decomposition graphs, see [P3], Proposition 22.

If D is complete regular like, the group theoretical recipes recover:

- the exact sequence (x)p above, see [P3], Proposition 23.

- Div'(D) () C ISE(D) up to multiplication by f-adic units € € Z;."

5Tt turns out that the above exact sequences depend on D = Dx only, and not on the concrete normal
quasi-projective X with D = Dx.
6By the structure of €[(X), see [P3], Appendix, there is a unique maximal divisible subgroup in €I(X).
"Recall that for every abelian group A we denote Ay = AR L.
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e If D is complete regular like, then (/]\K = Tp, and DiVO(D)(g) are birational invariants
of K|k;,Athus so is the preimage Lx C K of Div’(D) s under K — [/)RI(D) Hence
L C K can be recovered from gD;(ot up to multiplication by f-adic units € € Z;.

- Finally, jx(K*) C Lk and jx(K*) N Uk =1, and if ) (K*) C - L, then € € Zg, .

(*) We call Ly the canonical Ug-divisorial lattice of Gpyor.
IT) By [P3], Proposition 39, the recipes to recover the above objects from Gpet are invariant
under isomorphisms of total decomposition graphs as follows: Let L|l be a further

function field with [ algebraically closed, and Hpwr be its total decomposition graph.
Let @ : Il — II; be an isomorphism which maps Gpeer isomorphically onto Hoptet, and

ngﬁ : I — K be the Kummer isomorphism of ®, i.e., the f-adic dual of . Then:

- ® maps the (complete regular like) geometric decomposition graphs of K|k isomor-
phically onto the such ones of L|l.

- One has ¢(UL) = Uy, and there exist ¢ € Z; such that ¢(L;) = ¢ - Lk, and ¢ is
unique up to multiplication by elements n € Z(XE).
e In particular, if one replaces ® by its multiple ®. := ¢-®, then the Kummer isomorphism

. of @ satisfies &E(L’L) =Lk.
Language. We say that ® is adjusted, if ¢(£;,) = Lk.

Remark 4.3. In the above notation, the following hold:

1) For u € K*let u € Z) - jx(u) and u € Z; - u be non-trivial (equivalently, v is non-
constant and u = a - Jx(u), w = (- u with o, § # (D Then for every prime divisor v of
K|k the following hold: v € U, iff u € U, iff w € U,. And if so, then y, (jK(u)) # 1 iff
Jo(u) # 1iff 5,(w) # 1 in Kv. T herefore, the following sets of prime divisors are equal:

) Dy :=A{v | u€ U, and j,(jx(u)) # 1}
b) Dy :={v | u e U, and 3,(u) # 1}
¢) Dy:={v|ue U, and j,(u) # 1}
and D, = Dy = Dy = Dk, := {v | v is trivial on K,} = Dgp\D};,. Hence one has:

(1) Given any of the following: u € K'\k and D, as at a); and/or u € Z - 7x(u) and D,

as at b); and/or u € Z, - u and D, as at c), enables one to recover the set Dy, C Dy

a

(1) Hence using Lemma 4.1 one can first recover I?Min — IA(ﬁn and second, taking f-adic
duals, one finally recovers the projection of Galois groups pg, : I — II .

2) Let u € K be a non-constant function. Then K,|k is a function field in one variable,
hence it has a unique complete normal model X, — k, which is a projective smooth
curve over k. Then X, (k) is in a canonical bijection with the set of prime divisors of
Kulk, say X, (k) 2 a < v, € Dy, and we denote the total prime divisor graph of
K|k simply by Gk,. The canonical divisorial lattice Ly, corresponds to the canonical
system of inertia generators (7, )qex, (k) Of the inertia groups T5,,, a € X, (k). This system
of generators satisfies the unique relation Il,7, = 1 in Il . In particular, if (77), is
another system of inertia generators satisfying 1,7, = 1, then there exists a unique

21



(-adic unit ¢ € Z; such that 7, = 7¢ for all a € X, (k). If so, the divisorial lattice
corresponding to (77), is nothing but - L,. See [P3], Sections 4.2, 5.2 for details.
In particular, let X;, X, be complete smooth k-curves, and K, := k(X;), K, := k(X,).
Then for an isomorphism ®;, : IT,, — II,; , the following are equivalent:
i) ®;, maps {T,, |b € Xi(k)} bijectively onto {T,, |a € X,(k)}.
ii) There is a bijection X;(k) = X,(k), b — a, such that ®,,(T,,) = T,,.
iii) If (75)pex, k) and (7a)aex, (k) are the canonical inertia generators, then there exists
e € Z; such that ®,,(n,) = (75) for all b+ a.

iv) ®, defines an isomorphism of decomposition graphs @, : Gx, — Gk,
In the above notations, one can recover G, from gD}t{ot endowed with the 1-dimension
quotient py, : I — II,; as follows: Let v be a prime divisor of K|k. Then v € D}, iff
v is non-trivial on K, iff px, (T,) C I, is non-trivial. And if so, and v, is the restriction
of v to Ky, then pg, (T,,) C T,, is an open subgroup, and moreover, T, is a maximal
pro-cyclic subgroup of Il , and the maximal one containing pg, (13,). Conversely, for
every prime divisor v, of K,|k there exists some prime divisor v € D}{u which restricts
to v,, thus pg,(T,) C T, is non-trivial. Since for all prime divisors v, of K|k one has
Ty, = Zu,, 1t follows that the above procedure recovers Gg, from Gpor endowed with
the group theoretical 1-dimension quotient pyg, : Il — II,
Moreover, the above procedure does not only recover Gy, , but it recovers as well the
morphism of total decomposition groups pg,, : QD;{M — Gy, defined by py, : I — I,
Since py, : Il — Il originates from the embedding of function fields K, |k — K|k, the
induced morphism of total decomposition graphs pg, : thot — Gy, is divisorial in the
sense of [P3], Definition/Remark 31 and Proposition 40. ‘And the Kummer morphism

Ry — K maps U,.; C Lk, injectively into U C Lx. Thus by loc.cit.,5) and the

dlscussmn above, it follows that Lk is the unique divisorial U r-lattice for K|k with
. (Lr,) C L, ie., if Ly = e- L and 1y, (Lg,) C L, then Ly = Ly, hence € € Zg,
Moreover, L /L. C K /R, are torsion free (because IT, — I1,; is surjective).
Finally, let ® € Aut®(Il,) define an isomorphism @ : Gpwt — Gpor. Suppose that
t,u € K are non-constant functions such that pg, : I — I, pk, @ g — I,
satisfy @ (ker(pk,)) = ker(pg, ), or equivalently, there exists @y, : I, — II,; satisfying
O, 0pk, = pr, o P. (Note that ®y,, is actually unique.) By the discussion at items 2), 3)
above, ®;,, maps the set of divisorial groups T;,, = Z,,, a € X;(k), of II,;, isomorphically
onto the the divisorial groups T3, = Z,,, b € X, (k). Hence the isomorphism ®;, defined
by ® satisfies the equivalent condition i)-iv) from item 2) above.
The fact that a 1-dimensional quotient py, : gD}t(ot — Gk, is an abstract rational quotient
of Gpror in the sense of [P3], section 5, B), and/or [P4], Definition 5.2, is equivalent to
the fact that K, is a rational function field by [P3], Proposition 41, i.e., kK, = k(z) for
some z € K. On the other hand, K,|k is a rational function field iff X, = P; iff
the inertia groups (75, )., generate I, —iff ﬁmu = 1. These equivalent conditions are
encoded in Gt endowed with pg, @ 1T, — Il and are equivalent to the fact that the

canonical divisorial Uy, -lattice Ly, for K|k is nothing but Lk, = Iku (K™ (0)-
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C) The behavior of jx ((©,1— @>)(£) under weakly ©-compatible automorphisms

Recall the automorphism group Autf(II,) as introduced in Definition/Remark 2.8. In
this subsection we show that X ¢ = 7k (< 0,1-6 )) (0 Can be reconstructed from II% endowed

with 7, t € O, by a group theoretical recipe invariant under all & € Autf (11, ).
Remark 4.4. In the notation/context from Definition/Remark 2.8, let |©| > 1. Then given
I1% endowed with the projections p, : I, — II;; , t € 6, and ® € Autg (Il ), one has:
1) By Proposition 3.8, all pg, : I, — II,; can be recovered/reconstructed from m;, t € 6.
Further, p,0® = ®gop, for some t,u € O and @y € Aut(Il, ) iff @ (ker(px,)) = ker(ps, ).
2) By Propositions 3.10 and 3.11, one can recover the total decomposition graph of ngIt(ot
of K|k. Further, ® defines an automorphism of decomposition graphs ¢ : Gppot — Gpyor.
3) By Fact 4.2, IT), after replacing ® by a properly chosen ¢-adic multiple, we can suppose
that @ is adjusted, hence its Kummer isomorphism ¢ satisfies gg(ﬁK) =Lk.
4) By Remark 4.3, 2)-5) above, the group theoretical isomorphism &, : I, — II,
satisfying ®;,, o px, = pk, © © defines an isomorphism ®;,, : G, — Gk,
5) Therefore, one can recover the Kummer homomorphisms v, : Ky < K of pk, fort € O,
and if ngSW : Ky — Ky is the Kummer morphism of ®,,, one has ggo U, = Uk, O gz@t’u.

6) Claim. In the above context, suppose that ¢(Ly) = L. Then dru(Ly,) = L,

Proof of the Claim. By Remark 4.3, 3) above, applied to ®y, : Gg, — G, it follows that
O1u(Lr,) = € - L, for some € € Z;. Now since 1, (L,) C L, one must have

£~ £K De- Il/{/t(ﬁﬁ‘/t) = Z/Qt(g . ‘Cﬂt) = 1K, ((%t,u(ﬁﬁu)) = (%('l/{u(ﬁ,l{u)) - EK,
hence (e - Lx) N Lk # 1. Therefore, € € Z,), and Gra(Lr,) =€ Ly, = Li,, as claimed.

Proposition 4.5. In the above context, for every non-constant t € K, let (t,1—t) C K*
be the subgroup generated by t,1 —t, and set ¥, := jx((t,1 —1))wy C Lx. Further set

Yo := (% |te O). Let ® € Aut®(Il,) be adjusted, i.e., p(Lx) = L. Then one has:
1) If t,u € K* are such that ®(ker(m)) = ker(r,), then B(2,) = 2.
2) In particular, if ® is weakly ©-compatible, then ¢E(E) =Y.

Proof. Let Ty, Ty, T C Iy, be the inertia groups above the points {g = 0,9 = 1,5 = oo,
correspondingly. Then Tp, Ty, T, are the only maximal cyclic subgroups of II;; containing
the non-trivial images m,(7,), v € Dgj,. Further, these inertia groups have canonical gen-
erators 7y, 71, T, respectively, satisfying the unique relation 7977, = 1. Hence if &g is an
automorphism of I, which maps {Tj, T1, T} onto itself, there exist a unique ¢y € Z; and

a permutation (. ;O;’) such that ®y(7) = 75°, etc. The f-adic dual of II;; is the Z,-module

Ly, with generators ly, {1, s defined by [;(7;) = 6;; for 4,5 € {0, 1,00}, thus satisfying the
only relation ly + l; + loc = 0. And after identifying the Tate module Z,(1) with Z,, and
setting Xy, = (to, 1—t0)(g), via Kummer Theory there is a canonical isomorphism

(T) ito — Zan tO = l()_loo: 1_t0 — ll_loo

By mere definition, the f-adic dual ¢y : Ly, — Ly, of ®q is given by (o, Iy, lse) — 0-(la, Lg, L)

To give ¢y in terms of ito, recall that for every I, —1;, 1 # j, 1,5 € {0, 1, 00}, there is a unique
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ti,j c ilto with ti,j — lz — lj, where ilto = {to, 1-— to, 1/t0, 1/(1 — to),to/(to — 1), (to — 1>/t0}
Hence the above bijection (lo, l1,ls) = €0 - (la, g, l,) translates into:

(1) G0 Dip = Sgy To > 150 1t > 10

To1): For @ € Aut®(Ily), let t,u € K\k and ®; € Aut(Il;, ) be such that &g o m; = 7, o ®.
Then by Remark 4.4, ® gives rise to an isomorphisms ®;, : II,;, — II,; which is an iso-
morphism of decomposition graphs ®;, : Gk, — Gg,. Further, by Remark 4.4, Claim, it

follows that the Kummer isomorphism gzgtvu of &, satisfies: Qgt,u(ﬁlﬁu) = Lx,. Hence taking
into account the commutative diagram

U — I, — Iy

\l/@ \l/q)t,u \Lq)O

Iy — I, — I
it follows that its f-adically dual diagram is:

L ﬁ,‘@u — Zig
(*) T4 T bt T b0
Lrx +— Lk <+ Xy
Arguing as in the proof of the Claim from Remark 4.4, it follows that ¢ - L, N Lk, # 1,
and therefore, g9 € Z . Thus taking into account ({), it follows that ¢o(X¢,) = 4.
Next recall the canonical projection ¢; : I1,;, — II; defined by o +— ¢ € K¢, which gives rise
to the factorization m; = q;opg,. Then the (-adic dual of ¢, i.e., its Kummer homomorphism,
is an embedding >, — K; whose restriction to ¥, satisfies:

Zto —> ;C,Qt, to — j/{t(t), 1-— to — ]Rt(l — t)
Hence X := jg, ((t,1—1)) ) C Lg, can be recovered from ¢, : I1;, — II;; , as being:
(*)t 2t = JK/t(<t7 1_t>)(4) = im<2to — Elit)'

The same holds correspondingly for g, : Il — Tl defined by ¢y — u € K., and we finally
get that 3, 1= jx,((u,1—u)) ) C Lk, can be recovered from ¢, : I, — Il , as being

(%) Yo = gk, ((u, 1=u)) @) = im(3y, = Lg,).

Hence by the commutativity of the diagram (%) above, ¢(%,) = ;.

To 2): Let 6 : © — O be the bijection defining ® as weakly @-compatible, and recall that
ker(m,) = ®(ker(m)) for 6(t) = u. Thus ® bring adjusted, it follows by assertion 1), that
B(2,) = %, for O(t) = u. Proceed by taking into account that 6 is a bijection, etc. O

D) Recovering the rational projections

Recall that the non-constant functions € K such that kK, = k(z), for short general ele-
ments of K, are quite abundant in K. Indeed, by the discussion from [P3], Fact/Definition 43,
one has: Let x,t € K be fixed algebraically independent functions over k, with x separable,
e.g., general. For later use, we notice that the following hold:

a) t, :=1t+ ax is a general element of K for almost all a € k.

b) taa :=t/(a’x + a) is a general element of K for all ¢’ € k* and almost all a € k.
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C) taraa = (d"t+d'z+a+1)/(t+d'x+ a) is a general element of K for all ” € k and
almost all a’,a € k.
d) Moreover, setting o := a” — 1, an obvious direct computation shows the following:
dr+a+1 a"ty.+1
a'r+a ‘ taa +1

ta’,’a’,a = , at+ 1= (ax’ + CZ) (ta/ja’,a - 1)/(]5@/711 + 1) :

e) Finally, suppose that ¢,t are algebraically independent over k, and let (t,t') C K*
be the multiplicative subgroup generated by ¢,¢. Then if there is no prime number ¢
such that both ¢ and # are ¢*® powers in K, then (t,#') contains general elements. In
general, if there are prime numbers ¢ such that ¢,t' are ¢* powers in K, consider the
maximal number n such that ¢,¢ are both n'" powers in K, say t =3, t' = ;. Then
there is no prime number ¢ such that both ¢y and ¢} are ¢™* powers in K. Hence (to, t})
contains general elements, say « = t(t; with r, s € Z. Hence setting u := z™, one has:

i) u=tt" e (tt).
ii) K, = k(z) is a rational function field.

Recall that given any u € jx (K ), say u = 6y (u) with u € K* non-constant and some
non-zero ¢ € Z, the Lemma 4.1 above gives a recipe to recover the 1-dimensional quotient
Pk, : g — Il , and shows that py, does not depend on the specific u and/or u, but
only on Zy - u. Further, by Remark 4.3 above, especially item 5), among the 1-dimensional
projections pg,, one can single out the rational quotients, i.e., satisfying K, = k(z), z € K.

Construction 4.6. In the context of Theorem 2.9, we will construct inductively a sequence
(Xn)n of subsets and a sequence of Z-submodules (/C,,),, of jx (K ) as follows:

Step 1: Constructing Y, Ky:

By the hypothesis of Theorem 2.9, one has K = k(@). Hence since td(K|k) > 1, there
are algebraically independent ¢,# € @. Thus by item e) above, there exists u € (0,1—6)
such that kK, = k(z) for some z € K = k(X). In particular, the set ¥; of all the rational
quotients pg, with u € (©,1—6) is non-empty. This being said, we let K1 C Lk be the
Zg-submodule generated by ¥ ¢ and the images 14, (Lk,) = jK(K,u)(g) for all the pk, € ¥.

Step (n + 1): Constructing 2,1, KCpi1:

Supposing that X, and IC,, C jx (K*) ) € Lk are constructed, we proceed as follows: For
ue Ky, us#1, let u € K besuch that u € Zy) - yx(u), and pg, : i — I, be the 1-dim-
ensional quotient defined by u as indicated at Remark 4.3, 1) above. By Remark 4.3, 5), we
can recover the fact K,|k is a rational function field from Gprer endowed with py,. Define
Y41 to be the set of rational quotients px, : Iy — II, , u € K,,. We also notice that
by the discussion at Remark 4.3, 4) and 5), it follows that for every px, € 3,1 one has
that L, = Jx,(ku") ) 18 the unique divisorial lattice for Ky|k such that w,(Lk,) C Lk,
and therefore 1, (Lx,) C jK(KX)(E) C Lg. Finally, let K,,,1 € Lk be the Z-submodule
generated by Yg and all the images v, (Lx, ), Pk, € Tn+1, and notice that K1 C g (K7) -
And obviously, >, C 3,1 and therefore, IC,, C K, for all n > 1.

Proposition 4.7. In the above notations, let ¥ := U,%,, K := U,K,,. Then one has:
1) K = 1k (K*)¢) and X is the set of all the rational quotients pg, : I — 1, of .
2) Let the Kummer morphism of ® € Aut, () satisfy ¢(Lx) = Li. Then ¢(K) = K,

and for every px, € ¥ there exists px, € ¥ such that ®(ker(pg,)) = ker(ps, ).
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Proof. To 1): We first show that K = jx(K*) . By hypothesis one has K = k(0), hence
every element ¢ € K* is a fraction t'/t”, where t',t" # 0 are polynomials in the elements
of @. In particular, it suffices to prove that all the polynomials ¢ = )" a;M;, with a; € k*
and M; monomials in the elements of @, lie in . For that, we make induction on n.

n=1: Then t = a;M; with a; € k* and M; a monomial in the elements of @. But then
Jx (M) € Yo, and since by definition one has Xg C K7 C K, we are done.

n=(n+1): Lett = Z?H a;M;, where n > 1, hence n +1 > 2, and a; € k*. Setting
b :==a;/aps1fori=1,... nand v := Z?:l b; M, it follows by the induction hypothesis that
Jx(u') € K, hence there exist m > 0 such that jx(u’) € K. Thus setting t := u'/M,, 41, one
has that jx () = jx(v')/)x (Mp+1), hence ji (t) € Ky, and notice that ¢’ = a,+1 M, 41 (t +1).
Hence in order to prove that jx(t') € K, it is sufficient to prove that jx(t + 1) € K.

Claim. jx(t+1) € Ko

Indeed, first recall that by the discussion at Step 1, there exists some u € (6,1— 6 ) such
that K, = k(z) for some = € K, i.e., pg, is a rational quotient of IT,.. Hence by the definition
of K1, one has jx(Ky) C Ky, thus jx(ad’z +a) € Ky for all @’ € k* and a € k. Hence in the
notations and by the discussion at the beginning of this subsection, one has:
- Since K; C K, and jx(t) € K, one has that jx(te.) € KCp. Further, ¢, is a general
element of K for all ' € k* and almost all a € k, a € a'- 3, for some finite set ¥, ,.
Hence by mere definitions, one has that py, | € Ym+1, and therefore, jK(/ﬁJtZ , a) C K-

In particular, setting b := a+1, for almost all @', a € k one has that a’z+a, a’v+b, t,,+1
are general elements of K whose images under jx lie in K, 11. And if a” == a+ 1 € k>,
the element a”t,;, + 1 is general as well, and its image under jg lies in KCpp, 41 as well.

- Second, taking into account the formula given above under d), it follows that for all
a,a” € k and o’ € k*, one has that jx(tyraa) € Kmy1. Further, for all «” € k and
and almost all a,a’ € k, it follows that ., is a general element of K, hence by mere
definitions one has py, L€ Yim+t2. Thus concluding that jK(K}tXa ,{aca) C Kpnyo.

Hence we finally conclude that of all @ € k and almost all a,a’ € k, one has:

at + 1= ((l,l‘ + a)(ta/;a/,a — ]-)/(ta’,a + 1),
and therefore, jx(at + 1) € K42 for all @ € k. This concludes the proof of the Claim,
thus of the fact that K = jx(K>). Finally, the assertion that U,3, consists of all rational
quotients of ITj is more or less clear: Let namely x € K be such that pg, : [T — I, is a

rational quotient. Since jx(z) € K, and K = U,K,,, one has jx(x) € K, for n sufficiently
large. But then by mere definitions, for every such n, one has that pg, € X,11.

To 2): We first claim that for every n > 0 and every py, € ¥, there exists some py, € X,
such that @(ker(p,%)) = ker(pg,) and gg(lCn) = K,,. We prove this by induction on n:

n = 1: Recall that X; consists of all the rational quotients px, : [Tz — II,; of the form
k(z) = Ky, u € ¥o. Notice that py, being a rational quotient of IT; depends on Z) - 7k (u)
only, and not on the specific u. Now let & € Auty(Il;) be adjusted, i.e., its Kummer
isomorphisms ¢ satisfies ¢(Lx) = Lx. Then by Proposition 4.5, one has that ¢(Xe) = Ze.
For px, € 31, let d(u) = a - Jx(t) for some t € (0,1—6) and a € Zy. Then py, o ® = py,
is a rational projection of Il , hence pyx, € 3, as claimed. In particular, for & € Autf, (1)
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and ¢ are as above, one has ¢(Ly,) = L, C Ki. Since this is true for all ps, € ¥y and for
Yo as well, we conclude that ¢(K1) = K;.

n = (n+ 1): By the induction hypothesis, we have ¢2(1Cn) = IC,,, and by the construction
of IC,, one has IC;, C jx (K ). Thus Vx € K,, Iy € K, such that d(x) =y. Nowifz,y € K*
are such that x € Zy-jx(x) andy € Zyy -3k (), let px, and pg, be the 1-dimensional quotients
defined by K, and K, as indicated at Remark 4.3, 3). Then by loc.cit., 1), and reasoning
as in the proof of Lemma 4.8, 1) below, it follows that { T}, C Z, | v € D} } is mapped by
® isomorphically onto the {T,, C Z,, | w € D, }. But then by Lemma 4.8 below, it follows
there is an isomorphism of profinite groups ®,, : I, — I, satisfying @, , o pr, = pr, 0 P
and defining an isomorphism of decomposition graphs ®,, : Gk, — Gx,, and the Kummer
morphism éx,y : Ry — K, of &, , satisfies gﬁx,y(ﬁ,{y) = Lk,. In particular, pjx, is a rational
quotient iff py, is so. Thus we conclude that for every rational quotient px, € X1, there
exists pg, € X,41 and an isomorphism ®,,, as above such that ®, , o pg, = pg, o ®. Clearly,
Yint1 — Ypg1 Via pi, > Pk, defines a bijection. And notice that the Kummer isomorphism
é of ® satisfies é(z,@y(ﬁﬁy)) = 1x,(Lr,). Thus since I, is generated by g and all the

Jx(KX) with pg, € ¥,41, we get: é(lCnH) = K11, hence I, ;1 is invariant under (;3 Finally,
since K := U, K, and X := U, X, the above discussion concludes the proof. O

Lemma 4.8. In the above notations, let & € Auty(Il,) be such that its Kummer isomor-
phism ¢ satisfies ¢(Lx) = L. Then for z,y € K\k, one has:
1) The automorphism ® maps the divisorial subgroups T, C Z,, v € D) isomorphically
on the divisorial subgroups T, C Z,,, w € D, if and only if ®(ker(pg,)) = ker(pg,)-
2) Let ker(px,) = ®(ker(pw,)). Then the abstract isomorphism g, : Il — I,
induced by ® defines an zsomorphzsm of decomposition graphs ®,, : Gx, — Gx,
whose Kummer isomorphism gbz v Ry — K, satisfies gbxy(ﬁmy) Ly,

Proof. For every divisorial subgroup T, C Z, of II; and its image ®(T,) = T,, C Z,, = ®(T})
under @, one has the following, see e.g., [P3], Remark 26:

a) ¢ maps U, isomorphically onto U,.
b) ¢ maps ker(3,) isomorphically onto ker(y,).

In particular, v € DL iff x € U, and j,(x) # 1 iff y € U, and j,(y) # 1 iff w € D,.
Thus using a), b) above, by Lemma 4.1, we conclude that {T, C Z, | v € DL} is mapped
isomorphically onto {T,, C Z,, | w € D;} iff ¢ maps Ky fin isomorphically onto K, g,. On the
other hand, hand, by taking ¢-adic duals, we conclude that gg maps K, g, isomorphically onto
R fin iff @(ker(p,iz)) = ker(pg, ). This concludes the proof of assertion 1).

To 2): By 1) above, ® maps { T, C Z, | v € D, } isomorphically onto { o, C Z,, | w € D, }.
Further, by Remark 4.3, 3), we have: Let v € D} be given, and v, be the restriction of v on
Ke. Then ®(T,) = T, for some prime divisor w of K|k such that pg, (T\) = @, (p,iz (Tv)),
thus pk,(T,) is non-trivial, because py,(7,) is so, and ®,, is an isomorphism. Therefore,
the restriction wg of w to K, is non-trivial. Further, since ®, , is an isomorphism, and 7, is
the unique maximal pro-cyclic subgroup of 11, containing py, (T5,), it follows that &, ,(T,)
is the unique maximal pro-cyclic subgroup of II; which contains pg, (T). We conclude that

®, ,(T,,) =Ty, for some b € X, (k), where X, is the projective smooth model of K, |k. Thus
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.y 1 Gk, — Gk, is an (abstract) isomorphism of decomposition groups. Finally, one has

. (Lk,) C Li and g, (Ly,) C L. Since qgoz,iy = 14, 0y, it follows that Ly = q§x7y(£,§y)
is a divisorial lattice for K,|k such that

i, (L,) = i, (éx,y(ﬁﬁy)) = é(lny(ﬁﬁy)) C G(Lx) = L.
Thus 1, (L), ) C Lk. Hence by the uniqueness of Ly, with the property that v, (Lx,) C Lk,
it follows that £}, = L,. Thus we conclude that ng7y(£/<;y) =L}, = Lk,, as claimed. [

5. CONCLUDING THE PROOF OF THEOREM 2.9

The injectivity of Aute(K') — Aut$,(I1,) follows from the one of Aut(K') — Aut®(Ily),
which is well known, and we will not repeat the quite standard arguments here.

For the surjectivity of Autg(K') — Aut$ (1), let @ € Auty(Il,) be given. Then by
Proposition 4.7 above, ® defines an isomorphism Gptot — Gpror which is compatible with all
the rational quotients ®x, : Gper — Gg,. Hence by the Main Theorem from [P3], Intro-
duction, it follows that there exists an isomorphism of fields ¢ : K' — K' and some f-adic
unit ¢ € Z; such that ¢ - ® is defined by ¢, i.e., if ¢' is some prolongation of ¢ to K’, then
e-®(g) = ¢ 'g¢ for all g € ;.. This proves assertion i) of Theorem 2.9. For assertion i),
we notice that replacing ® by ®, := ¢ - ®,° we can suppose that actually ¢ = 1, and there-
fore, the Kummer isomorphism of & is simply the f-adic completion of the multiplicative
isomorphism ¢ : K* — K*. Then by the commutativity of the diagram (%) from the proof
of Proposition 4.5, one has that QAS(E,Q“) = Ly,, hence q@(//{u) = Ry. Thus since k, # k, for
Kz # Ky, we conclude that ¢(ki) = Ki. Further, by loc. cit., one has that QAS(ZU) =3,

For t € O consider the corresponding u € 6 and ®y € Aut(Il;, ) such that ®gom, = m,0®.
Then recalling the notations and facts from the first part of the proof of Proposition 4.5,
especially the facts (1) and (1), it follows that the ¢-adic dual of ® is defined by

Po: Sty — Sy to >t I—to s 15,
where ¢; ; € 8y, == {to, 1 —to, 1/t0,1/(1 —tg),t0/(to — 1), (to — 1)/to} is the unique function
with divisor i — j for i,j € {0,1,00}, i # j. Further, the commutative diagram (x) from the
proof of Proposition 4.5, gives rise canonically to the commutative diagram below:

Y — M to = U
() Léo L hl N
Yy — 2 Po(to) — Prulu)

Finally, recalling that ¢ € Z), let us write ¢ = m/n with m,n € Z, n > 0. Then the
equalities ¢o(tg) =t _, ¢o(1—1o) = t5_ are equivalent to ¢o(to)" = tI', ¢o(1—1o)" = 17" .

Thus recalling that (;ASO and qZ;t,u are induced by the field isomorphism ¢ : K' — K, it follows
that there exists a field isomorphism ¢y : k(ty)' — k(to)', and a,b € k* such that:

Go(to)" = atl' , ¢o(1—to)" = bt} ,

where ¢, .,t5., € Uy, are as introduced above.

On the other hand, since ¢y € Aut(k(ty)'), it follows that ¢y, t..., 5., are purely inseparable
over the field k(ty) = k(t..,) = k(ts.). Hence we conclude that m,n are actually powers of

8 Note that by mere definition, ® and ®. represent the same element in Aut$, (I1 ).
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the characteristic exponent p, thus e = m/n = p® for some e € Z, and one has: ¢o(to) = at?_,
do(l—tg) = btg:, and since ¢ is a field morphism, we finally get:
1— atﬁ? = btf';7 for some a,b € k*

Recalling that (t,.) = a — 7, (t,,) = [ — v are the divisors of t, ., respectively ¢, and
that the functions from L, = {tg,1 — to, 1/to, 1/(1 — to),to/(to — 1), (to — 1)/to} take only
the values 0,1, 00 on {«, 5,7} = {0, 1, 00}, one has:

a) Since t; () =0, one has 1 —at, . (8) =0, and therefore, a = 1.

b) Since ¢, (a) = 0, one has 1 = bt,_(«), and therefore, b = 1.

Thus going back to ¢y, : Ko — K via ty — u, we get:
Vte© dec Z Fue O s.t. ¢p(u) = tf, te €{t,1—1t,1/t,1/(1 —1),t/(t —1),(t —1)/t},

and this completes the proof of assertion ii) of Theorem 2.9.

6. PROOF OF THEOREM 2.6
A) Proof of assertion 1)

Recall that &k := k, Ky = ko(X), and K = k(X), hence Galy, = Aut'(k|ko) = Aut'(K|Kj).
Therefore, the injectivity of the canonical maps Galy, — Auts, (K') — Aut, (IIx) follows
by the fact that the canonical maps Galy, = Aut'(K|Ky) — Aut(Il, ) are obviously injective.

Concerning the surjectivity of Gal,, — AutS, (), let ® € Auts, (IIx) be given. Then
by mere definition, ® satisfies condition i) from Definition/Remark 2.4, 1), hence ® is ©-
compatible with respect to the bijection § = idg of ©. Therefore by Theorem 2.9, there
exists a ¢ € Autg(K') which defines ® as indicated in loc.cit. Recalling that K’|K is the
maximal abelian pro-¢ extension of K', let ¢ : K’ — K’ be the prolongation of ¢ to K.

Claim. ¢ is Vx-compatible in the sense of Definition/Remark 2.2, 2).

Indeed, since ¢ is @-compatible with respect to idg : © — O, it follows that ¢ satis-
fies condition i) from Definition/Remark 2.2, 2). To show that ¢ satisfies condition ii), from
loc.cit., let ¢ : X --» X be the birational map corresponding to ¢. Since ® € Auts, (Ig) is
Vx-compatible, one has by mere definitions: First, for all U; € B on which ¢ is defined, one
has @ (ker(py,)) = ker(py,), where py, : Il — HU is the canonical projection. In particu-
lar, if Ky, |K is the fixed field of ker(pUl) in K’ it follows that ¢ maps Ky, isomorphically
onto itself. On the other hand, setting V; := gp(U ), it follows by Galois functionality that
the fix field Ky, of ker(py;) in K’ is nothing but Ky, = ¢'(Ky,). Hence we conclude that
ker(py,) = ker(pg,). Hence by Definition/Remark 2.1 one has: First, V; nax = = U; max- Second,
since V; = p(U;), it follows by mere definitions that V; nax = ©(Ui)max- Third, if ¢ is defined
on U“naX, one has gp(UzmaX) = @(U;)max. Hence finally, if ¢ is defined on Ui,maxa one must
have (U, max) = Ui max, thus proving condition ii) from Definition /Remark 2.2, 2).

Finally, since ¢ is Vx-compatible, it follows by Remark/Definition 2.2, 3), that ¢ lies in
the image of Galy, — Aut(K"). This completes the proof of assertion 1) of Theorem 2.6.

Language: If ®, := pf, (o), we will simply say that ®, is defined by o.
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B) Proof of assertion 2)

For every X € V, let Ky := ko(X) — k(X) = K be the corresponding embedding
of function fields, and consider the subextension Ky|K of K’'|K defining the canonical
projection I, — IIy = Gal(Kx|K). Let &y := (®x)x € Aut(Il),) be given, thus
Oy € Autgou (Il ) for every X’ € V.

Lemma 6.1. For every X €V there exists ox € Galy, such that ®x = pS(ox). Moreover,
if Y < X, and 11y is torsion free, then ®y = p (0x).

Proof. First, suppose that X € V is such that dim(X) > 1, and V contains some category
Vx which satisfies Hypothesis (H). Then the restriction of ®y, to II,, is an automorphism

(I)VX = (q)U)UEVx € AutC(HVX) — Autf,x (HK>
Hence by the now proven assertion 1) of Theorem 2.6, there exists a unique o € Galy, with

Dy, = Py (0) = (pgf<0))U€Vx'

Now let X € V be arbitrary. Since V satisfies Hypothesis (H), by Definition 2.5, there exists
X € V such that the following hold: First, V contains a subcategory V¢ which satisfies
Hypothesis (H), and second, there exists U € Vg such that X < U and II; — IIy is
surjective. In particular, by the discussion above, there is a unique o € Gal, such that

(I)VX = pg/;( (U) = (p?](o-))UGVX'

Hence since ), = (Px/)ys is compatible with V-morphisms, one gets: Let U — X be
the dominating morphisms defining X < U, thus giving rise to the surjective projection
pux : Uy = IIy. Then @y = pf;(0) together with compatibility with pyx give:

Py opyx =pux o Py =pux o (p5(0)) = (p5(0)) o pux.

Hence ®x(g) = (p5(0))(g) for all g € im(pyx) = Iy, thus concluding that ®x = pS (o).
Next let Y < X, thus by definition, there exists a dominant morphism X — Y which
is a V-morphism. Then the canonical projection pyy : IIy — Il defined by X — Y has
open image. Hence reasoning as above, it follows that ®y o pxy and (pg/(a)) o pxy coincide
on im(pxy), which is an open subgroup of II,. Since IIy has no torsion, we conclude that
actually @y = pS (o). O

We now complete the proof of assertion 2) as follows. Let X € V be such that dim(X) > 1
and V contains a subcategory Vx satisfying Hypothesis (H), and o € Galy, be the unique ele-
ment such that @y, = py, (o). We claim that ®x» = p%. (o) for all X’ € V. By contradiction,
suppose that there exists Y € V such that ®y # p$ (o). Since V satisfies Hypothesis (H),
by Definition 2.5, it follows that there exists Y € V with dim(Y) > 1 such that V contains
a subcategory Vy satisfying Hypothesis (H), and there is some V' € Vy with II,, — II,
surjective. Hence if 7 € Galy, is the unique element with ®y_ = p‘{,?(T), then reasoning as
in the proof of Lemma 6.1, it follows that ®y = p{(7) for all V' € Vg, thus &y = p5(7) as
well. Hence 7 # o, implies that there exists a finite quotient

Y Galg, — G such that (o) # ¥(7).
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Since by assertion 1) of the Theorem, the representations pf,)_{ and pﬁ’,? are injective, by mere
definitions one has: For all small enough U € V¢, V € Vy, one has:

ker(py), ker(py,) C ker(y), thus @y = pj(0) # pyy(7), Pv = py (1) # Py (0),

and further, for U,V small enough, II;; and II;, have no torsion.

Since V is connected, there exist m > 0 and X; € V, 0 < i < 2m, such that X, = U,
Xom =V and Xy;, Xoj10 < Xo;11. We will get a contradiction by induction on m.
m=1: We have U = X,V = Xy, thus U,V < X;. Then if &x, = p%, (01), it follows
by Lemma 6.1 applied to U,V < X, that &y = pf;(01), Py = p§(01); thus finally getting
pi(o) = Oy = p§(01) and p§ (1) = Py = p§ (01). We thus get a contradiction, because
p5 (o) = p§(01), p5 (1) = p5(01) together with ker(pf;), ker(pS$,) C ker(y)) imply:

¥(o) = Y(o1) = ¥(7).

m_= (m+1): By the induction hypothesis, it follows that ®x,, = p%, (o). Second, since

Xom, Xom+y2 < Xomy1, it follows by the case m = 1 that ®x, ., = p§(2m+2(0). Thus since
Xomi2 =Y, conclude that &y = p§ (o), as claimed.

The proof of Theorem 2.6 is complete.

7. PROOF OF THEOREM 2.7

We first notice that assertion 2) follows from assertion 1) in the same way as assertion 2)
of Theorem 2.6 was deduced from assertion 1) of Theorem 2.6, that is, in more or less
formal way. Therefore, we will not repeat this standard arguments, but rather concentrate
on giving a proof of assertion 1) of Theorem 2.7. Moreover, we will prove this assertion
~hence Theorem 2.7 as a whole— in a more general situation, see subsection B) below.

A) Absolute/tame Galois theory of generalized (quasi) prime divisors

To begin with, let K |K be a Galois extension of K which is ¢-closed, i.e., satisfying the
equivalent conditions: i) K has no cyclic (-extensions; ii) Every a € K isan / h power in K.

We denote by Gk == Gal(K | K) the Galois group of K|K, and for subextensions L|K of
K|K, weset L := K, and G, := Gal(L|L) For valuations v of K, and their prolongations
v to K we set w := 0|z, and notice that w prolongs v to L, and w := ¥ is a prolongation of
wto L := K. Let T; C Zz be their inertia/decomposition groups in Gx. By general decom-
position theory we have: The prolongations ¢ of a fixed v, thus their inertia/ decomp081t1on
groups Ty C Z;, are G-conjugated. Further, Ty = T3 N Gy and Zg = Z; N Gy. Finally,
if L|K is Galois, then denoting by T, € Z,|, the inertia/ decomp081t10n groups of w in

Gal(L|K), it follows that T, € Z,, are the images of T; C Z; under Gr — Gal(L|K).

Remark 7.1. Let L|K be a finite subextension of K|K. Then since K is (-closed, K
contains (isomorphic copies of) the maximal pro-¢ abelian, respectively abelian-by-central,
extensions I/|L < L"|L < K|L of L; in particular, K'|K — K"|K < K|K holds as well.
Recalling the canonical projection IIY — II;, in the above notation, one has:

a) 1§ — II%, II, — II, have open images, and if L|K is Galois, so are L'| K, L"|K.

b) For ¢o|v and w := 9|y, etc., as above, the images of T,, C Z,, C II; under II; — I,

are open subgroups of T;, C Z, C I, respectively.
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c¢) Moreover, v is (quasi) prime divisor iff w is a (quasi) prime divisor, and if so, T} C Z!
is the only (quasi) divisorial subgroup of 1T, containing the image of T} C Z}.

d) Conclusion. The divisorial subgroups T,, C Z,, of 11, are precisely the quasi divisorial
subgroups of 11, which are mapped into divisorial subgroups of 11,

Lemma 7.2. In the above notations, for every finite Galois subextension L|K of [N(|K,
consider the action of Gal(L\K) on the subsets of 11, defined by the conjugation. Then for
every generalized (quasi) divisorial subgroup Ty, C Zy of 11, one has: Zy C Gal(L|K) is
precisely the stabilizer of T, C Zy in Gal(L\K).

Proof. For g € Gal(L|K) arbitrary, consider the prolongation tw, := tv o g of v to L. Then
v, is a generalized (quasi) prime divisor of L|k. And since every generalized (quasi) prime
divisor of L|k is uniquely determined by its decomposition group in I, we have: Z,, = Z,,, iff
w =, iff g € Zy,. Now suppose that g € Z|,. Then by the functoriality of decomposition
theory as briefly explained above, there exists a preimage ¢’ € Gal(L'|K) of g which lies in
the decomposition group Z, of some prolongation tv’ of v to L’. But then w’ o ¢ = w’,
hence g’_lZm/h,g' = Zu'|o, thus also g'_lZm/|mg' = Zn/|w, because Zyw C Zyy is a normal
subgroup. Thus conclude that g stabilizes Z, := Zy/|n. In the same way, if g € Zy,, then
t, # 1, thus Z,, # Zy. Then reasoning as above, if ¢’ is some preimage of g in Gal(L’ | K)
and to) := 1o’ o ¢, then ] is a prolongation of w, to L', thus Zyw = Zy # Zn, := 10/ 10, -
On the other hand, Zy/w = g’_lZm/‘mg’, thus we conclude that Z,, # Z2, as claimed. O

Remarks 7.3. As a corollary of the Lemma 7.2 above we have a description of the inertia /de-
composition groups of generalized (quasi) prime divisors v in Gk as follows: Let L; |K be
the inductive family of all the finite Galois subextensions of K | K. Then K= ;L;, and G K
is the projective limit of the projective surjective system of finite groups G; := Gal(L | K )
And if 9|v are as above, and v; := 9|, for every i, then T; C Z; is the projective system of
all the T, € Z,,,. Therefore we have:

1) Giving a compatible system (v;); of generalized (quasi) prime divisors of (L;); above v,
i.e., such that v, = v;|;, for all L; C L;, and v = v;|g, is equivalent to giving a
compatible system (Z,,); of generalized (quasi) divisorial subgroups in (Il ), i.e.,
such that the canonical projection pr, g, : HLj — Il maps Z,, into Z,, for all L; C Lj,
and pr, : ;. — Il maps Z,, into Z,.
(%) Giving the compatible system (b;); with v = v;|x is equivalent to giving a prolongation
of v of v to K which is defined by v|r, := v;.

2) For b < (v;); as above, the decomposition groups Z,,|, C G; are precisely the stabilizers
of Z,, in G;. And (Zy,); is a surjective projective subsystem of (G;);, which has

Zs; C Gg as a projective limit. Thus one can recover Z; C Gy from the system of
group extensions 1 — II, — Gal(L]|K) — Gal(L;|K) = G; — 1 together/endowed

with the decomposition groups Z,, C I for all LK.

3) We finally notice that the canonical projection py, : éL — I, maps T, C Z5, onto

T,, C Z,, for all L,;. In particular, pg : Gx — T, maps T; C Z; onto 1, C Z,.
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Next let ® : Gy — Gx be an automorphism of Gx. Since (G L)

is the system of all the

i

open normal subgroups of G, it follows that ® maps each G 1, isomorphically onto some

G

4)

5)

, where (M;); is some degree and inclusion preserving permutation of the (L;);.

Since the kernels of the canonical projections 75 : Gx — IS and pg : Gx — I, are
characteristic in G, it follows that ® gives rise to isomorphisms ®S : IIS — IS and
O o [T — Il such that @k is the abelianization of ®%.

Moreover, if L|K is one of the L;|K, and M|K is the corresponding M;| K, the same is
true correspondingly for each of the canonical projections pj G — 118, pr: G, —11,,
respectively p§, : Gu — 1S, P : Gy — IT,,. Moreover, d : Gx — G gives rise
to isomorphisms ®$ : 1§ — II§,, ®, : 11, — HM which satisfy: @S o p5 = pS; o @,
respectively ®; o pr, = pps o P.

If p} : I} — II% and pp, : II;, — 11, are the canonical projections, then p% = p§ o p§
and px = pr o pr, and correspondingly for M|K. Finally & and & are compatible
with p§ and p§,, respectively, py, and pyy, i.e., one has commutative diagrams:

o7, 9
() LpL v 35 lre 1 pu
e, TR e, M, 2% 11,

Since ®@p, is the abelianization of ®7 , by the characterization of the quasi r-divisorial
subgroups, see [P4], especially Proposition 3.5, one has: Let T,, C Z,, be a quasi r-
divisorial subgroup for L;|k. Then &, (T,,) C ®..(Z,,) is a quasi r-divisorial subgroup
of I, , say equal to T, € Zy, for some quasi prime r-divisor ro; of M;|k. Further,
setting v 1= v;|, 10 = m |ic, one has that pr,(Ty,) C pr,(Zs,) are open subgroups in
T, C Z,, respectively, and correspondingly for to;|to. Finally, ®x : I1,, — II,, maps
T, C Z, isomorphically onto T, C Z,.

Performing the above steps for every finite Galois subextension L;|K of K |K and the
corresponding M;|K, one has: The isomorphism &7,k : Gal(LZ-|K) — Gal(MZ»|K)
induced by ® maps the stabilizer of Zy, in Gal(Li | K ) isomorphically onto the stabilizer
of Zy, in Gal(M;|K). Thus taking limits we get: If the system (v;|v); is compatible,
say defining oo on K|K, then the system (i;|w); is compatible as well, and defines
[w on K|K, and ® maps Ty C Z; isomorphically onto Ty C Zg.

B) Proof of assertion 1) of Theorem 2.7
We will prove actually a stronger result, in which we replace the maximal tame subex-
tension K*|K of K|K, as used in Theorem 2.7, by any subextension K|K of K'|K such

that K is (-closed. Equivalently, K | K is a Galois extension such that K is (-closed, and for
all prime divisors v of K|k satisfies the following equivalent conditions:

i) K|K is tamely ramified above v.
ii) The inertia group T; of o|v is a procyclic group of order prime to char (k).

The proof uses in an essential way Theorem 2.6. Reasoning as in the proof of assertion 1)
of Theorem 2.6, we instantly see that assertion 1) of Theorem 2.7 is equivalent to the fact
that for every ® € Autg(G) there exists an automorphism ¢ of K which maps ko(X)' onto
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itself and satisfies (i)(g) = gzg_lgqg for all g € Gk. Note that if ¢ exists, then ¢ is unique up

to Frobenius twists, because kg is perfect, thus ko(X) < k(X) = K is a Galois extension.
o Let € Aut@(éK) be given.

First recall that since the kernels of the homomorphisms Gx — IS, — II, are characteris-
tic, one has canonical homomorphisms Aut(Gg) — Aut(ITS) — Aut(Il,), and furthermore,
the image of Aut(Gx) — Aut(Il,) equals the image of Out(Gx) — Aut(II,), and these
images are contained in Aut®(Il,). And obviously, directly from the definition, it follows
that since ® € Autg(Gx), its image ®x € Aut®(Ig) lies actually in Aut$(T1,). Hence
by Theorem 2.6, 1), it follows that there exists (a unique) o € Galy, which defines ®g, i.e.,
Oy € Aut®(Ily) is the image of o under the canonical representation Galy, — Aut®(Il).
Equivalently, recalling that K, := ko(X), one has by mere definitions: There exist ¢ € Z;
and a prolongation ¢/ of o to K’ such that

e-Or(g)=¢ ogod, " foral gell.

Thus setting ®, := ¢ - Pg, and letting ®, be any prolongation of ®, to K, it follows that
P, € Autg(é k), and d, equals Py, () up to inner G k-conjugation. Hence o ®, satisfies:

a) 3 o, c Aute(Gk), because @, &, € Aute(Gk).
b) The image ®' o ®, of & o ®, in Aut(Il,) is the multiplication by e € Z; on Il.

Hence after replacing ® by o ®,,, the assertion 1) of Theorem 2.7 follows from:

Key Lemma 7.4. Let @D € Aute(Gx) be such that its image @ € Aut(Il) is P = ¢-id
for some € € Z;. Then ® is the conjugation by some ¢ € G on G, hence e = 1.

In order to prove the Key Lemma above, we first notice that by Remarks 7.3, 3), above,
in the notations from there, it follows that for every (quasi) prime divisor v of K|k and some
prolongation v to K one has: pg(T3) = Ty and pg(Z;) = Z,. Thus letting v and 1o be the
unique (quasi) prime divisor K|k, respectively its prolongation to K, with ®(Ts) = T and
®(Z5) = Zg one has: pr(Zg) = Px(Zy) =€+ Zy = Z, and pr(Ts) = Px(Ty) = - T, = T,
We therefore conclude that v = to, thus 1 is itself a prolongation of v = v to K. In other
words, for every (quasi) prime divisor v of K|k, the automorphism ® maps the conjugacy
class of inertia/decomposition groups {oT;0~ ' C 6Z;0 ' | 0 € G} onto itself.

We next recall some facts about valuation-tame fundamental groups. Let X — £ be a
proper normal model of K|k. For every Zariski open subset U C X, let Dy be the set of
prime divisors of K|k which have a non-trivial center on U, and T C Gj be the closed
subgroup of G generated by T for all ov, v € Dy. We set 7y, := Gj /T, and call 75,
the valuation-tame fundamental group of U. Obviously, if U” < U’, then there is a canonical
surjective projection WtDU// — W%U,, and if (U;);er is a basis of Zariski open neighborhoods of
the generic point 7y, then W%Ui, 1 € I, is a projective surjective system of profinite groups

having G} as projective limit. See e.g., [K-S] for other forms of tame fundamental groups.
Claim 1. WtDU is topologically finitely generated.

Indeed, by the alteration theory, there exists a generically finite cover Z — X such that

letting V' C Z be the preimage of U under Z — X, one has:
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a) Z is a projective smooth k-variety.

b) Z\V is a normal crossings divisor in Z.
Let K = k(X) < k(Z) =: N be the generic fiber of Z — X, and Dy — Dxjp, w > v,
be the (surjective) restriction map for the prime divisors. Then the canonical projection
Galyy — Gal has an open image, and for w +— v one has: w has a center on V if and only
if v has a center on U. Therefore, Galy — Galy maps T, = into Tf , thus gives rise to a
projection ngv — 7T£U which has open image. On the other hand, since Z is smooth and Z\V
is a normal crossings divisor, one has that 7{(V) = 75, and 7{ (V) is topologically finitely
generated. (More precisely, by Grothendieck’s theory of tame fundamental groups, one has
that ker (7{(V) — 7(Z)) is generated by properly chosen tame inertia elements above the
irreducible components of Z\V'.) Since 75, — 75, has open image, and the former group
is finitely generated, we conclude that mp,  is finitely generated as well, as claimed.

Let TDU C Gk be the i image of Tt under the surjective canonical projection Galy — Gr.
Then TDU is generated by all the 1nert1a groups T; with 9|v, v € Dy, and 7p, = GK/TDU
is topologically finitely generated. Further, Gg is the projective limit of the surjective
projective system ﬁpUi, 1€ 1.

Claim 2. TDU C Gg is ® invariant, i.e., i)(TDU) = TDU.

Indeed, by the Lemma 7.2 above, the equlity ®(7%) = T} implies that 0| = W[k. Hence
® defines a permutation of the system of generators Ty, 0|v, v € Dy, of T, Dy, €te.

An immediate consequence of Claim 1 and Claim 2, above is the following: First, d gives
rise to an isomorphism ®y : Ap, — 7p, Which is compatible with projections 5 , — mp

for U” < U’, and ® is the projective limit of the system of isomorphisms (<i>U)Z Second,
since 7p,, is topologically finitely generated, for every positive bound ¢ > 0, there exist only
finitely many open normal subgroups A C 7p,, with |7p, /A| < ¢. Hence the intersection
A.:=N,A of all such A is an open characteristic subgroup of 7p,. In particular, if Ky .|K

is the finite Galois subextension of K|K with Gal(Ky,.|K) = ip, /A, then Gal(fﬂKUﬁ)
is invariant under ®.

Using this we get: Let L|K be a finite Galois subextension of f(\K, and set ¢ := [L : K].
Since G is the projective limit of the projective surjective system Tp,,, ¢ € I, there exists
some U; such that the canonical projection Gr — Gal(L\K ) factors through G — ﬁ-DUi'
Thus in the above notations, Gal(f( | Ky, ) is invariant under .

We conclude that there exists an inductive system (G,), of open normal subgroups of
G having N,G, = 1 such that ®(G,) = G, for all u. For every G, let K,|K be the
finite Galois Subextensmn of K |K with Gk, = G , hence K= Up K. Further, P gives rise
to a compatible system of automorphisms ®,, : Gal(Ku|K) — Gal(KM\K), and @ is the
projective limit of the system (®,),.

To simplify notations, let L := K, be fixed, D = ®,, and G = Gal(L|K). Using the
usual notation, let L'|L < L"”|L be the maximal abelian, respectively abelian-by-central
pro-¢ extensions of L. Then L'|K — L"|K are Galois extensions, and L|K being invariant
under ®, implies that L'|K < L"|K are Galois extensions which are invariant under ® as

35



well. Hence ® gives rise by restriction to an automorphism ®; € Aut®(L), which fits into
the canonical diagram below, having exact rows and isomorphism as columns:

1— I, —» Gal(I/|K) - G —1
I Pk 13
1— M, — Gal(l'|K) - G —1

Lemma 7.5. ®; maps the set of generalized divisorial groups of 11, isomorphically onto
itself, thus defines to an isomorphisms ®p, : Gpror — Gpror.

Proof. Indeed, by Remark 7.1, ¢), d), it follows that ® : I[I, — II, maps the set T,, C Z,
of divisorial groups in II, isomophically onto itself. Therefore ®; maps the set of divisorial
inertia elements U, T, homomorphically onto itself. Thus recalling that the set of all the
k-inertia Jnv, (L) C I, is the topological closure of U, T, it follows that ®; maps JInt,(L)
homomorphically onto itself. Thus by Proposition 3.11, it follows that the total decompo-
sition graph Gprr can be reconstructed from 115 — II; and II; endowed with Jnry (L), and
further, &y : QDcLot — thLoc is an isomorphism. O

We next show that & is compatible with the rational quotients of thLot. Let Y — k

be some projective normal model of L|k on which G = Gal(L|K) acts. Without loss of
generality, we can assume that Y is complete regular like (in the sense of the discussion
in Remark 3.2, 4), and that the quotient X := G\Y of Y by G is a complete regular like
model for K|k. Further, let @ € L be such that its G-conjugates (iy)g4ec are K-linearly
independent. Let ¢ € K be non-constant such that the pole divisor (). of @ is contained
in the pole divisor (t)o of ¢, and ¢ is not in the k-subspace generated by (u4),. Then for
almost all ¢ € k, all the G-conjugates u, = g(u) of u := 1/t + ¢ € L satisty:

a) u, are general elements of L, i.e., Ko, = k(ug) are relatively algebraically closed in L.

b) (u,), are K-linearly independent.

c¢) The pole divisor of u, is (uy)e = (£)o thus it lies in the image of Div(X) — Div(Y).
Next recall that denoting by IP’ig the projective u,-line over k, the embedding k(u,) — L is
defined by a k-rational map ¢, : Y --» ]P’}Lg, and let U; C Y be the domain of ¢,. Notice that
if ¢ = hg in G, then uy = h(u,), and ¢y = go’;. Thus in particular, U, = Ugh. Therefore,
setting V' := N, Uy, it follows that G acts on V C Y, and all the rational maps ¢, are defined
on V. Finally, since Y\V is G-invariant, after performing a properly chosen sequence of G-
invariant blowups and normalizing again, one can suppose that V' = Y, i.e., the rational
maps ¢, are actually morphisms ¢, : ¥ — Pig. Now since the geometric generic fiber of
each ¢, is integral ~which is equivalent to the fact that k(u,) is relatively algebraically closed
in L, it follows that the fibers of the k-morphisms ¢, : Y — Pig are geometrically integral
on an open subset U C P, . This means that for all € U(k) and all g € G, the fibers
Xga C Y of ¢, at u, = a are geometrically integral Weil prime divisors of Y. In other
words, the Y-divisor of the function u, — a is of the form (u, —a) = vy, — (t)o with (¢)o the
zero-divisor of ¢ on Y, thus the image of the zero-divisor of ¢ on X under Div(X) — Div(Y),
and v, , = (uy—a)o the zero diver of u;,—a. Notice that since h(uy—a) = h(u,) —a = up,—a,
one has that v;a = Upgq- 10 other words, the free action of G on {u,}, gives rise to a free

- b
action of G on {v, .}, via v, , = Upg a-
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Recall the f-adic completion morphisms jr @ K* — K and jp : L* — L and that the
canonical divisorial U r-lattice £ C L is the unique divisorial U r-lattice in L which contains
Jo(L*). Further, via py, : I, — Il one gets a commutative diagram with exact rows:

1= U — K % Div(X)y — €I(X)
i, 1 i v J/ divp, \L canp
1— U, — L % Div(y), — ey)
and @y, give rise to a commutative diagram with exact rows of the form:
1= U, = L % Div(y) — €IY)
R NRY; 4 dive, | cana
1 U, — L % Divy) — ¢i(Y)
where ¢ is the Kummer homomorphism of @, (that is, the f-adic dual of @), dive, is

the canonical abstract divisor map defined by @, and cang, is the canonical isomorphism
making the diagram commutative. We proceed as follows:

Since div(j.(uy — a)) = vy — (t)o, and (t)o is G-invariant, and taking into account the
identity div o ¢ = dive , odiv, it follows that the divisor of 1@( Jn(ug — a)) is of the form

div(g@ og(ug —a)) = dive, (div(yx(ug — 1)))
= dive, (vge — (t)o) = dive, (vg4) — dive, ((£)o).
On the other hand, one has that dive, (v,,) =7 - w for some 1 € Z;y, where w is the image

of vy, under @, and dive, ((t)o) = € - (t)o, because t € K, etc. Since by the discussion
above, w is G-conjugate to vy,, one has w = vy, for some h € G. We thus conclude that

div(zﬂogL(ug—a)) = 1n-vpqa—E-(t)p for some h € G and n € Zy. Now since vy, —(t)o = (up—a)
is a principal divisor, its image in €I(X) is trivial, hence the image of
N-Vha—¢-(to=0—€) thate: (Vha—(t)o) =M —¢) vha+e-(up—a)

in QAi[(Y) equals (7 — €) - [vp,a), Where [vp,] is the image of v,, in Q?[(Y). On the other
hand, vy, — (t)o = (uy — @) is principal and equals the divisor of j;(u, — a), hence it has
a trivial image in QA:[(Y). Thus by the commutativity of the diagram above, it follows that
(n—¢€) - [vna) = 0. Since [vpq] # 0, we conclude that n = . Therefore, we get:

O(elug —a)) =< (wgrlun - a))

for some u € U 1. Notice that for a fixed g € G, the elements h € GG as well as u could
anteriori depend on a € U(k) C P, (k). The more precise assertion we prove is:

Lemma 7.6. There is a bijection 0 : G — G, g — h, such that for all a € U(k), one has:
a) ¥ (y(ug —a)) = e - yr(up - a)
b) ¥ (r(k;,)) =& an(Ks,)

Proof. Since U(k) is infinite, there exists h € Gal(L|K) such that the set

2= {a € Uk) | &(snluy - a)) o (i (un —a)) for some u € Uy}



is infinite. For a fixed b € k, let x := j(uy, — b) and z := Y(x). To simplify notations, for
a € U(k) and g,h € G, let k,, be the residue field of v,,, and 7,, : U, — Kga be the

Vg,a
reduction homomorphism as introduced at the beginning of section 3. Filrther define rp 4
and Jpq : ﬁvm — Kp,q correspondingly. Then for all a € U(k) with a # b, one has: x is a
Vg q-unit with v, ,-residue equal to a — b € k* thus j,,(x) = 1. Hence if a € X, and vy, , is
the prime divisor of L|k corresponding to v,, under ®;, one gets commutative diagrams:

~ 1& ~
Upyo — Uy,
\l/ Jg,a \l/ Jh,a

~ bg,a ~
"{g,a ? K’h,a

where ngSg,a is defined by the residual isomorphism ®,, : I, ~— Il . Hence j54(x) =1

implies 7p, o (ﬁ(x)) = égya (]g,a(x)) =1 for all a € X. Next recall that by the discussion at the
beginning of Section 3, especially the proof of Proposition 3.1, for every y € Lg,\ K., and
almost all a € k, one has If Uh,a is the (umque) zero of u, —a, then Jna(y) # 1. In particular,
since x = j1,(uy —a) € L, C Lﬁn and T := ¢( ) € Lﬁn satisty jn.(%) = jhﬂ(@D(X)) =1 for all
a € X, it follows that « € € - L1, N Ky, = € J0(K, ). Since the set of all the x = j7(uy — b)
with b € k generate ]L(/{;g), we ConcludeA that @/A)(]L(I{;g)) C e-j(Ry, ). By symmetry, the
opposite inclusion holds too, thus finally w(]L(li;g)) = ¢-J1(K}, ). Moreover, for all a € U(k)
one has ¥ (y,(ug — a)) =€ - go(up — a). O
Coming back to the proof of Key Lemma 7.4, we notice that setting
Op:=0U{y, | geG}

one has: First, by the hypothesis of Theorem 2.7, one has K = k(©); and by the definition of
(ug)g one has L = K[(ug),]; hence L = k(6y). Second using Lemma 7.6, it follows that the
map 0y, : O — O, defined by t — ¢t for t € ©, and u, — u;, for g € G, is a bijection which
makes &, € Aut(Il,) into a weakly 6, compatlble automorphism. Thus &, € Aut®(Il;) is
weakly @p-compatible as defined in Definition/Remark 2.8, hence Theorem 2.9 is applicable.
Therefore, there exists an automorphlsm Q1 € Aut@L(L‘) and a unique ¢, € Z; such that

w =cr- qf)L is the Kummer morphism ofw Thus recalling that @ : [T, — I is Px = e 1-id
with ¢ from the Key Lemma 7.4, the functoriality gives rise to commutative diagrams:

m, =5 1, I & I
() Lo Lo 1. 1
M, =5 II, K <= K

in which -¢ is the multlphcatlon by e. But from the commutativity of the rlght diagram
from (7), it follows that w =¢r - quL and ¢ - id coincide on K. In particular, ngL must map
K isomorphically onto itself, and therefore ¢; maps K' isomorphically onto itself. We thus
conclude that (]BL equals € -, on K. Since ngSL] # is the completion of the field isomorphism
¢r|k of K, one must have ¢ - 521 = 1, hence €7, = ¢ is indpendent of L.

Recalling the notations and discussion before Lemma 7.5, we conclude that for every
K, C K as there, there is a (unique) field K-automorphism ¢, : KL — KL such that ¢ - QASM is
the Kummer isomorphism of the group automorphism ®g, : II K, — II K- Then reasoning

38



as above, it follows immediately that for K, C K, one must have ¢, = ¢,|x,. Thus finally
the compatible system of K-automorphisms (¢,), gives rise to a K-automorphism é of K
defined by ¢|k, := ¢, such that the Kummer isomorphisms of each ®,, is precisely ¢ - ¢,,.

Finally, in order to conclude the proof of the Key Lemma 7.4, let CT)¢ be the automorphism
of G defined by the ¢-conjugation. Then ® o i);l is an automorphism of G which induces
on every Il the multiplication by ! for the fixed given ¢ € Z; independent of K,. We
claim that € = 1. Indeed, let K := K(f) be the maximal pro-¢ subextension of K|K. Then
by a standard argument it follows that the automorphism of Galg (¢) := Gal(K | K) defined

by @ o é;l maps every g € Gg({) to its power ¢° . From this easily follows that ¢ = 1.
This concludes the proof of the Key Lemma 7.4, thus of assertion 1) of Theorem 2.7.
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