
LITTLE SURVEY ON I/OM AND ITS VARIANTS AND

THEIR RELATION TO (VARIANTS OF) ĜT

— OLD & NEW —

FLORIAN POP

Abstract. This is a short survey on the subject of my talk at the Hyper-JARCS Memorial
Conference for Professor ,Stefan Papadima held at the University of Tokyo in Dec 2019.

1. Motivation

A main theme in Grothendieck’s Esquisse d’un Programme [G2], see rather [GGA], was
to shed new light on the absolute Galois group GQ = Aut(Q) of Q, e.g. giving a non-
tautological description of GQ, studying its open subgroups and finite quotients (the Inverse
Galois Problem), its linear representations (the Langlands Program). The proposed way to
do that was to study the action of GQ (and GK for more general fields K) on combinatorial
and/or geometric objects, e.g. the (algebraic) étale fundamental group.

A quite notable development concerning the main theme above was the introduction and

quite intensive study of the Grothendieck-Teichmüller group ĜT , and its relationship with
yet another idea stemming from the Esquisse, namely the automorphism group Aut(πV) of
the algebraic fundamental group functor πV of specific categories of geometrically integral
varieties V related to moduli (stacks) of curves; see Appendix for notation and basic facts on
fundamental groups. Despite major progress on understanding the objects under discussion,

the precise relationship between GQ and ĜT and/or Aut(πV) remains largely mysterious to

this day. See e.g. the early surveys [N2], [Sch] for some “classical” facts about ĜT .

Another aspect of the search for topological/combinatorial descriptions of GQ relates to
a question by Ihara from the 1980’s, which in the 1990’s became a conjecture by Oda–
Matsumoto, for short (classical) I/OM. In a nutshell, classical I/OM asks whether/conjec-
tures that GQ is the automorphism group of the algebraic fundamental group functor of the
category VarQ (of geometrically integral Q-varieties and dominant morphisms).

To set up notation, let V be a category of geometrically integral varieties over the base
field k, e.g. k = Q, and for X ∈ V , let X := X ×k k be the base change to an algebraic
closure k of k (which is fixed throughout). Then in notation, definitions and by the facts
outlined in the Appendix, one has: The etale fundamental group functor of V defined by
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X 7→ π1(X) ∈ Gout
Gk

gives rise to a canonical representation

ρV : Gk → Aut(πV), σ 7→
(
ρX(σ)

)
X∈V .

This suggests studying Gk via ρV for concrete categories V . Concretely, for k = Q, one
should give/study categories V ⊂ VarQ, e.g. subcategories V ⊂ T of the Teichmüller moduli
tower T = {Mg,n}g,n, such that the following questions have positive answers:

Q1. Aut(πV) has a “concrete” combinatorial/topological description.

Q2. The representation ρV : GQ → Aut(πV) is an isomorphism.

In particular, a category V for which both questions Q1, Q2 have acceptable answers would
give a non-tautological description of the absolute Galois group GQ. Obviously, the classical
I/OM is about Q2 having a positive answer for V = VarQ.

This short survey is about the classical I/OM and its variants (birational, tempered, Λ-

abelian-by-central). For reader’s sake we first very briefly recall how ĜT fits into the picture

above, to be precise, how ĜT relates to Q1. On the other hand, this short survey is not by

any means (even a sketch of) a survey about ĜT .

Acknowledgements. I would like to thank several experts on the matter, especially Yves
André, David Harbater, Pierre Lochak, Hiroaki Nakamura, Leila Schneps, Adam Topaz and
the referee for the careful reading of the manuscript as well as remarks and suggestions,
which were very helpful for improving both content and the presentation.

2. Question Q1: ĜT versus Aut(πV)

We recall below the “classical” definition of the Grothendieck-Teichmüller group ĜT as
originating from Drinfel’d [Dr],1 and after mentioning a few of its basic properties, we recall

how ĜT relates to Aut(πV) for specific categories V of moduli spaces of curves.

2.1. ĜT and a few “classical” facts about ĜT . Let F̂2 be the profinite completion of

the discrete free group F2 on two generators x, y. Then every element f = f(x, y) ∈ F̂2 is a

proword in x, y. Hence if ϕ : F̂2 → F̃ , x 7→ x̃, y 7→ ỹ is a morphism of profinite groups, the
proword f = f(x, y) defines uniquely a proword f̃ ∈ F̃ as follows

f(x̃, ỹ) := f̃ := ϕ(f) = ϕ
(
f(x, y)

)
= f

(
ϕ
(
x), ϕ(y)

)
∈ F̃ .

In particular, since F̂2 is profinite free on the generators x, y, it follows that Hom(F̂2, F̃ ) is

in bijection with the set F̃ × F̃ via ϕ 7→
(
ϕ(x), ϕ(y)

)
. On the other hand, if F̃ = F̂2, it is

virtually impossible to write down correspondingly the composition of two endomorphisms

ϕ = ϕ2 ◦ ϕ1 of F̂2, and moreover, given ϕ(x), ϕ(y) ∈ F̂2, to decide whether ϕ ∈ Aut(F̂2).

Let [F̂2, F̂2] = ker(F̂2 � F̂ ab
2 ) be the (closure of the) commutator group in F̂2, and Ẑ× be

the group of invertible elements in the adic completion Ẑ of the ring of integers Z. Invoking

1 We should notice that one can define in a similar way the pro-` variant ĜT ` as well as the prounipontent
variant GT(k) of the Grothendieck-Teichmüller group, where k is an arbitrary field with char(k) = 0. We
will not discuss these aspects/variants of the Grothendieck-Teichmüller group here.
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the discussion above, consider the set of all the automorphisms ϕ ∈ Aut(F̂2) of the form:

(∗)ĜT ϕ(x) = xλ, ϕ(y) = fyλf−1 with λ ∈ Ẑ×, f ∈ [F̂2, F̂2],

where f = f(x, y) ∈ [F̂2, F̂2] satisfy the following three equations (also called relations):

(I) f(x, y) = f(y, x), i.e., the proword f = f(x, y) is symmetric.

(II) xµf(y, x)yµf(z, y)zµf(x, z) = 1, where µ = 1
2
(1− λ), and z = (xy)−1.

(III) f(x12x23)f(x34, x45)f(x15, x12)f(x23, x34)f(x45, x15) = 1 inside Γ̂0,5 = K̂(0, 5).

Here, for (I), (II), one makes the identification F̂2 = 〈x, y, z | xyz = 1〉; hence (I) asks that

f = f(x, y) is invariant under the involution of F̂2 defined by (x, y) 7→ (y, x), whereas f(z, y)

and f(x, z) are defined by the automorphisms of F̂2 defined by (x, y) 7→ (z, y), respectively

(x, y) 7→ (x, z). Finally, f(xij, xi′j′) in (III) are defined by maps F̂2 → Γ̂0,5, (x, y) 7→ (xij, xi′j′)
for 1 6 i < j 6 5, 1 6 i′ < j′ 6 5, see Appendix for notations and fundamental groups.

It turns out that the set of all ϕ ∈ Aut(F̂2) satisfying (∗)ĜT and (I), (II), (III) build a

subgroup ĜT < Aut(F̂2), called the Grothendieck–Teichmüller group, which is easily seen to

be a profinite group. Moreover, identifying F̂2 with πet
1 (P1\{0, 1,∞}, ~01) via the tangential

base point ~01, see Deligne [De], Ihara [I3,I4,I5] shows that the image of the resulting canonical

embedding of GQ into Aut(F̂2) is a subgroup of ĜT .2

Subsequently ĜT was intensively and extensively studied by many, e.g. (a rather alphabet-
ical order) Hain–Matsumoto [HM], Harbater–Schneps [HS], Ihara–Matsumoto [IM], Ihara–
Nakamura [IN], Lochak–Nakamura–Schneps [LNS1,LNS2], Lochak–Schneps [LS1,LS2], Naka-
mura [N1,N2,N3,N4], Nakamura–Schneps [NS], and more (respectively very) recent by En-
riquez [En], (respectively) Hoshi–Minamide–Mochizuki [HMM], Minamide–Nakamura [MN].

This list does not include the long list of papers on (variants of) ĜT and related top-

ics by math physicists and representation theorists, among other things relating ĜT to
operads, Lie theory (as already present in the work of Drinfel’d), multi-zeta and poly-
logs, the Deligne-Ihara Conjecture, etc., e.g. work by F. Brown, B. de Brito, Dolgushev,
Fresse, Furusho, Goncharov, Horel, Racinet, Robertson, Shabat, Tamarkin, Willwacher,
Wojtkoviak, Zapponi, to mention a few names.

From the list of “classical” facts about ĜT in the above setting we recall the following (by
no means a comprehensive list!); see the Appendix for basic facts on fundamental groups.

• Lochak–Schneps [LS2]: The complex conjugation σ ∈ GQ 6 ĜT is self-normalizing in ĜT .

This fact extends/generalizes the well known fact that σ is self-normalizing in GQ.

• Nakamura–Schneps [NS]: There is an explicitly defined closed subgroup IΓ < ĜT with

GQ 6 IΓ which acts compatibly with GQ on the tower of fundamental groups {Γ̂g,n}g,n.

The group IΓ < Aut(F̂2) consists of all ϕ satisfying (I), (II) above, and two further rela-
tions: (III)′ which implies (III), and (VI) which was introduced in Nakamura [N4], Part I.

• Ihara [I6] defined the “cyclotomic” GTK 6 ĜT , a closed subgroup containing GQ, and

inquired whether GTK < ĜT strictly. But Enriquez [En] showed: GTK = ĜT .

2 In loc.cit. further variants of both fundamental groups an ĜT were considered.
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On the other hand, despite all the effort and that a lot is known, the precise relationship

between ĜT and GQ 6 ĜT —in particular, whether GQ = ĜT and/or whether GQ ∼= ĜT as
profinite groups— remains mysterious to this day. See e.g. the early surveys [N2] and [Sch]

for lists of open problems concerning ĜT and related questions.

2.2. ĜT as automorphisms group Aut(πV). The question Q1 relates to ĜT in a rather
concrete way as follows. By the discussion in Appendix, the (profinite completion of the)

mapping class group Γ̂0,n = π1(M0,n) is the algebraic fundamental group of the affine variety

M0,n = (P1\{0, 1,∞})n−3 and gives rise to the representation ρ0,n : GQ → Out(Γ̂0,n). This

being said, Harbater–Schneps [HS] considered the subgroups Out]n < Out(Γ̂0,n) consisting
of all the automorphism which preserve the conjugacy classes of inertia at infinity. Letting

ĜT 0 < Aut(F̂2) consist of all ϕ which satisfy (∗)ĜT and the relations (I), (II) above, one has:

• [HS]: There are canonical isomorphisms Out]4
∼= ĜT0 and Out]n

∼= ĜT for n > 4.

It is further shown in [HS] that the isomorphisms Out]n
∼= ĜT are compatible with both

the representations ρ0,n : GQ → Out(Γ̂0,n) and the canonical morphisms M0,n →M0,m for
m 6 n in T0 = {M0,n}n>3. In particular, as a consequence of the above facts, [HS] implies:

• ĜT = Aut](πT0) is the group of all ϕ ∈ Aut(πT0) which preserve inertia at infinity.

Finally one should mention that there is a host of results concerning the action of ĜT on
geometric objects, e.g. [HLS, IM, IN,MT,N3,N4,Co] which we do not discuss.

We conclude by mentioning two very recent major results concerning Q1 and ĜT .

First, let V0 := {M0,4,M0,5} with the canonical morphismsM0,5 →M04. Then Hoshi–Mina-
mide–Mochizuki [HMM] give a complete unconditional solution to Q1 by proving:

• For n > 4, all ϕ ∈ Aut(Γ̂0,n) permute the conjugacy classes of inertia at infinity, and

Out(Γ̂0,n) = Sn × ĜT . Moreover, one has that ĜT = Aut(πV0) = Aut(πT0).

Actually, the results in [HMM] are much more general, and show that given (g, r) with
2g − 2 + r > 0, the algebraic fundamental group π1(Xn) of the configuration space Xn of n
geometric points on a curve of type (g, r) encodes (n, g, r) and the inertia at infinity. These
results generalize/extend previous ones from Mochizuki–Tamagawa [MT] on configuration
spaces of curves X of genus g > 2. Further, [HMM] show that similar pro-` versions of these
results hold, correspondingly, for the pro-` completions of the groups involved.

Second, let B̂n = B̂n/Ĉn be the quotient of the profinite Artin braid group on n stings by

its center Ĉn ∼= Ẑ. Then Minamide–Nakamura [MN] prove the quite remarkable facts :

• One has canonical isomorphisms ĜT ∼= Out(B̂n) for all n > 3, and ĜT = Out(Γ̂1,2).

Among other things, these results support Grothendieck’s “first two levels” philosophy,
namely that the subcategories of the Teichmüller moduli tower T involving M0,4, M0,5,
M1,1, M1,2 should “encode everything.”

• See also Hatcher–Lochak–Schneps [HLS], where the subgroup Λ<ĜT
1
<ĜT is defined

in terms of the “first two levels” and it is shown that Λ acts on the whole fundamental group

Teichmüller tower {Γ̂g,n}g,n, and the connection of Λ with the group IΓ < ĜT is discussed.
4



On the other hand, to the best of my knowledge, it is not known whether ĜT acts on the

fundamental group Teichmüller tower {Γ̂g,n}g,n respectively whether ĜT equals Aut(πT ). It
would be quite interesting to see whether (refinements of) [HMM] and [MN] could be used
to tackle this question. [It seems that one does not know enough about higher genera braid
groups and the relationship between configurations spaces Xn and moduli spaces Mg,n, to
enable extending the above result to the whole T .]

3. Question Q2 and I/OM

Recall that the question Q2 is about finding explicit “nice” subcategories V ⊂ VarQ, e.g.
V ⊂ T , such that ρV : GQ → Aut(πV) is an isomorphism.

First, concerning the injectivity of ρV , it was remarked by Drinfel’d that Belyi’s Theorem
implies that if P1\{0, 1,∞} ∈ V , then ρV is injective. Further, Voevodsky [Vo] showed that
ρV is injective if E \{pt} ∈ V , where E is an elliptic curve, and Matsumoto [Ma] shows that
ρV is injective if V contains any affine hyperbolic curve. Finally, Hoshi–Mochizuki [HMo]
shows that ρV is injective if V contains any hyperbolic curve. Hence one has:

• [Be,Vo,Ma,HMo]: ρV : GQ → Aut(πV) is injective if V contains a hyperbolic curve.

Second, the surjectivity of ρV appears to be more involved, because of lack of insight in
the origin of automorphism ϕ = (ϕX)X∈V ∈ Aut(πV). An obvious observation is that the
more objects V has, the more possibilities for elements in Aut(πV) are there, whereas each
morphism in V imposes a restriction on the elements in Aut(πV).

3.1. The classical I/OM. Ihara asked (in the 1980’s) whether GQ = Aut(πV) in the
case V is as rich as possible, i.e., V = VarQ; and based on “some motivic evidence” Oda–
Matsumoto conjectured (in the 1990’s) that Ihara’s question should have a positive answer,
i.e., GQ = Aut(πV) for V = VarQ. For short we will speak about the (classical) I/OM. The
classical I/OM was answered in positive in 1998 by the author of this note, but the proof
was never published because of subsequent developments superseding that result (namely the
stronger forms of I/OM, e.g. the pro-`-abelian-by-central I/OM for connected rigid categories
V , see the discussion below).

In a nutshell, the idea to tackle the (classical) I/OM is to reduce it to its birational variant
I/OMbir and use birational anabelian type results to tackle the latter. Namely, for X ∈ Vark,
let VX ⊂ Vark be the category which contains the (affine) open dense subsets U ⊂ X,
V ⊂ P1

k, and as morphisms the canonical inclusions U ′′ ⊂ U ′, V ′′ ⊂ V ′ and the dominant
k-morphisms U → V . The “generic fiber” of VX is the category FX := {k(X), k(P1)} having
as objects k(X), k(P1) and as morphisms all the k-embeddings k(P1) ↪→ k(X). Further, every
σ ∈ Aut(πVX ) is a family of the form σ =

(
(σU)U , (σV )V

)
, compatible with the all projections

π1(U ′′)� π1(U ′), π1(V ′′)� π1(V ′) and π1(U)� π1(V ). Hence if K := k(X) = ∪Uk[U ], by
“taking limits,” every σ ∈ Aut(πVX ) defines a unique σK ∈ Out(GK) which is compatible
with the (surjective) projections πı,V : GK → π1(V ), V ∈ VX defined by fixed k-embeddings
ı : k(Pk) ↪→ k(X). Finally, let OutVX (GK) 6 Out(GK) be the subgroup of all Φ ∈ Out(GK)
satisfying the conditions the σK satisfy, i.e., for all k-embeddings ı : k(Pk) ↪→ k(X) and
V ∈ VX , one has: Φ is compatible with the projections πı,V : GK → π1(V ).

Then one has canonical embeddings:

Gk ↪→ Aut(πV) ↪→ OutVX (GK),
5



hence a possible strategy to tackle I/OM over k is to prove its birational variant I/OMbir,
i.e., to show that Gk = OutVX (GK) —and this is how the initial proof of classical I/OM
went. Thus it appears that in fact,

(∗) I/OM is rather a problem of birational nature which has a rich geometric hypothesis.

Variants of I/OM and ĜT

The variants of I/OM and ĜT we have in mind and review/discuss briefly below arise from
variants of fundamental groups, e.g. the tempered fundamental group πtemp

1 defined for vari-
eties over p-adic fields, the pro-C algebraic fundamental group π C

1 of varieties over arbitrary
base fields, and pro-linear/pro-unipotent completions of the fundamental group, etc.

3.2. Tempered ĜTp and tempered I/OMp. The tempered variant ĜT p of ĜT and the
tempered variant I/OMp of I/OM, are introduced/defined in André [An] and are based on the
tempered fundamental group πtemp

1 (X, x), defined for integral varieties X ∈ VarCp .
3 Precisely,

let Xν → X be a finite Galois étale cover, and Xν → Xan
ν be the p-adic analytic universal

cover of Xan
ν . Then AutX(Xν) is an extension of AutX(Xν) by the possibly infinite discrete

group AutXν (Xν). Finally (choosing base points, which we do not write), one defines

πtemp
1 (X) : = lim←−ν

AutX(Xν),

hence πtemp
1 (X) is a projective limit of discrete possibly infinite groups. By mere definitions,

πtemp
1 is compatible with morphisms X → Y in VarCp . We notice that after choosing base

points, one has canonical morphisms πtemp
1 (X) → π1(X), but πtemp

1 (X) encapsulates rather
specific information about Xan and it is not a pro-C completion of πtop

1 (X) in the usual
sense. For instance, let E be an elliptic curve over Cp. Then if E has good reduction,

πtemp
1 (E) = π1(E), whereas if E is a Tate elliptic curve, then πtemp

1 (E) ∼= Z× Ẑ.

For a p-adic field k and X ∈ Vark, let XCp := X ×k Cp. Setting πtemp
1 (X) := πtemp

1 (XCp),

there are: (i) the tempered short exact sequence 1 → πtemp
1 (X) → π

(temp)
1 (X) → Gk → 1.

(ii) a functorial morphism πtemp
1 (X)→ π1(X) with dense image such that the tempered exact

sequence (i) maps funtorially to 1→ π1(X)→ π1(X)→ Gk → 1. In particular, one gets:

π
(temp)
1 : Vark → Gout

Gk
, X 7→ π

(temp)
1 (X).

Hence for a subcategory V ⊂ Vark, one gets a representation

ρV : Gk → Aut(πtemp
V ), σ 7→

(
ρX(σ)

)
X∈V with ρX(σ) ∈ Out

(
πtemp

1 (X)
)
.

In this setup, André [An] defines the tempered Grothendieck–Teichmüler group ĜTp, which

is a closed subgroup ĜTp < Aut
(
πtemp

1 (P1\{0, 1,∞})
)
, and proves:

• ĜTp 6 ĜT is closed, GQp 6 ĜTp canonically, and GQp = GQ ∩ ĜTp inside ĜT .

Finally, using the classical I/OM, André [An] concludes that the tempered I/OMp holds:

• The representation ρQp : GQp → Aut(πtemp
V ) is an isomorphism for V = VarQp.

3 Here Cp is the completion of Qp with respect to the p-adic absolute value.
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3.3. Pro-C (birational) variants of I/OM and ĜT . Let C be a category of topological
groups which is closed with respect to fiber products and taking closed subgroups. Given a
topological group G, we set NG := {NCG | G/N ∈ C}, and notice that since C is closed with
respect to fiber products and closed subgroups, NG is closed with respect to intersection.
In particular, (G/N)N∈N is canonically a surjective projective system, which is compatible
with the system of projections G � G/N , N ∈ NG. Its projective limit G C endowed with

the canonical morphism ı̂ C : G→ Ĝ C is the pro-C completion of G.

Notice that the pro-C completion is functorial, i.e., it is compatible with continuous mor-
phisms of topological groups, and if G is a discrete free group, say on generators (gi)i, then

Ĝ C is the pro- C free group on the generators (gi)i. Further, if C is a category of finite groups,

then Ĝ C is a profinite group, whose finite quotients lie in C. Hence if C consists of all finite

groups, then Ĝ C is the profinite completion of G. Some notable pro-C-completions are the
(level m) pro-solvable/pro-nilpotent/pro-` completions.

Of particular interest is the Λ-abelian-by-central completion of G. Here Z` � Λ is a quo-
tient of Z`, and C is the category of level two nilpotent groups of the form Λm×| Λn, m,n > 0.

Finally, if C is a category of linear groups over a base field κ, then Ĝ C is the corresponding
pro-linear completion of G. In the case C is the category of all reductive/unipotent/linear
groups over κ, one speaks about the prolinear reductive/unipotent κ-completion of G.

This being said, suppose that C consists of finite groups. For an arbitrary base field k,
and V a subcategory of Vark, recalling notation, the definitions and facts from Appendix,
one has: Since π1(X) is a profinite group for X ∈ Vark, so is πC

1(X), and π1(X)� πC
1(X) is

surjective. Further, 1 → π1(X) → π1(X) → Gk → 1 has 1 → π C
1 (X) → π

(C)
1 (X) → Gk → 1

as a canonical quotient, and one gets the pro-C algebraic fundamental group functor

πC
1 : Vark → Gout

Gk
, X 7→ π

(C)
1 (X).

In particular, one gets a representation

ρ C
V : Gk → Aut(π C

V), σ 7→
(
ρX(σ)

)
X∈V with ρX(σ) ∈ Out

(
π C

1 (X)
)
.

In the above context, let ` 6= char(k), and C consist of the Λ-abelian-by-central groups.

Set Πc
X := π C

1 (X), ΠX =: π C,ab
1 (X), and notice that Πc

X is encoded in the cup product
H1

et × H1
et

∪−→H2
et and the Bockstein operator H1

et → H2
et.

4 Further, prX : Πc
X � ΠX has

ker(prX) = [Πc
X ,Π

c
X ], hence prX gives rise to a canonical morphism Aut(Πc

X) → Aut(ΠX),
and since ΠX is a Z`-module, the action of Z×` by multiplication on ΠX commutes with
Aut(ΠX). Hence setting Autc(ΠX) : = im

(
Aut(Πc

X)→ Aut(ΠX)
)/

Z`×, we get:

ρc
V : Gk → Autc(ΠV), σ 7→

(
ρc
X(σ)

)
X∈V with ρc

X(σ) ∈ Autc(ΠX).

In this setup, the following much stronger forms of both the classical I/OM and I/OMbir

were proved as follows. First, one replaces π1(X) by Πc
X , which is of “motivic nature” and

carries less information than π1(X). Second, one reduces to, and proves, birational variants
for categories VX (as explained in subsection 4.1), in which only “few” open subset V ⊂ P1

k

and morphisms U → V are involved (necessary to rigidify VX). Precisely, setting K = k(X)
for X ∈ Vark, we denote Πc

K → ΠK the projection of the Λ-abelian-by-central Galois group

4 The cup product alone recovers the “Zassenhaus quotient” of Πc
X , which would do the job as well.
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Πc
K to the Λ-abelian Galois group ΠK of K. Then for VX as introduced in subsection 4.1,

every σ ∈ Autc(ΠVX ) defines a unique σK ∈ Outc
VX (ΠK), thus getting embeddings

Gk ↪→ Autc(ΠVX ) ↪→ Outc
VX (ΠK).

• In Pop [P] one considers the following context: Let U0 := P1\{0, 1,∞} have standard
parameter t0, and x, y be the standard affine coordinates on A2 ⊃ M0,5. Consider the
category Vbir

0 having as objects U0, and U = Uf :=M0,5\V (f), for all f ∈ Q[x, y] divisible
by f0 = x(1 − x)y(1 − y)(y − x), and as morphisms Ug ↪→ Uf for f |g, and the projections

pt : U → U0 defined by t0 7→ t ∈ Σ0 : = {x, y, y − x}. Inspired by ĜT = Aut(πV0), denote

ĜT bir := Aut(πVbir
0

), ĜT
c

bir := Autc
Vbir

0
(ΠVbir

0
) with Λ = Z`,

the birational, respectively pro-` abelian-by-central birational variants of ĜT . Then recalling
that M0,5 has Q(x, y) as function field, hence K = Q(x, y), one has:

ρVbir
0

: GQ→ ĜT bir→ OutVbir
0

(GK), ρc
Vbir

0
: GQ→ ĜT

c

bir→ OutcVbir
0

(ΠK) are isoms.

Actually, much more general results are proved in [P] as follows. Let k be any perfect field,
and V ⊂ Vark be a connected rigid category containing some X with dim(X) > 1, e.g. for
k = Q one can choose the higher dimensional variant V = V0,n := {M0,4,M0,n} of V0, or
for k general, can choose V = VX , provided VX is rigid, dim(X) > 1, and U0 ∈ VX . Then
ρc
V : Gk → Autc(ΠV) is an isomorphism. Further, it is shown that ρc

V being an isomorphism
implies the full profinite variant, i.e., ρV : Gk → Aut(πV) is an isomorphism as well. In
particular, if V = Vark, one gets the pro-` abelian-by-central I/OM over arbitrary base
fields k, which in turn implies the full profinite I/OM over k.

• In Topaz [T], one proves a similar results for Λ = Z/`, thus a purely combinatorial
hypothesis, but the categories V are more restrictive: First, V should contain at least one k-
variety X with dim(X) > 5, and second, the morphisms should include (among other things)
the k-morphisms U → U0 defined by all the rational maps t0 7→ t ∈ k(U), U ∈ V . Under
these hypotheses, [T] shows that the representation ρc

V : Gk → Autc(ΠV) is an isomorphism.
In particular, this is so for V = Vark, thus one gets the mod ` -abelian-by-central I/OM over
arbitrary perfect fields k. Hence the mod ` -abelian-by-central form of classical I/OM holds.

Finally we notice that the birational form(s) of I/OM and ĜT are proved by solving the
so called Bogomolov program (BP) in the situations under discussion, see [P], Introduction.
The BP is about reconstructing function fields K = k(X) from Πc

K for dim(X) > 1, and it is
essentially open. But under the supplementary information encoded in Outc

V(ΠK), one can
show that every Φ ∈ Outc

V(ΠK) originates from Aut(K) up to Frobenius twists, etc.

4. Line/Hyperplane Λ-abelian-by-central variants of ĜT

As remarked in subsection 3.1, the approaches to tackle I/OM (and its variants) are
based on solving partially the Bogomolov program under the supplementary hypothesis of
geometric nature of I/OM. In very recent work, Pop–Topaz [PT] introduced/defined so called

(Λ-abelian-by-central) line/hyperplane variants of ĜT , which are not of birational nature,

hence closer in nature to the original ĜT . On the other hand, one of the points to be stressed

in the case of ĜT —as well as the groups Λ, IΓ < ĜT from [HLS,NS] defined in connection
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with ĜT —is that these groups are defined by finitely many relations (or equations) inside

Aut(F̂2), with those for Λ originating from the “first two levels” of the Teichmüller moduli

tower. Although the line/hyperplane variants of ĜT are much closer in nature to ĜT than the

birational variants of ĜT , the elements of the line/hyperplane variants of ĜT have to satisfy
infinitely many “relations” originating form the infinitely many lines and/or hyperplanes

used in the definition of the corresponding line/hyperplane variants of ĜT . For the moment,

it is unclear how/whether there are line/hyperplane variants of ĜT which involve only finitely
many line/hyperplane arrangements (and/or some moduli spaces like of such) defining some

line/hyperplane variant of ĜT which equals GQ.

4.1. Complements of line and hyperplane arrangements. To begin with, we no-
tice/recall that the complements of line arrangements in A2, and more general, hyperplane
arrangements in AN are generalizations of M0,5, respectively of M0,n for N = n − 3 > 2.
Precisely, let x, y be the standard affine coordinates in A2, respectively x1, . . . , xN be the
standard coordinates in AN . Recalling that M0,n = (P1\{0, 1,∞})N \∆ ⊂ AN with ∆ the
fat diagonal, M0,5 ⊂ A2 is the complement of the line arrangement L0 = V (f0) ⊂ A2 which
is the zero set of f0 = x(1 − x)y(1 − y)(y − x) ∈ Q[x, y]; and in general, M0,n ⊂ AN is the
complement of the hyperplane arrangement H0 defined by the 2N + 1

2
N(N − 1) hyperplanes

xi = 0, 1− xi = 0, xj − xi = 0 with 1 6 i, j 6 N and i < j.

The study of (complements of) hyperplane arrangements is a classical research topic which
is extremely active today, see e.g. the surveys/monographs/books/proceedings [AM,Di,CS,
M,OT,S] for literature. A special class of line L ⊂ A2, respectively hyperplane arrangements
H ⊂ AN , are the ones containing L0, respectively H0. Notice that these are spectral in the
sense of Deligne, see e.g. [Pa] for details. In particular, setting UL := A2\L, respectively
UH := An−3\H, one has: M0,5 = UL0 and M0,n = UH0 for n > 5. Concerning fundamental
groups, π1(UL) and π1(UH) have well known presentations as successive semi-direct prod-
ucts of profinite free groups —generalizing among other things well known facts about the

structure of Γ̂0,n = K̂(0, n), etc., see Paris [Pa].

4.2. Line/Hyperplane ĜT . The line/hyperplane variants of ĜT are based on the category
LLL and its higher dimensional variant HHH, the former being the “line arrangements” variant
of V0,5 := V0 and Vbir

0,5 := Vbir
0 considered above, whereas the latter is the higher dimensional

“hyperplane arrangements” variant of V0,n := {M0,n,M0,4} and its birational variant Vbir
0,n.

In contrast to Vbir
0 and Vbir

0,n and their generalizations VX , the categories LLL and HHH are not
of birational nature, being rather direct line/hyperplane generalizations of V0 and its higher

dimensional variant V0,n, thus much closer in nature to V0,5 and V0,n, which define ĜT . As a
cautionary note, we should mention the following: Let N = n− 3 be the dimension ofM0,n.
Then setting HHHN := HHH, one obviously has LLL = HHH2. On the other hand, besides this obvious
formal fact, we do not see at the moment a way to relate the HHHN to each other for various
dimensions N = n−3. In particular, we do not know whether/how the answer to Question 4
in section 5 might depend on the dimension N = n− 3.

4.2.1. The category LLL and GQ = ĜT
c

LLL. The objects of L are U0 := P1\{0, 1,∞} and the
complements UL of the Q-rational line arrangements L ⊂ A2, and the morphisms are the
canonical inclusions UL′′ ⊂ UL′ for L′ ⊂ L′′ together with the projections pt : UL → U0
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defined by the three projections pt :M0,5 → U0, t0 7→ t ∈ Σ0 := {x, y, y−x}. Obviously one
has L ⊂ Vbir

0 strictly, because for f ∈ Q[x, y] one has that Uf ∈ LLL iff f splits in linear factors

over Q. Recalling the Λ-abelian-by-central fundamental group Πc
X and Autc(ΠLLL), one has

the following Λ-abelian-by-central line variant of ĜT , see [PT]:

• The representation ρc
LLL : GQ → ĜT

c

LLL := Autc(ΠLLL) is an isomorphism.

Actually, as in the birational case of VX , the result proved in [PT] is much more general, and
holds over arbitrary base (perfect) fields k, by defining LLL := LLLS as follows: Let S ⊂ k with
0 ∈ S be a system of generators of k over its prime field. Define LLLS to have as objects all the
complements UL ⊂ A2

k of the k-rational line arrangements L which contain L0 together with
the lines x = s, y = s, s ∈ S, and as morphisms the inclusions UL′′ ⊂ UL′ for L′ ⊂ L′′ and
the projections pt : UL → U0 defined by t0 7→ t ∈ ΣS = Σ0 ∪ {x− s, y − s | s ∈ S}, provided
L is large enough, so that pt is defined. Then ρc

LLLS : Gk → Autc(ΠLLLS) is an isomorphism.

4.2.2. The category HHH and GQ = ĜT
c

HHH. The objects of HHH are U0 = P1\{0, 1,∞} and UH
for all Q-rational hyperplane arrangements H ⊂ AN , and the morphisms are the canonical
inclusions UH′′ ⊂ UH′ for H′ ⊂ H′′ together with all the projections pt : UH → U0 defined by
pt :M0,n → U0, t0 7→ t ∈ ΣHHH := {xi, yj − xi}i, j with 1 6 i, j 6 N and i < j. As in the case
of LLL, one has HHH ⊂ Vbir

0,n strictly, because for f ∈ Q[x1, . . . , xN ], one has: Uf ∈ HHH iff f splits

in linear factors over Q. Finally, the Λ-abelian-by-central hyperplane ĜT
c

HHH satisfies:

• The representation ρc
HHH : GQ → ĜT

c

HHH := Autc(ΠHHH) is an isomorphism.

Actually, as in case of LLL, the result proved in [PT] is much more general, and holds over
arbitrary base (perfect) fields k, by defining HHH := HHHS as follows: Let S ⊂ k be a system
of generators containing 0 ∈ k over its prime field. Define HHHS to have as objects all the
complements UH ⊂ AN

k of the k-rational line arrangements H which contain H0 together
with the hyperplanes s − xi = 0, 1 6 i 6 N , s ∈ S, and as morphisms the canonical
inclusions UH′′ ⊂ UH′ for H′ ⊂ H′′ together with the projections pt : UH → U0 define by
t0 7→ t ∈ ΣS = ΣHHH ∪ {s − xi | 1 6 i 6 N, s ∈ S}, provided L is large enough, so that pt is
defined. Then ρc

HHHS : Gk → Autc(ΠHHHS) is an isomorphism.

Finally, concerning the proofs, recall that the methods developed to tackle the classical
I/OM are based on solving Bogomolov Program (BP) for K = k(X) using the extra infor-
mation encoded in OutcVX (ΠK). Obviously that information (and the categoryVX) are of
birational nature. On the other hand, both categories LLL and HHH are obviously not of bira-
tional nature, thus so are the corresponding automorphism groups Autc(Π•). Therefore some
new methods are needed to tackle the problem. In a nutshell, given Πc

•, one recovers the
lines and the colineations in A2 in the case of LLL, respectively the planes and plane incidence
in AN in the case of HHH. One concludes the proofs in a way similar to the birational case, by
invoking the Fundamental Theorem of Projective Geometries, see Artin [Ar].

5. A few Open Questions

There are many open questions concerning ĜT , the most important ones being whether

GQ = ĜT , respectively whether GQ ∼= ĜT . Below I mention a few open questions directly
relating to the themes discussed in this short survey.
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1) Does ĜT embed into Aut(πT ), and if so, is ĜT equal to Aut(πT )?

2) For IΓ as defined in [NS], is there some subcategory V ⊂ VarQ such that Aut(πV) = IΓ?

2) Does the mod ` -abelian-by-central I/OM hold for Vbir
0 ? If not, what are the “canonical

minimal” categories for which the mod `-abelian-by-central I/OM holds?

3) Are there Λ-abelian-by-central line/hyperplane variants of ĜT which involve a bounded
number of lines and/or hyperplanes only, and if so, how do those related to Galois groups?

4) Does the full-profinite line ĜTLLL and/or hyperplane ĜTHHH equal GQ?

5) Do prolinear/prounipontent variants I/OM hold, and if so, what is their significance for
Galois theory and/or studying multi-zeta and/or polylogs?

6. Appendix: Notation/Basics

6.1. The categories GGΓ and GGout
Γ . For a fixed group Γ, let GroupΓ be the category of

groups above Γ, and for ϕG : G→ Γ in GroupΓ, let G := ker(ϕG) be the “geometric part”
of G. Further let Groupout

Γ be the category having the same objects as GroupΓ, and as
morphisms the outer Γ-morphisms, i.e., HomGroupout

Γ
(G,H) := HomGroupΓ

(G,H)/∼, where

f∼ g, provided f◦ Isom(H) = g ◦ Isom(H). Notice that every group G can be viewed as an
object in GroupΓ via the trivial morphism G→ Γ. In particular, Group1 = Groups can be
embedded in GroupΓ, and correspondingly, Groupout := Groupout

1 is the category of groups
with outer morphisms. Further, if ΓG := ϕG(G), the exact sequence 1→ G→ G→ ΓG → 1
gives rise to a “representation” ρG : ΓG → Out(G), which is functorial in G in the sense that
given φ : G→ H, the induced map φ : G→ H satisfies ρH(σ) = φ ◦ ρG(σ) ∀σ ∈ ΓG.

Next suppose that the groups under discussion (including Γ) are topological groups, e.g.
profinite groups. Since inner conjugation in topological groups is a topological automor-
phism, the categories Groupout

Γ and Groupout are defined for the category of topological
groups, e.g. profinite groups. And if G ∈ Groupout has finite corank (i.e., for every N > 0
there are only finitely many open subgroups G′ < G of index N), e.g. G is topologically
finitely generated, then Out(G) is profinite and topologically finitely generated. In particu-
lar, by mere definitions it follows that the representation ρG : ΓG → Out(G) is continuous.

Finally let GΓ be the full subcategory of GroupΓ consisting of surjective objects, i.e.,
ϕG : G→ Γ is onto, and the corresponding full subcategory Gout

Γ of Groupout
Γ . In particular,

for every G → Γ in Gout
Γ , one has canonical representations ρG : Γ → Out(G), and these

representations are compatible with morphisms Gout
Γ . Thus we get a “representation”

ρGΓ
: Γ→ Aut(Gout

Γ ).

6.2. (Algebraic) étale fundamental group. For a base field k, e.g. k = Q, let k|k denote
some fixed algebraic closure of k, and ks|k be the separable closure of k in k. In particular,
Gk = Autk(k

s) = Autk(k) denotes the absolute Galois group of k. Let Vark be the category
of geometrically integral k-varieties, and for X ∈ Vark, let X := X ×k k be the base change
of X under k|k. In particular, every morphism f : X → Y in Vark gives rise to its base
change f : X → Y . By the theory of étale fundamental groups, the following hold:

- First, for every geometric point x ∈ X(k) as above, one has the canonical exact sequence
11



1→ π1(X, x)→ π1(X, x)→ Gk → 1,

in particular, π1(X, x) ∈ GGk . Moreover, if x′ ∈ X(k) is another geometric point of X, and
ı : x → x′ is the path from x to x′, then ı identifies π1(X, x) with π1(X, x′) up to inner
conjugation inside π1(X, x). In particular, viewing/considering π1(X, x) and π1(X, x′) as
objects in Gout

Gk
, one has that π1(X, x), π1(X, x′) ∈ Groupout

Gk
are canonically identified. We

will view π1(X, x) as an object of Groupout
Gk

, and setting π1(X) := π1(X, x), we call it the
geometric fundamental group of X. Finally, by the discussion in subsection 2.1 above, the
exact sequence above gives rise to the representation ρX := ρπ1(X,x) below, which turns out
to be always a continuous morphism of profinite groups

ρX : Gk → Out
(
π1(X)

)
= AutGout(π1(X)).

- Second, let f : X → Y be a morphism in Vark, f : X → Y be the induced morphism,
and y = f(x). Then f gives rise functorially to the commutative diagram below:

1→ π1(X, x) → π1(X, x) → Gk → 1
↓ π1(f) ↓ π1(f) ||

1→ π1(Y, y) → π1(Y, y) → Gk → 1

In particular, the representations ρX : Gk → Out
(
π1(X)

)
, X ∈ Vark are compatible with

morphisms f : X → Y , i.e., ρY = π1(f) ◦ ρX . Hence by the discussion in subsection 2.1
above and mere definitions, one gets a representation:

ρk : Gk → Aut(πVark), σ 7→
(
ρX(σ)

)
X
.

- Third, for y = f(x), let Xy ⊂ X be the geometric fiber of f : X → Y above y, and
suppose that the Xy is integral. Then one has an exact sequence:

π1(Xy)→ π1(X, x)→ π1(Y, y)→ 1,

which in many situations of interest fits into a short exact sequence, see the discussion below.

Next let k ⊂ k ⊂ C, and X := X(C) be the corresponding complex analytic space.
Then X is a nice topological space, and π1(X) equals the profinite completion of the topo-
logical fundamental group πtop

1 (X, ∗) ∈ Groupout. In particular, if πtop
1 (X, ∗) has a well

known/understood structure as a discrete group, its profinite completion π1(X) is known
as well. Examples of this instance which are significant in our context here are: The fun-
damental groups of smooth curves; the fundamental group of configuration spaces, and of
the moduli spaces of pointed curves; the fundamental groups the complements of line ar-
rangements in P2 and more general, of complements of hyperplane arrangements in PN. For
reader’s sake we briefly review the well known facts and introduce the relevant notation.

6.2.1. Curves of type (g, r). A curve of type (g, r) over k is a smooth curve X ∈ Vark which

has a smooth completion X̂ of genus genus g such that X̂ \X consists of r > 0 geometric

points. We will usually (tacitly) assume that 2g − 2 + r > 0. Then X = X(C) ⊂ X̂C) = X̂
are Riemann surfaces, and πtop

1 (X, ∗) ∈ Gout
1 is

Πg,r := πtop
1 (X) =

〈
α1, β1, . . . αg, βg, γ1, . . . , γr

∣∣ ∏
i[αi, βi]

∏
j γj = 1

〉
.

It is well known that Πg,n is residually finite, i.e., it embeds into its profinite completion,

and therefore, Π̂g,n = π1(X) = π̂top
1 (X) depends on g, r only. Further, if r > 0, then π1(X)

12



is the free profinite group on 2g+ r− 1 generators. In particular, if g = 0, i.e., X̂ = P1
k, then

πtop
1 (X) =

〈
γ1, . . . , γr

∣∣ γ1 · · · γr = 1
〉

is the free discrete group on r−1 generators γ1, . . . , γr−1.

Hence π1(X) = F̂r−1 is the profinite free group on γ1, . . . , γr−1.

6.2.2. Configuration spaces and moduli spaces of curves. For X ⊂ X̂ as above, the configu-
ration space of systems of n distinct geometric points of X is parametrized by Xn := Xn\∆,
where ∆ is the fat diagonal, hence Xn(k) = Xn(k)\∆(k). Further, for 0 < m < n and
I = {i1, . . . , im} with iν < iν+1, the Ith projection pI : Xn → Xm is surjective, and pI is
defined on X(k) by x := (x1, . . . , xn) 7→ (xi1 , . . . , xim) =: xm. In particular, the geometric
fiber of pI : Xn → Xm at xm is k-isomorphic to Yn−m, where Y = X \{xi1 , . . . , xim}, thus

Y ⊂ X̂ is a (g, r+m) curve. Further, if {xi1 , . . . , xim} ⊂ X̂ is a closed subset defined over k,
then Y is defined over k. Concerning fundamental groups, we notice that the corresponding
topological groups Πg,r;n := πtop

1 (Xn, ∗) are in principle known and finitely generated, and

their structure depends on (g, r) and n only. Hence the profinite completion Π̂g,r;n, which is

the geometric fundamental group π1(Xn,xn) = Π̂g,r;n, is topologically finitely generated and
has a structure which is in principle known. Further, the projection pI : Xn → Xm defines
a surjective projection of étale fundamental groups π1(Xn,xn) → π1(Xm,xm). Moreover, if
2g − 2 + r > 0, then πtop

2 (Xm) = 1, hence the short exact fiber homotopy exact sequence
gives rise by completion to an exact sequence of geometric fundamental groups

1→ π1(Y )→ π1(Xn,xn)→ π1(Xm,xm)→ 1.

Finally, if Y = X\{xi1 , . . . , xim} is defined over k, the above sequence is the geometric part of

1→ π1(Y )→ π1(Xn,xn)→ π1(Xm,xm)→ 1,

hence by the general discussion above, one has canonical “representations”

ρX,n : π1(Xm,xm)→ Out
(
π1(Y )

)
, ρX,n : π1(Xm,xm)→ Out

(
π1(Y )

)
.

Parallel to the configuration spaces Xn, one considers the moduli stacks Mg,n of n-pointed

genus g projective smooth curves X̂. The moduli stacks Mg,n under discussion are smooth
and defined over Q. Although Mg,n are not schemes in general, by Oda [O], one can define
the “fundamental group” π1(Mg.n,x), and its “algebraic part” turns out to be the profinite

completion Γ̂g,n of the mapping class group Γ̂g,n. Further, one has a canonical exact sequence

of the form 1 → Γ̂g,n → π1(Mg,n,x) → GQ → 1. The full Teichmüller moduli tower
T is the category with objects Mg,n and all “natural Q-morphisms” between its objects.
The (algebraic) fundamental group Teichmüller tower is the set of (profinite) mapping class

groups {Γ̂g,n}g,n endowed with “canonical morphisms originating from geometry,” see the
discussion in Hatcher–Lochak–Schneps [HLS] for more about this. For instance, given any
0 6 m 6 n and g > 0 such that 2g−2+m > 1, for every I ⊂ {1, . . . , n} with |I| = m, one has
a canonical morphisms of stacks Mg,n →Mg,m by “forgetting” the marked points indexed
by i 6∈ I. By Knudsen [Kn], the projection Mg,n+1 → Mg,n renders Mg,n+1 canonically

isomorphic to the universal n-pointed genus g curve. In particular, if x ∈Mg,n(k), then the

fiber Xg,n :=Mg,n;x of Mg,n+1 →Mg,n above x is a k-curve of type (g, n), thus giving rise
to an exact sequence:

1→ Π̂g,n → π1(Mg,n+1,xn+1)→ π1(Mg,n,x)→ 1.
13



Hence by the general discussion above, one gets a “representation”

ρg,n : π1(Mg,n,x)→ Out(Π̂g,n).

A quite notable special case of this is the case g = 0, i.e., X = X̂ = P1. Then Xn =M0,n

is the moduli space of curves of genus g = 0 with n marked points. Since Autk(P1) acts
simply transitively on ordered systems of three points, it follows that Xn = {η0} = M0,n

for n 6 3, X4 = P1\{0, 1,∞} = M0,4, and in general, Xn = (P1\{0, 1,∞})n−3\∆ = M0,n

for n > 3. Finally, π1(M0,n) = Γ̂0,n, which is also denoted by π1(M0,n) = K̂(0, n) by many
authors, is the profinite completion of the pure mapping class group Γ0,n = K(0, n). The
latter has canonical generators xij, 1 6 i < j 6 n, satisfying well known relations. Hence for

X0,n ⊂ P1, n > 3, one has π1(X0,n) = Π̂0,n
∼= F̂n−1, and one gets canonical exact sequences:

1→ Π̂0,n → Γ̂0,n+1 → Γ̂0,n → 1, 1→ Γ̂0,n → π1(M0,n,x)→ GQ → 1.
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