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CHARACTERIZING FINITELY GENERATED FIELDS
BY A SINGLE FIELD AXIOM

PHILIP DITTMANN AND FLORIAN POP

dem Andenken an Peter Roquette gewidmet

Abstract. We resolve the strong Elementary Equivalence versus Isomorphism Problem
for finitely generated fields. That is, we show that for every field in this class there is a
first-order sentence which characterizes this field within the class up to isomorphism. Our
solution is conditional on resolution of singularities in characteristic two and unconditional
in all other characteristics.

1. Introduction

First-order logic naturally applies to the study of fields. Consequently, it is of interest to
investigate the expressive power of first-order logic in natural classes of fields. This is well-
understood in the cases of algebraically closed fields, real-closed fields and p-adically closed
fields. Namely, every such field K is elementary equivalent to its “constant field” κ, i.e., the
relative algebraic closure of the prime field in K, and its first-order theory is decidable.

This article is concerned with fields which are at the centre of (birational) arithmetic
geometry, namely the finitely generated fields K, which are the function fields of integral Z-
schemes of finite type. The Elementary Equivalence versus Isomorphism Problem, for short
EEIP, asks whether the elementary theory Th(K) of a finitely generated field K (always in
the language of rings) encodes the isomorphism type of K in the class of all finitely generated
fields. This question goes back to the 1970s and seems to have first been posed explicitly in
[P1], with the work of Rumely [Ru], Duret [Du] and Pierce [Pi] notable predecessors.

On the other hand, through the work of Rumely [Ru], much more than the EEIP is known
for global fields: namely, the existence of uniformly definable Gödel functions proved in that
article implies that each global field K is axiomatizable by a single sentence θRu

K in the class
of global fields, i.e. θRu

K holds in a global field L if and only if L ∼= K. This was extended
and sharpened by the second author in [P2], by showing that for every finitely generated
field K of Kronecker dimension dim(K) 6 2 there exists a sentence θK such that θK holds
in a finitely generated field L if and only if L ∼= K as fields. Here, for arbitrary fields F , the
Kronecker dimension is dim(F ) := td(F ) + 1 if char(F ) = 0, respectively dim(F ) := td(F )
if char(F ) > 0, where td(F ) is the absolute transcendence degree of F .

In this note we establish the analogue of this stronger property for all finitely generated
fields K, thus in particular completely resolving the EEIP; in characteristic two, though, our
proof is conditional, requiring a version of resolution of singularities in algebraic geometry,
called above F2. (See Section 2 for the version of resolution that we need.)
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Theorem 1.1. Let K be a finitely generated field. If char(K) = 2 and dim(K) > 3, assume
that resolution of singularities above F2 holds. Then there exists a sentence θK in the language
of rings such that any finitely generated field L satisfies θK if and only if L ∼= K.

Our approach follows an idea of Scanlon in [Sc], and thereby establishes an even stronger
statement, giving information about the class of definable sets in finitely generated fields.
Specifically, it shows that the class of definable sets is as rich as possible. One way of making
this precise (cf. [AKNS, Lemma 2.17]) is the following statement. (See [Sc, Section 2] or
[AKNS, Section 2] for a discussion of the notion of bi-interpretability.)

Theorem 1.2. Let K be an infinite finitely generated field. If char(K) = 2 and dim(K) > 3,
assume that resolution of singularities above F2 holds. Then K is bi-interpretable with Z

(where both K and Z are considered as structures in the language of rings).

Note that while this completely characterizes the definable sets in K, certain questions of
uniformity across the class of finitely generated fields are left open, see e.g. [Po, Question 1.8].

The chief technical result on which the theorems above build, and indeed the result that
occupies the bulk of this article, concerns a definability statement regarding prime divisors of
finitely generated fields. Recall that a prime divisor of an arbitrary field K with dim(K) finite
is any discrete valuation v whose residue field Kv has dim(Kv) = dim(K)− 1. For finitely
generated fields K, a valuation v is a prime divisor of K if and only if dim(Kv) = dim(K)−1,
see e.g. [EP, Theorem 3.4.3]. A prime divisor v is called geometric if char(K) = char(Kv)
and arithmetic otherwise. Throughout, we freely identify valuations v with their valuation
rings Ov, and in particular do not distinguish between equivalent valuations.

Since the cases dim(K) 6 2 were treated already in [P2] and [Ru], we will consider the
following family of hypotheses indexed by d > 3:

(Hd)

{
- K is finitely generated with dim(K) = d.
- If char(K) = 2 and d > 3, resolution of singularities holds above F2.

Theorem 1.3. Let d > 3. The geometric prime divisors of fields satisfying (Hd) are uni-
formly first-order definable. In other words, there exists a formula vald(X, Y ) in the language
of rings such that for every field K satisfying (Hd) and every geometric prime divisor O of
K there exists a tuple y in K such that

O = {x ∈ K : K |= vald(x, y)},
and conversely, for every tuple y, the subset of K defined above is either a geometric prime
divisor or empty.

1.1. Short historical note and the genesis of this article. The first step in the resolu-
tion of the strong form of the EEIP as mentioned in Theorem 1.1 above is Rumely’s work [Ru],
which itself builds on previous ideas of J.Robinson. The next major step toward the resolution
of the strong EEIP was the introduction of the “Pfister form machinery” in [P1], followed
by the work of Poonen [Po], providing (among other things) uniform first-order formulas
to define the maximal global subfields of finitely generated fields, and Scanlon [Sc], which
reduces the strong EEIP to first-order defining the geometric prime divisors of finitely gen-
erated fields, and finally the introduction of the cohomological higher local-global principles
(LGPs) in [P2], as a tool for recovering prime divisors. The present paper is a synthesis of
previous separate approaches to the problem by the authors and supersedes the manuscripts
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[P3, P4, Di1, Di2], which are not intended for publication anymore. The proof builds on
and expands the above ideas and tools, but it is not a straightforward extension of the
methods of [Ru], [P2], especially because the higher LGPs involved, cf. [K-S], [Ja], lead
to some additional complications compared to the Brauer–Hasse–Noether LGP for global
fields, respectively Kato’s LGP in the case Kronecker dimension two. Finally, in this note
the authors do not discuss the natural question of the complexity of the formulas describing
prime divisors, thus the sentences characterizing the isomorphism type. It would also be
interesting to treat the EEIP for fields which are finitely generated over natural base fields
such as C, R and Qp, cf. [P-P].

1.2. Acknowledgements. We would like to thank the anonymous referees for many helpful
remarks and suggestions. A major part of this work was completed while the first author
was a postdoctoral fellow, and the second author an Eisenbud research professor, in the
Definability, Decidability & Computability (DDC) Program at the MSRI Berkeley during
the Fall 2020 semester. The DDC Program was supported by the US National Science
Foundation under Grant DMS-1928930. The second author was also partially supported by
the NSF FRG Grant DMS-2152304.

2. Preliminaries: Cohomological Local–Global Principles (LGP)

The proof for the definability of prime divisors is based on local–global principles for
certain cohomology groups over fields which were introduced in [Ka2]. These extend the
well-known Brauer–Hasse–Noether LGP, in particular the injectivity of the canonical map

ıK : Br(K)−→
⊕

v

Br(Kv̂),

where K is a global field, the sum is over all places v of K, and Kv̂ is the completion at v.

Recall that for an arbitrary field K and i ∈ Z, one defines the GK-modules Z/n(i) as
follows: First, if char(K) does not divide n, then Z/n(i) := µ⊗i

n is Z/n endowed with the GK-
action via the ith-power of the cyclotomic character of GK . Second, if p := char(K) > 0 and
n = mpr with (m, p) = 1, then Z/n(i) := Z/m(i)⊕Wr Ω

i
log[−i], where Wr Ωlog the logarithmic

part of the de Rham–Witt complex on the étale site over K (see Illusie [Ill], Ch. I, 5.7). (Note
that these two definitions agree when char(K) is positive and does not divide n.) With these
notations, one has, see [Ka2], Introduction:

H1(K,Z/n(0)) = Homcont(GK ,Z/n), H2(K,Z/n(1)) = nBr(K).

Noticing that K is a global field precisely if dim(K) = 1, and the Brauer–Hasse–Noether
local-global principle is an LGP for H2(K,Z/n(1)), Kato proposed that for “arithmetically
significant” fields K with dim(K) = d, e.g. for finitely generated fields, there should hold
similar LGPs for Hd+1(K,Z/n(d)), see Kato’s seminal paper [Ka2], in particular for how
Milnor K-theory plays into the bigger picture. In the same paper, Kato proved several forms
of such LGPs for finitely generated fields K with dim(K) = 2. There was/is steady progress
on Kato’s conjectures, see Kerz-Saito [K-S] and Jannsen [Ja], where both more literature and
an account of previous results can be found.

We mention below three special instances of these (much more general) results which we
will need in the sequel. We consider the following context:
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• Throughout the paper n = 2, and to simplify notation set Λ = Z/2.1

• For arbitrary fields F and i > 0, denote Hi+1
(
F
)
:= Hi+1

(
F,Λ(i)

)
.2

For a field F , recall the following general facts:

a) For any extension E|F one has the restriction map resE|F : Hi+1
(
F
)
→ Hi+1

(
E
)
,

α 7→ αE.
b) Let w be a discrete valuation on F with residue field Fw. Under mild hypotheses,

which are always satisfied in the sequel, there is a boundary homomorphism

∂w : Hi+1
(
F
)
→ Hi

(
Fw

)

(see [Ka2], p. 149). By construction, it factors through Hi+1
(
Fw

)
, where Fw is the henseliza-

tion of F with respect to w.
The first higher dimensional LGP proposed by Kato in [Ka2] is Jannsen [Ja], Theorem 0.4.

We consider and explain it in our notation for n = 2. Let K be finitely generated of
Kronecker dimension d > 1 and k1 ⊂ K be a global subfield which is relatively algebraically
closed in K. Then K|k1 is a finitely generated field over k1 with td(K|k1) = d− 1. Let P(k1)
denote the set of places of k1 and k1v̂ be the completion of k at v ∈ P(k1). Then the relative
algebraic closure k1v ⊂ k1v̂ of k1 in k1v̂ satisfies: k1v is the real closure of k at v if v is a real
place, k1v = Q if v is a complex place, respectively k1v is the henselization of k1 at finite
places v ∈ Pfin(k1). Since k1 is relatively algebraically closed in K and k1v is separable over
k1, K⊗k1 k1v is a domain, hence Kv̂ := Kk1v̂ := Quot(K⊗k1 k1v) is a well-defined field. In this
notation, Jannsen [Ja], Theorem 0.4, n = 2 and char(K) 6= 2 shows that the canonical map
ık1 = ⊕v∈P(k1) resKv̂|K : Hd+1

(
K
)
→

⊕
v∈P(k1)

Hd+1
(
Kv̂

)
is well-defined and injective. (Note

that Jannsen writes F for our K, K for our k1, and Fv for our Kv̂.) Hence if Kv = Kk1v ⊂ Kv̂

is the compositum of k1v and K inside Kv̂, setting αv := resKv|K(α), one gets the following.

Fact 2.1 (cf. Jannsen [Ja], Thm 0.4, for n = 2). Suppose that char(K) 6= 2. Then one has:

α ∈ Hd+1
(
K
)

equals 0 if and only if αv ∈ Hd+1
(
Kv

)
equals 0 for all v ∈ P(k1).

We next briefly recall the higher dimensional generalizations of the Brauer–Hasse–Noether
LGP as proposed by Kato. These involve so-called arithmetical Bloch–Ogus complexes, see
Kato [Ka2], §1 for details. Namely, for an excellent normal integral scheme X with dim(X) =
d and function field K = κ(X), let Xi = Xd−i be the set of points x ∈ X with dim(x) :=

dim {x} = i, or equivalently, codim(x) = d − i. Under mild hypotheses on X, which are
always satisfied in the situations we consider, Kato shows (see [Ka2], Proposition 1.7) that
one has a complex (with the first term placed in degree d): 3

C0
n(X) : Hd+1

(
K
) ∂d−→

⊕
x∈Xd−1

Hd
(
κ(x)

)
→ · · · →

⊕
x∈X1

H2
(
κ(x)

)
→

⊕
x∈X0

H1
(
κ(x)

)
.

The first map ∂d is defined in terms of the discrete valuations of K defined by the points x
in Xd−1 = X1 as follows: Since X is normal, the local ring Ox is a DVR, say, with canonical
valuation wx and residue field Kwx = κ(x). Hence every x ∈ X1 gives rise to a residue map
∂x : Hi+1

(
K
)
→ Hd

(
κ(x)

)
as indicated at b) above, and one has ∂d := ⊕x∈X1∂x.

1 The facts in the remainder of this section hold for Λ = Z/ℓe, provided ℓ 6= char(K) and µℓe ⊂ K.
2 Note that in [EKM] one denotes Hi+1

(
F
)
:= Hi+1

(
F,Λ(i)

)
in §16, and Hi

(
F
)
:= Hi

(
F,Λ(i)

)
in §101.

3Actually, this is a special case of the more general context in [Ka2].
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Let Kwx
be the henselization of K at wx, so Kwx

wx = Kwx = κ(x). For α ∈ Hd+1
(
K
)
,

recall its image αwx
∈ Hd+1

(
Kwx

)
as defined at item a) above. Then by definition, one has

∂x(α) = ∂wx
(αwx

) in Hd
(
κ(x)

)
. Hence if Hd

(
C0

n(X)
)
= 0 (i.e., if the first map of the complex

is injective), one has:

(∗) α ∈ Hd+1
(
K
)

is trivial iff αwx
∈ Hd+1

(
Kwx

)
is trivial for all x ∈ X1.

Among several other things, Kato proves in [Ka2], Corollary, p. 145, that H2

(
C0

n(X)
)
= 0

for a two-dimensional projective regular integral Z-scheme X such that K = κ(X) has no
orderings.

The generalization of Kato’s result above to higher dimensions suitable for our purposes
is given by (some special form of more general) results by Jannsen [Ja] and Kerz–Saito [K-S],
see Fact 2.2 and Fact 2.3 below.

Let R be either a finite field with char 6= 2, or the valuation ring of a Henselization of a
global field k at some v ∈ Pfin(k) such that char(kv) 6= 2. Let X be a proper regular integral
flat R-scheme, K = κ(X) be its field of rational functions, d = dimX = dimK > 0, and
notice that X is excellent and n = 2 is invertible on X. Kerz–Saito [K-S] denote the Kato
complex C0

n(X) introduced above by KC(X,Z/nZ) and its homology by KHa(X,Z/nZ).
This being said, Theorem 8.1 of loc.cit. for a = d and Λ = Z/2 asserts that KHa(X,Λ)

)
= 0,

that is, Hd

(
C0

2(X)
)
= 0 in the notation of Kato. Hence by (∗) above one has the following.

Fact 2.2 (cf. Kerz–Saito [K-S], Theorem 8.1, for a = d, l = 2, Λ = Z/2Z). Let R, X and
K = κ(X) be as above. Then for α ∈ Hd+1

(
K
)

one has:

α ∈ Hd+1
(
K
)

is trivial iff αwx
∈ Hd+1

(
Kwx

)
is trivial for all x ∈ X1.

Finally, we consider the case char = 2 = n. Following Jannsen, see [Ja, Definition 4.18],
we say that resolution of singularities holds above F2 if the following hold:

(i) For any proper integral F2-variety X, there is a proper birational morphism X̃ → X,

where X̃ is a smooth (or equivalently regular) F2-variety.

(ii) Every affine smooth F2-variety U has an open immersion U →֒ X, where X is a
projective smooth F2-variety, and X\U is a simple normal crossings divisor.

Resolution of singularities is well known for surfaces and holds in dimension three (in
general) by Cossart–Piltant [C-P]. Further, if resolution of singularities above F2 holds, then
any finitely generated field of characteristic two has a smooth proper model over F2.

This being said, Fact 2.3 below follows from results by several authors, e.g. Kato [Ka2] for
dim(K) = 2, Suwa [Su, p. 270] for dim(K) = 3, and (conditionally) Jannsen [Ja, Thm 0.10]
for dim(K) arbitrary. Namely, let K be a finitely generated field with char(K) = 2 and
if d = dim(K) > 3, suppose that resolution of singularities holds above F2. Let X be a
projective smooth F2-model for K. Then noticing that Jannsen [Ja] denotes Kato’s complex
C0

n(X) introduced above by C1,0(X,Z/nZ), by Jannsen [Ja], Thm 0.10, for a = d and n = 2,
one has that Ha

(
C1,0(X,Z/nZ)

)
= 0, that is, Hd

(
C0

2(X)
)
= 0 in the notation of Kato. Hence

by the discussion at (∗) above one has the following.

Fact 2.3 (cf. Jannsen [Ja], Thm 0.10, for a = d and n = 2). In the above notation and
hypothesis, for all α ∈ Hd+1

(
K
)

the following holds:

α ∈ Hd+1
(
K
)

is trivial iff αwx
∈ Hd+1

(
Kwx

)
is trivial for all x ∈ X1.
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3. Consequences/Applications of the Local-Global Principles

We begin by recalling a few basic facts about Pfister forms, which are at the core of first-order
definability of prime divisors. For an field F and a ∈ F× set 〈〈a〉〉 = x2

1 − ax2
2,

4 respectively
〈〈a]] := x2

1 + x1x2 + ax2
2. For an (i + 1)-tuple aa = (ai, . . . , a0) with ai, . . . , a0 ∈ F×, the

(i+ 1)-fold Pfister form qa is defined as follows, see [EKM, 9.B] for details:

- If char(F ) 6= 2, then qa := qai,...,a0 := 〈〈ai〉〉 ⊗ · · · ⊗ 〈〈a0〉〉.
- If char(F ) = 2, then qa := qai,...,a0 := 〈〈ai〉〉 ⊗ . . . 〈〈a1〉〉 ⊗ 〈〈a0]].5

It is well known, see [EKM, Corollary 9.10], that a form qa as defined above is isotropic if
and only if it is hyperbolic. Further, recalling that Hi+1

(
F
)
:= Hi+1

(
F,Λ(i)

)
with Λ = Z/2

as introduced above, by [EKM], Section 16,6 to every Pfister form qa = 〈〈aa〉〉 or qa = 〈〈aa]],
one can attach in a canonical way a cohomological invariant

e(qa) ∈ Hi+1
(
F
)
.

Let N := 2i+1 − 1. Then qa is a quadratic form in N + 1 variables x = (x1, . . . , xN+1), and

the associated variety Vqa := VF (qa) →֒ PN
F is a smooth F -subvariety of PN

F .

Fact 3.1. In the above notation, the following hold:

1) The Pfister form qa is isotropic over F if and only if e(qa) = 0 in Hi+1
(
F
)
.

2) Let E|F be a field extension, and qa,E be qa viewed over E. One has e(qa,E) = res
(
e(qa)

)

under resE|F : Hi+1
(
F
)
→ Hi+1

(
E
)
.

Concerning the proofs, assertion 1) is implied by the Milnor Conjecture (although previous
weaker results would suffice, see [EL, Ka]; to be precise, use [EKM, Fact 16.2] together with
the fact that the (i+1)-fold Pfister form qa is isotropic if and only if it is hyperbolic, which is
the case if and only if its class in the Witt ring of F lies in I i+2

q (F ) [EKM, Theorem 23.7(1)]).
Assertion 2) follows by definition.

We conclude this preparation with the following facts scattered throughout the literature
(although some of them might be new in the generality presented here); variants of these
will be used later. For the reader’s sake we give the (straightforward) full proofs.

Proposition 3.2. Let F be henselian with respect to a non-trivial non-dyadic valuation w,
i.e.,

(
char(F ), char(Fw)

)
6= (0, 2). Let k ⊂ F be its constant subfield, i.e., the relative

algebraic closure of the prime subfield in F . Let ε = (εr, . . . , ε0) be w-units in F .

1) Suppose that w(ε1−1)>0. Then qε1,ε0 is isotropic over F . Hence qε is isotropic over F .

2) Let ε be the image of ε under the residue map O×
w → Fw, and π = (πs, . . . , π1),

πi ∈ F× be such that w(πs), . . . , w(π1) are F2-independent in wF/2. The following are
equivalent:

(i) qε is isotropic over Fw ; (ii) qε is isotropic over F ; (iii) q(π,ε) is isotropic over F .

3) Suppose that dim(F ) = r, and qε is isotropic over the compositum Fv = kvF for each
real closure kv of k (if there are any such kv). Then qε is isotropic over F .

4 Some other sources prefer the convention 〈〈a〉〉 = x2
1 + ax2

2 in the case char(F ) 6= 2.
5 In this case, one could allow a0 = 0 without harm, but we prefer to require all ai 6= 0 for uniformity.
6 Be aware of the inconsistency of notation in [EKM], see footnote 2 of this article.
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Proof. Let N := 2r+1− 1, and recall the (r + 1)-fold Pfister form qε = qε(x) in variables
x = (x1, . . . , xN+1). Since w is non-dyadic, Vqε →֒ PN

Ow
is a smooth Ow-subvariety of PN

Ow
,

with special fiber the projective smooth Kw-variety Vqε →֒ PN
Fw. Hence by Hensel’s Lemma,

the specialization map on rational points Vqε(F )→ Vqε(Fw) is surjective, implying:

(∗) qε is isotropic over F if and only if qε is isotropic over Fw.

To 1): Since ε1 = 1, qε1,ε0 = q1,ε0 is isotropic over Fw, thus so are qε1,ε0 and qε over F by (∗).
To 2): Setting xχ = (xχ,i)i6N , πχ =

∏
i π

χ(i)
i for χ : {1, . . . , s} → {0,1}, y = (xχ)χ, one

has qπ,ε(y) =
∑

χ
πχqε(xχ). By (∗) above, qε is isotropic over Fw if and only if qε is

isotropic over F , and if so, qπ,ε is isotropic over F . For the converse, let qε be anisotropic.
Then w

(
qε(ν)

)
∈ 2 · wF for all ν 6= 0 in FN, and for µ = (νχ)χ 6= 0, one has: Since

w(πχ) =
∑

i χ(i)w(πi), and w
(
qε(νχ)

)
∈ 2 · wF , and

(
w(πi)

)
i

are independent in wF/2, it
follows that the summands in qπ,ε(µ) =

∑
χ
πχqε(νχ) have distinct values. Hence qπ,ε(µ) 6= 0,

thus qπ,ε is anisotropic.

To 3): We first claim that e := dim(Fw) < dim(F ) = r. Indeed, by the Abhyankar
Inequality, see e.g. [EP], Thm 3.4.3, one has: td(F ) − td(Fw) > r(w), where td(•) is the
absolute transcendence degree and r(w) := dimQ((wF/wk)⊗ Q) is the rational rank of the
abelian group wF/wk. First, if w|k is non-trivial, then char(k) = 0 and kw is algebraic over
a finite field and therefore dim(F )−dim(Fw) = 1+td(F )− td(Fw) > 1+r(w) > 0. Second,
if w|k is trivial, then r(w) > 0, hence dim(F )− dim(Fw) = td(F )− td(Fw) > r(w) > 0.

Case 1. char(Fw) = p > 0. Then e = dim(Fw) = td(Fw), and qε is a quadratic form
in 2r+1 variables over Fw. Since e < r, and Fw is a Ce+1-field, qε(xx) = 0 has non-trivial
solutions in Fw, i.e., qε is isotropic over Fw. Hence so is qε over F by (∗).

Case 2. char(Fw) = 0. Then w is trivial on the constant field k of F , and by Hensel’s
Lemma, there is a field of representatives E ⊂ F for Fw. Further, E is relatively algebraically
closed in F , so k ⊂ E is relatively closed in E, and dim(E) = dim(Fw) = e < r. Let
η = (ηr, . . . , η0) ∈ Er+1 be the lifting of ε = (εr, . . . , ε0). Then εi = ηiδi with δi ∈ F and
w(δi − 1) > 0. Since char(Fw) = 0, by Hensel’s Lemma, each δi is a square in F , thus
qε ≈ qη over F , and qη is defined over E ⊂ F . We consider the following condition on
subfields E ′ ⊂ E:

(∗) E ′ is finitely generated, ηr, . . . , η0 ∈ E ′.

For every E ′ satisfying (∗), consider k′ := k ∩E ′ and for v′ ∈ P(k′), let E ′
v′ = k′

v′E
′ be the

compositum of E ′ and k′
v′ and e(qη,v′) be the cohomological invariant of qη in Hr+1(E ′

v′).

Claim. There is E ′ ⊂ E satisfying (∗) such that e(qη,v′) = 0 for all v′ ∈ P(k′).

Proof of the Claim. Let E ′ satisfy (∗), k′ = E ′ ∩ k. First, if v′ ∈ P(k′) is not a real place,
then E ′

v′ has no orderings; hence by the well-known behaviour of cohomological dimension
in field extensions we have cd(E ′

v′) 6 cd(E ′) 6 dim(E ′) + 1 6 dim(Fw) + 1 < r + 1.
Thus Hr+1(E ′

v′) = 0, implying that e(qη,v′) = 0. Second, concerning real places of k′,
let ΣE′ ⊂ P(k′) be the (possibly empty) set of all real places v′ such that e(qη,v′) 6= 0.
By contradiction, suppose that ΣE′ is non-empty for all E ′ satisfying (∗). Considering all
E ′ ⊂ E ′′ ⊂ E satisfying (∗), the restriction maps ΣE′′ → ΣE′ make (ΣE′)E′ into a projective
system of finite non-empty sets, having as projective limit the non-empty set ΣE ⊂ P(k) of
all v ∈ P(k) which satisfy v′ := v|k′ ∈ ΣE′ for all E ′ (where as always k′ = E ′ ∩ k). For
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v ∈ ΣE , let kv be the real closure of k at v and wv|w be the unique prolongation of the
Henselian valuation w of F to the algebraic extension Fv = kvF of F . Since w is trivial
on k, the residue field Fvwv is the compositum kvFw, and further, Ev := kvE ⊂ Fv is a
field of representatives for kvFw. Since qη is isotropic over Fv, it is so over kvFw, hence
over Ev = kvE. Equivalently, by Fact 3.1, e(qη,v) = 0 in Hr+1(Ev). On the other hand,
since cohomology is compatible with inductive limits, e(qη,v) = lim

−→
e(qη,v′) 6= 0, because

e(qη,v′) 6= 0 for all E ′, contradiction! The Claim is proved.

Back to the proof in Case 2), let E ′ ⊂ E satisfy the Claim. Set F ′ = E ′(tt) for tt a tran-
scendence basis of F |E ′. Then F ′ ⊂ F is finitely generated, E ′ ∩ k = k′ = F ′ ∩ k and
E ′

v′ ⊂ F ′
v′ := k′

v′F
′ for all v′ ∈ P(k′). Since e(qη,v′) = 0 in Hr+1(E ′

v′), qη is isotropic over
E ′

v′ , hence over F ′
v′ for each v′ ∈ P(k′). Hence by Fact 3.1, e(qη,v′) = 0 in Hr+1(F ′

v′) for all
v′ ∈ P(k′), and therefore, by Fact 2.1, e(qη) = 0 in Hr+1(F ′). Equivalently, qη is isotropic
over F ′, thus over F . Finally, qε ≈ qη is isotropic over F . �

A) Prime divisors via anisotropic k1 -nice Pfister forms. We now state a technical
condition for the Pfister forms we are going to work with. This technical condition in
particular serves to ensure that orderings and dyadic places can always be eliminated from
our subsequent considerations.

Definition 3.3. Let K be a field satisfying Hypothesis (Hd) from the Introduction and qa
be a Pfister form defined by aa := (ad,..., a1, a0) with all ai ∈ K×.

1) Let k1 ⊂ K be a global subfield. We say that qa is k1-nice if a1, a0 ∈ k1, and the two-fold
Pfister form qa1,a0 satisfies:

(∗) If v ∈ P(k1) is real, or dyadic, or v(a0) 6= 0, or v(a1) < 0, then qa1,a0 is isotropic over k1v.

2) We say that qa is nice if there is there is a global subfield k1 ⊂ K such that qa is k1 -nice.

Note that being nice is not an isometry invariant of Pfister forms, so strictly speaking it
is a property of the concrete presentation; this should not lead to confusion.

Due to the results of the previous section, we now have the following local–global principle
for isotropy of nice Pfister forms.

Proposition 3.4. Let K satisfy Hypothesis (Hd), k1 ⊂ K be a global subfield, and qa be an
anisotropic k1 -nice Pfister form over K. The following hold:

1) There is a prime divisor w of K such that qa is anisotropic over the w-henselization Kw.

2) If w is a prime divisor of K such that qa is anisotropic over the w-henselization Kw,
then w is non-dyadic, w(a0) = 0, w(a1) > 0, and w(ai) is odd for some i = 1, . . . , d.

Proof. To 1): By Fact 3.1, 1), 2) above, proving that qa is anisotropic over Kw is equivalent
to proving that the image of e(qa) under the restriction map resw : Hd+1

(
K
)
→ Hd+1

(
Kw

)

does not vanish. Noticing that e(qa) 6= 0 in Hd+1
(
K
)
, proceed as follows:

Case 1). If char(K) = 2, then choosing a smooth projective F2-model X for K, by Fact 2.3
above, there is a prime divisor w of K, say w = wx for some point x ∈ X1, such that
resw

(
e(qa)

)
6= 0 in Hd+1

(
Kw

)
, and therefore qa is anisotropic over Kw.

Case 2). If char(K) 6= 2, we apply Fact 2.1 above, so there is v ∈ P(k1) such that
resv(e(qa)) 6= 0 in Hd+1

(
Kv

)
. Hence if qa,v is the Pfister form qa viewed over Kv, then

e(qa,v) = resv
(
e(qa)

)
6= 0. Equivalently, qa,v is anisotropic over Kv, hence its Pfister subform
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qa1,a0 is anisotropic over k1v ⊂ Kv. Thus by condition (∗) of Definition 3.3 above, v is a finite
non-dyadic place of k1. In particular, letting R ⊂ k1v be the henselization ofOv, it follows that
char(kv) 6= 2. Let Xv be any projective R-model of Kv. Then using prime to ℓ-alterations
with ℓ = 2, see [ILO], Exposé X, Thm 2.4, there is a projective regular irreducible R-scheme
X̃ and a projective surjective R-morphism X̃ → Xv defining a finite field extension K̃ |Kv

of degree prime to 2. In particular, the restriction of e(qa,v) in Hd+1
(
K̃
)

is non-zero. Hence

by Fact 2.2 above, there exists x̃ ∈ X̃1 such that setting w̃ := wx̃, for the w̃-henselization
K̃w̃ of K̃ one has: resw̃

(
e(qa,v)

)
6= 0 in Hd+1

(
K̃w̃

)
. Hence letting qa,w̃ be the Pfister form qa

viewed over K̃w̃, one has e(qa,w̃) = resw̃
(
e(qa,v)

)
6= 0 in Hd+1

(
K̃w̃

)
, concluding by Fact 3.1

that qa,w̃ is anisotropic over K̃ w̃. Let w := w̃|K . Then since K̃ |K is an algebraic extension,

and w̃ is a prime divisor of K̃, it follows that w = w̃|K is a prime divisor of K, and the
w-henselization Kw is contained in K̃w̃. Since qa,w̃ is anisotropic over K̃w̃, it follows that qa
is anisotropic over Kw.

To 2): Let v := w|k1 be the restriction of w to k1 (which might be the trivial valuation).
Then k1v is contained in Kw. Hence since qa is anisotropic over Kw, its subform qa1,a0 (which
is defined over k1) is anisotropic over k1v. Since qa1,a0 is k1 -nice, either v is trivial or v ∈ P(k1)
must be finite non-dyadic and v(a0) = 0, v(a1) > 0. Hence w is non-dyadic, and further,
w(a0) = v(a0) = 0, w(a1) = v(a1) > 0. It remains to show that w(ai) is odd for some
i = 1, . . . , d. If not, for all such i we may write ai = bic

2
i for some bi, ci ∈ K× with w(bi) = 0.

But then qa ≈ qbd,...,b1,a0 , and the latter form is isotropic over Kw by Proposition 3.2, 3)
(where the hypothesis on real places is satisfied by niceness of qa). Therefore qa is also
isotropic over Kw in contradiction to the hypothesis. �

B) Abundance of anisotropic k1 -nice Pfister forms

In the subsection A) above we saw that anisotropic nice Pfister forms over a finitely
generated field K remain anisotropic over some henselization of K w.r.t. some non-dyadic
prime divisors of K. In this subsection, we prove that given any geometric prime divisor w of
K, and a global subfield k1 ⊂ K with w trivial on k1, there are “many” k1 -nice Pfister forms
that remain anisotropic over the w-henselization Kw. Our actual result, Proposition 3.8
below, is more complicated to state, because we want to realize additional restrictions on
the Pfister forms.

Lemma 3.5. Let l1/k1 be a finite separable extension of global fields, and Σ ⊂ Pfin(k1) a
finite set of finite places of k1. Then there exists a k1 -nice Pfister form qa1,a0 over k1 such
that v(a1) = v(a0) = 0 for all v ∈ Σ and qa1,a0 is anisotropic over l1.

Proof. We may enlarge Σ to contain all dyadic places of k1. There are infinitely many finite
places of k1 which split completely in l1. Pick one such place v1 which is not in Σ. Using
weak approximation, choose a0 ∈ k×

1 such that v(a0) = 0 for all v ∈ Σ, and v1(a0) = 0, and
furthermore the reduction of the polynomial X2 − X − a0 in k1v1[X ] is irreducible if the
characteristic of k1v1 is 2, respectively the reduction of the polynomial X2 − a0 in k1v1[X ]
is irreducible if the characteristic of k1v1 is not 2. (The case distinction here arises from the
different definition of the form qa0 depending on the characteristic.)

Let l′ = k1(α0), with α0 a root of X2 − X − a0 respectively X2 − a0. Pick a place
v0 ∈ Pfin(k1)\Σ which splits completely in l′, hence v0 6= v1 because v1 is inert in l′. Using
the Strong Approximation Theorem, choose a1 ∈ k×

1 satisfying the following four conditions:
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v1(a1) = 1; a1 is a norm of the local extension k1v(α0)|k1v for all the finitely many v ∈ Pfin(k1)
for which v(a0) 6= 0, all dyadic v and all real v; v(a1) = 0 for all v ∈ Σ; v(a1) > 0 at all
v ∈ Pfin(k1)\{v0}. (The condition at dyadic v ∈ Σ is thus that v(a1) = 0 and a1 is a local
norm, both of which are open conditions satisfied in a v-neighbourhood of 1.) The following
hold: First, qa1,a0 is anisotropic over k1,v1 by the definitions of v1, a0, a1 and Proposition
3.2 2). Hence qa1,a0 is anisotropic over l1 ⊂ k1,v1 . Second, we claim that qa1,a0 is k1 -nice.
Indeed, by the choice of a1 one has: If v(a0) 6= 0 or v is dyadic or v is real, then a1 is a
norm of k1v(α0)/k1v. Hence in these cases, qa1,a0 is isotropic over k1v. Finally, if v(a1) < 0,
then v = v0, hence v is totally split in l′ = k1(α0), implying that α0 ∈ k1v. Hence qa1,a0 is
isotropic over k1v. �

Lemma 3.6. Let K satisfy Hypothesis (Hd), and w be a geometric prime divisor of K.
There is a global subfield k1 ⊂ K, and k1-algebraically independent elements u = (ui)d>i>1 of
K such that w is trivial on k1(u) and Kw is finite separable over k1(u). Moreover, if ud ∈ K
has w(ud) = 1, then (ud,u) is a separating transcendence basis of K|k1.

Proof. Since w is geometric, K and Kw have the same prime field κ0, and are separably
generated over κ0. Proceed as follows: (i) If char(K) = 0, let (ui)d>i>1 be any w-units which
lift a transcendence basis of Kw. (ii) If char(K) > 0, let (ui)d>i>0 be w-units which lift a
separating transcendence basis of Kw. Let k1 ⊂ K be the constant field in case (i), and the
relative algebraic closure of κ0(u1) in K in case (ii), and set u = (ui)d>i>1 in both cases. Then
w is trivial on k1(u), and the residue of u in Kw is a separating transcendence basis of Kw
over k1. Assume now that w(ud) = 1; thus in particular, w is not trivial on k1(ud,u). Since w
is trivial on k1(u) and non-trivial on k1(ud,u), ud cannot be algebraic over k1(u). Hence since
td

(
K | k1(u)

)
= 1, (ud,u) is a transcendence basis of K over k1, and K|k1(ud,u) is a finite

field extension. We claim that K | k1(ud,u) is separable. Indeed, let Ks be the separable
closure of k1(ud,u) in K, and set ws := w|Ks

. Since K|Ks is purely inseparable, w is the only
prolongation of ws to K, and further one has: First, w(ud) = 1 = ws(ud), hence e(w|ws) = 1.
Second, Kw |Ksws is purely inseparable, and since Kw | k1(u) is separable and k1(u) ⊂ Ksws,
one must have Kw = Ksws, hence f(w|ws) = 1. Third, since K ⊃ Ks are function fields in
one variable over k1(u), the fundamental equality for ws and its unique prolongation w to K
holds, see e.g. [Ch], Ch. IV, §1, Theorem 1. Hence [K : Ks] = e(w|ws)f(w|ws) = 1, and thus
K = Ks is separable over k1(ud,u). �

Definition 3.7. Let K satisfy Hypothesis (Hd), k1 ⊂ K be a global subfield, and t = (ti)d>i>1

be k1-algebraically independent in K. A k1,tt-test form for an element ad ∈ K× is any k1 -nice
Pfister form qa defined by aa = (ad, ad−1,..., a1, a0), where (ai)d>i>1 = tt− ǫ and ǫ = (ǫi)d>i>1

are such that ǫi ∈ k1 for 1<i<d are v-units for all v ∈ Pfin(k1) with v(a1) > 0.

Proposition 3.8. Let K satisfy Hypothesis (Hd) and w be a geometric prime divisor of K.
Let k1 ⊂ K be a global subfield, tt = (ti)d>i>1 be k1-algebraically independent elements of K
such that w is trivial on k1(tt), and Kw |k1(tt) is finite separable. Then there is a Zariski open

dense subset U ⊂ k×
1

d−2
satisfying: For every ǫ = (ǫi)d>i>1 ∈ U, there is a k1 -nice Pfister

form qa1,a0, such that for arbitrary ad ∈ K× with w(ad) odd, setting (ai)d>i>1 = tt − ǫ and
a = (ad, . . . , a1, a0), one has that qa is a k1, tt- test form for ad which is anisotropic over Kw.

Proof. The normalization morphism S → St of St := Spec k1[t, tt
−1] in the finite separable field

extension l := Kw ←֓ k1(tt) is a finite generically separable cover, thus étale above a Zariski
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open dense subset Ul ⊂ St. Hence for ǫ := (ǫi)d>i>1 ∈ U := Ul(k1), any preimage sǫ 7→ ǫ of ǫ
under the morphism S → St is a smooth point of S, π := (ai)d>i>1 := (ti−ǫi)d>i>1 is a regular
system of parameters at sǫ 7→ ǫ, and the residue field extension k1 = κ(ǫ) →֒ κ(sǫ) =: kǫ is
finite separable. In particular, the completion of the local ring Osǫ is the ring of formal power

series Ôsǫ = kǫ[[π]] in the variables π = (ai)d>i>1 over kǫ. Hence one has k1(π)-embeddings

l = Kw = Quot(Osǫ) →֒ Quot(Ôsǫ) = Quot
(
kǫ[[a2,..., ad−1]]

)
→֒ kǫ((a2))...((ad−1)) =: l̂.

Let Σ ⊂ P(k1) be any finite set of finite places such that all (ǫi)d>i>1 are Σ-units, and for
l1 := kǫ, consider a1, a0 ∈ k1 as in Lemma 3.5. Then for ad ∈ K× with w(ad) odd, setting
aa := (ad,..., a0) with (ai)d>i>0 as introduced above, we claim that qa is a k1, t-test form
which satisfies the requirements of Proposition 3.8. Indeed, qa1,a0 is anisotropic over l1 = kǫ,

by the choice of a1, a0 ∈ k1. Hence qπ,a1,a0 is anisotropic over l̂, by Proposition 3.2, 2) (applied

with the natural valuation on l̂ with value group Zd−2), thus anisotropic over Kw ⊂ l̂. In
particular, since π, a1, a0 is a system of w-units, and w(ad) is odd, one gets that qa = qad,π,a1,a0

is anisotropic over Kw, by Proposition 3.2, 2). �

C) A strengthening of Proposition 3.4

In this section, we prove a strengthening of Proposition 3.4 under refined hypotheses.
For an arbitrary field F , we let ValF be the Riemann–Zariski space (of equivalence classes

of valuations) of F . We endow ValF with the patch topology, which is the coarsest topology
such that the sets of the form {v ∈ ValF | v(a) > 0}, a ∈ F are open and closed. It follows
that the sets {v ∈ ValF | v(b) > 0}, {v ∈ ValF | v(c) = 0} are open and closed for all
b, c ∈ F .

The patch topology makes ValF a compact Hausdorff space, see for instance the discussion
in [ZS], Ch. VI §17, proof of Theorem 40.

Lemma 3.9. In the above notation, let Fw be the w-henselization at w ∈ ValF . One has:

1) Let E|F a finite extension. Then the set VE|F := {w ∈ ValF |E is F -embeddable in Fw}
is open in the patch topology.

2) Let qa be a quadratic form over F . Then the set Va := {w ∈ ValF | qa is isotropic over Fw}
is open in the patch topology.

Proof. To 1): Recall that the henselization Fw|F is a separable algebraic extension, hence
if VE|F is non-empty, E|F is separable. Let w ∈ VE|F . We also write w for the (canonical)
prolongation of w to Fw and its restriction to E. By Hilbert decomposition theory, (see e.g.
[K-No], Thm 1.2), E = F [η] with η satisfying w(η) = w(p′(η)) = 0 and η having minimal
polynomial p(t) = tn +

∑
i<n ait

i ∈ F [t] such that w(ai) > 0. Since Fw|F is an immediate

extension, there is x ∈ F with w(x− η) > 0, hence w
(
p(x)

)
> 0, and w

(
p′(x)

)
= 0. The set

Vw = {w̃ ∈ ValF | w̃(ai) > 0 for all i < n, w̃(p(x)) > 0, w̃(p′(x)) = 0}
is open (and closed) in the patch topology and w ∈ Vw. On the other hand, if w̃ ∈ Vw, then
the polynomial p(t) has a zero in the henselization Fw̃, thus E is F -embeddable into Fw̃.
Conclude that Vw ⊂ VE|F , hence the latter is open in the patch topology, as claimed.

To 2): Let w ∈ Va, that is qa is isotropic over Fw. Then there is a finite subextension
E|F of Fw|F such that qa is isotropic over E. Then Va contains the neighborhood VE|F of
qa. Thus Va is open. �
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Proposition 3.10. Suppose that K satisfies Hypothesis (Hd). Let L|K be finite separable,
and ad ∈ K×. Suppose that there are a global subfield k1 ⊂ K and k1-algebraically independent
elements u = (ui)d>i>1 of K, such that setting t := (ti)i := (u2

i−ui)i, there is a k1,tt -test form
qa for ad which is anisotropic over the fields L(α) with α2 − α = ad/θ

2, θ = (ad−1 · · · a1)N
for all N > 0. Then there exists a prime divisor wL of L which is trivial on k1(tt) such that
wL(ad) > 0 is odd, and qa is anisotropic over LwL

.

Proof. First, let N > 0 be fixed, and for θ = (ad−1 · · · a1)N and α2 − α = ad/θ
2, set

K̃ := L(α). Then qa is an anisotropic k1 -nice Pfister form over K̃, hence Proposition 3.4

implies that there is a non-dyadic prime divisor w̃ = w̃N of K̃ such that qa is anisotropic
over K̃w̃. Recalling that a =

(
ad, (ai)d>i>1, a1, a0

)
=

(
ad, (ti − ǫi)d>i>1, a1, a0

)
, we claim:

Claim 1. One has w̃(ai) > 0 for i < d.

Proof of Claim 1. Let v := w̃|k1 be the restriction of w̃ to k1. First, suppose that v is non-

trivial. Then k1v ⊂ K̃ w̃, hence the fact that qa is anisotropic over K̃w̃ implies that qa1,a0 is
anisotropic over k1v. Since qa1,a0 is k1 -nice and anisotropic over k1v, Proposition 3.2, 3) applied
to F = k1v and qa1,a0 implies that a1 and a0 cannot both be v-units, and so Proposition 3.4, 2)
implies that v(a0) = 0 and v(a1) > 0. Since qa is a k1,tt -test form for ad and v(a1) > 0, one
has v(ǫi) = 0 by definition, thus w̃(ǫi) = v(ǫi) = 0 for 1 < i < d. Second, if v is trivial,
then w̃(ǫi) = v(ǫi) = 0 for all i < d as well. Hence independently on whether v is trivial or
not, one has w̃(a0) = 0, w̃(a1) > 0, and w̃(ǫi) = 0 for all 1 < i < d. Next, by contradiction,
suppose that w̃(ai) < 0 for some i < d. Then 1 < i < d, and since ai = ti− ǫi, we must have
w̃(ti) < 0. Hence ti = u2

i −ui in K implies that w̃(ui) < 0. Therefore, ai = u2
i −ui−ǫi = u2

ia
′
i

with a′i = 1 − 1/ui + ǫi/u
2
i a principal w̃-unit. Hence by Proposition 3.2, 1) it follows that

qa′i,a0 is isotropic over K̃w̃, thus so are qai,a0 and qa – contradiction!

Claim 2. One has w̃(ad) > Nw̃(ai) for i < d.

Proof of Claim 2. We first prove that that w̃(ad) > w̃(θ2). By contradiction, suppose that
w̃(ad) < w̃(θ2). Then α2−α = ad/θ

2 in K̃ implies w̃(α) < 0; hence η := 1−1/α is a principal
w̃-unit. Thus ad = (αθ)2(1 − 1/α) = u2η with u = αθ, and we get a contradiction as above
in the proof of Claim 1. Second, by Claim 1 one has w̃(ai) > 0 for all i < d, and therefore,
w̃(θ) = N

∑
0<i<d w̃(ai) > 0. Hence w̃(ad) > 2w̃(θ) > 2Nw̃(ai) for all i < d. On the other

hand, since qa is anisotropic over K̃w̃, it follows by Proposition 3.2, 3) that w̃(ai) 6= 0 for
some i 6 d, and for such an i, we have w̃(ai) > 0 because w̃(ai) > 0 by Claim 1. Therefore,
w̃(ad) > 2Nw̃(ai) for i < d implies both w̃(ad) > 0 and w̃(ad) > Nw̃(ai) for i < d. Claim 2
is proved.

Coming back to the proof of Proposition 3.10, for each integer N > 0, let Va,N be the set
of valuations w on L satisfying the conditions:

i) qa is anisotropic over the henselization Lw.

ii) w(ai) > 0 and w(ad) > Nw(ai) for all i < d.

We notice that Va,N is closed, hence compact, in the patch topology. Indeed, the set of all w
satisfying condition ii) is open and closed by definition. Second, the complement of the set of
valuations satisfying condition i) is open by Lemma 3.9, 2). Finally, each Va,N is non-empty
by Claims 1, 2, because the valuation w̃ = w̃N considered there lies in Va,N .
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Since Va,N+1 ⊂ Va,N , it follows by compactness that Va := ∩NVa,N is non-empty, so let
us fix wa ∈ Va. Then qa is anisotropic over Lwa

, and wa(ai) > 0, wa(ad) > Nwa(ai) for all
N > 0 and i < d. Set p := {x ∈ L |wa(ad) ≤ N wa(x) for some N > 0}. Then p ⊂ Owa

is
obviously a prime ideal such that ad ∈ p, ai /∈ p for all i < d. Let wL be the valuation with
valuation ring OwL

= (Owa
)p. Then mwL

= p, and the following hold:

a) One has an inclusion of henselizations LwL
⊂ Lwa

, so qa is anisotropic over LwL
.

b) Since ai /∈ p = mwL
, the ai are wL-units for i < d.

Claim 3. wL is trivial on k1(tt), and hence wL is a prime divisor of L|k1(tt).

Proof of Claim 3. We first claim that v := (wL)|k1 is trivial. By contradiction, suppose
that v is non-trivial, and let k1v ⊂ LwL

be the Henselization of k1 w.r.t. v inside LwL
. Since

qa is a k1,tt -test form for ad which is anisotropic over LwL
, it follows that qa1,a0 is a k1-nice

form which is anisotropic over k1v. Hence v is not dyadic. On the other hand, since ai, i < d
are wL-units, one has v(ai) = wL(ai) = 0 for i = 0, 1; hence by Proposition 3.2, 3) applied
to qa1,a0 over k1v it follows that qa1,a0 is isotropic over k1v, contradiction! Next suppose, by
contradiction, that wL is not trivial on k1(tt). Let F ⊂ LwL

be the relative algebraic closure
of k1(tt) in LwL

, and set w := (wL)|F , ε := (ad−1, . . . , a1, a0). Then qε is defined over F , and
w is a non-trivial henselian valuation of F such that all entries ai of ε are w-units. Further,
since w is trivial on k1, it follows that w is non-dyadic. Finally, since qa1,a0 is isotropic over
k1v for all archimedean places of k1, it follows that qa is isotropic over Fv := Fk1v for all
archimedean places v of k1. Proposition 3.2, 3) implies that qε is isotropic over F , hence over
LwL

, because F ⊂ LwL
. Since qε is a Pfister subform of qa, it follows that qa is isotropic over

LwL
, contradiction! Claim 3 is proved.

It is left to prove that wL(ad) is positive and odd. First, wL(ad) > 0 by the definition of
wL. Finally, wL(ad) is odd by Proposition 3.4, 2). �

4. Uniform definability of the geometric prime divisors of K

In this section we show that geometric prime divisors of finitely generated fields are uniformly
first-order definable. This relies in an essential way on the consequences of the cohomological
principles presented in the previous section, and on the (obvious) fact that for an n-fold

Pfister form qa, whether that qa is (an)isotropic, or universal, over K and/or K̃ = K[
√
−1 ]

is expressed by formulae in which the n entries in aa = (an,..., a1) are the only free variables.
The Kronecker dimension dim(K) can be detected in a first-order way, see Pop [P1] Fact 1.1
(3) and Theorem 1.5 (3). Further, the relatively algebraically closed global subfields k1 ⊂ K
of finitely generated fields K, and algebraic independence over such fields k1 are uniformly
first-order definable by Poonen [Po] Theorem 1.4.

Notations/Remarks 4.1. Let K satisfy Hypothesis (Hd).

1) For ad ∈ K× consider:

a) relatively algebraically closed global subfields k1 ⊂ K.

b) k1-algebraically independent elements uu = (ui)d>i>1 of K.

c) systems ǫ = (ǫi)d>i>1 of elements of k×
1

and a1, a0 ∈ k×
1

such that qa1,a0 is a k1 -nice
Pfister form and all ǫi are v-units for all finite places v ∈ P(k1) satisfying v(a1) > 0.

d) Set tt := (ti)d>i>1 = (u2
i − ui)d>i>1 = uu2 − uu, and ai := ti − ǫi for 1< i < d, and

consider the resulting k1, tt-test form qa for ad defined by a = (ad, . . . , a1, a0).
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2) For tt,uu as above, let kt = ku be the relative algebraic closure of k1(tt) in K, and DK|kt

denote the set of prime divisors w of K|kt. Then K = kt(C) for a unique projective
normal kt-curve C, and w ∈ DK|ka are in bijection with the closed points P ∈ C via
Ow = OP .

3) For θ, τ ∈ K with θ 6= 0, set Kθ := K(α) and Kτ := K(β), where α2− α = ad/θ
2 and

β2− β = τ 2/ad. Let Kθ,τ := Kθ(β) = Kτ (α) = KθKτ be the compositum of Kθ and Kτ

over K.

Finally, for the k1, tt-test form qa for ad introduced above, define:

4) ba := {τ ∈ K | qa is anisotropic over Kθ,τ for all θ ∈ k×
t }, Oa := {a ∈ K | a · ba ⊂ ba}.

5) Va := {w ∈ DK|kt |w(ad) > 0 and qa is anisotropic over Kw}, and for w ∈ Va, set

bw := {τ ∈ K |w(τ 2) > w(ad)}.
Therefore the valuation ring Ow is equal to {a ∈ K | a · bw ⊂ bw}.

Theorem 4.2. Let K satisfy Hypothesis (Hd). The following hold:

1) For k1, uu, ad ∈ K and qa as in Notations/Remarks 4.1 above,

ba =
⋃

w∈Va
bw, Oa =

⋂
w∈Va

Ow .

2) For every geometric prime divisor w of K, there are k1, u, ad ∈ K as in Nota-
tion/Remarks 4.1 above such that Va = {w}, and therefore,

Ow = {a ∈ K | a · ba ⊂ ba} .
Proof. To 1): Let us first argue that ba = ∪w∈Va

bw.

“⊂ ”: Let τ ∈ ba. Set L := Kτ . Then qa is anisotropic over Kθ,τ = Kτ (α) = L(α) for all
θ ∈ k×

t and α2−α = ad/θ
2; thus in particular, for θ = (ad−1 . . . a1)

N for all N > 0. Hence by
Proposition 3.10, there is a prime divisor wL of L which is trivial on k1(t), hence on its relative
algebraic closure kt inside K, such that wL(ad) > 0 is odd, and qa is anisotropic over the
henselization LwL

. By contradiction, assume that wL(τ
2) 6 wL(ad), hence wL(τ

2) < wL(ad),
because wL(ad) is odd. Then wL(τ

2/ad) < 0, hence wL(β) < 0, so a′d := 1−1/β is a principal
wL-unit, thus qa′

d
,a0 is isotropic over LwL

by Proposition 3.2, 1). Since ad = (adβ/τ)
2(1−1/β),

one has qad,a0 ≈ qa′
d
,a0 over LwL

, hence qad,a0 is isotropic over LwL
. Thus qa is isotropic over

LwL
as well, contradiction! Therefore wL(τ

2) > wL(ad). Setting w := (wL)|K , we see that
w ∈ Va and τ ∈ bw.

“ ⊃ ”: Let w ∈ Va and τ ∈ bw be given, i.e., w(τ 2) > w(ad). Let θ ∈ k×
t be arbitrary. By

definitions, w is trivial on kt, w(ad) > 0, and qa is anisotropic over the henselization Kw. As
ai ∈ kt and therefore w(ai) = 0 for i < d, by Proposition 3.4, 2) it follows that w(ad) is odd.
Therefore one has w(ad/θ

2) = w(ad) > 0 and w(τ 2/ad) > 0. Hence if α2 − α = ad/θ
2 and

β2− β = τ 2/ad, then α, β ∈ Kw by Hensel’s Lemma. Thus Kθ,τ ⊂ Kw, and this implies that
qa is anisotropic over Kθ,τ . Therefore, τ ∈ ba.

We have shown that ba =
⋃

w∈Va
bw. It follows immediately that Oa ⊃

⋂
w∈Va

Ow. For
the other inclusion, let w ∈ Va and set µw := min{w(y′) | y′ ∈ bw}. Here the minimum exists
since bw ⊆ Ow. For x ∈ K \ Ow set

Σw,x := {y ∈ bw |w(y) = µw, w
′
(
(xy)2

)
< w′(ad) ∀ w′ ∈ Va \ {w}}.

Since Va ⊂ DK|ka is finite, the set Σw,x is non-empty by weak approximation (it is defined
by an open condition for every w′ ∈ Va including w). Let y0 ∈ Σw,x. Then y0 ∈ bw ⊆ ba,
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but xy0 6∈ bw by minimality of w(y0) since w(x) < 0, and xy0 6∈
⋃

w′∈Va\{w} bw′ by definition
of Σw,x. Hence xy0 6∈ ba, and thus x · ba 6⊂ ba. This shows Oa ⊂ Ow for all w, and therefore
Oa =

⋂
w∈Va

Ow.

To 2): Let w be a geometric prime divisor of K. Then by Lemma 3.6, there is a (maximal)
global subfield k1 ⊂ K and uu = (ui)d>i>1 algebraically independent over k1 such that w is
trivial on k1(uu), and Kw|k1(uu) is finite separable. Set tt := uu2−uu. Then k1(u)|k1(t) is a finite
abelian extension, hence Kw|k1(tt) is finite separable, and kt = ku inside K. Further recall
that K = kt(C) for a (unique) projective normal kt-curve C, and there is a unique closed
point P ∈ C with local ring OP = Ow. By Riemann–Roch for the projective normal kt-curve
C, for every sufficiently large m≫ 0, there is a function f ∈ kt(C)× with (f)∞ = mP . Let
us fix such m ≫ 0 which is odd, and such f . Then the element ad := 1/f of the function
field K = kt(C) has P ∈ C as its unique zero, and w(ad) = m.

Applying Proposition 3.8, we find ǫ = (ǫi)d>i>1 ∈ k×
1

d−2
and a1, a0 ∈ k×

1 such that setting
aa = (ad, ..., a0) with ai = ti−ǫi, 1 < i < d, the resulting qa is a k1, tt -test form for ad which is
anisotropic over Kw. Moreover, since w is the unique prime divisor of K|kt with w(ad) > 0,
it follows that Va = {w}. Hence by assertion 1) above, Ow = {a ∈ K | a · ba ⊂ ba} . �

Recipe 4.3. One gets a uniform first-order description of the valuation rings Ow of all the
geometric prime divisors w of K along the following steps:

1) Consider the uniformly first-order definable k1, uu = (ui)d>i>1, k1⊂kt ⊂K, and further
aa := (ad, . . . , a1, a0) and qa as in Notations/Remarks 4.1.

2) Check whether Oa as defined above is a non-trivial valuation ring of K. If so, Oa is a
geometric prime divisor of K|kt by Theorem 4.2, 1).

3) By Theorem 4.2, 2), the valuation ring Ow of any geometric prime divisor w of K arises
as above.

This concludes the proof of Theorem 1.3.

Remark 4.4. Theorem 1.3 was stated and proved for finitely generated fields K with d =
dim(K) > 2. As we now explain, for finitely generated fields K of Kronecker dimension
d = 1, 2, there are formulas val1 and val2 which uniformly describe the prime divisors in case
d = 1, respectively the geometric prime divisors in case d = 2. For d = 1 (i.e., for global
fields), all prime divisors are uniformly definable by Rumely [Ru], Introduction, I. The prime
divisors are geometric if and only if K is a global function field, which is a definable condition
by II loc. cit. For d = 2, uniform definability of geometric prime divisors is one of the main
results of Pop [P2]: Use that for every geometric prime divisor v of K we can find a global
subfield k1 ⊆ K with v trivial on k1 such that K is the function field of a smooth curve over
k1, and then apply [P2] Theorem 1.2 (cf. Conclusion 5.2).

5. Proof of the Main Theorem

We will now prove that every field satisfying Hypothesis (Hd) is bi-interpretable with the
ring Z, building on the uniform definability of the geometric prime divisors. The insight that
this is possible is due to Scanlon [Sc] (more precisely one can use [Sc, Thm 4.1], because the
part of the proof needed here is not affected by the gap in the recipe of the definability of
prime divisors in that paper). For the convenience of the reader, we instead build on the
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later [AKNS], where the bi-interpretability result is established for finitely generated integral
domains (as well as some other rings).

Proposition 5.1. Let K satisfy Hypothesis (Hd), T denote a transcendence basis of K, and
RT be the integral closure in K of the subring generated by T . Then the ring RT is a finitely
generated domain which is first-order definable (with parameters).

Proof. Let κ ⊂ K be the constant field of K. By Poonen [Po] Theorem 1.3, κ is first-order
definable. In characteristic zero, i.e. if κ is a number field, by Rumely [Ru], Introduction, III,
the ring of integers Oκ is first-order definable. To fix notation, we set A := κ if char(K) > 0
and A := Oκ otherwise. Hence A ⊂ K is first-order definable, and R := RT is the integral
closure of A[T ] in the field extension K|K0, where K0 := κ(T ). Further, R is a finite A[T ]-
module (see e.g. [Ei], Corollary 13.13, and Prop. 13.14), hence R is a finitely generated ring.
Hence it is left to prove that R = RT is first-order definable.

Let S = ST ⊂ K be the integral closure of κ[T ] in K, and WT be the set of geometric
prime divisors w of K such that T ⊂ Ow. Since the geometric prime divisors of finitely
generated fields K with dim(K) = d are a first-order definable family (by Theorem 1.3) it
follows that WT is a first-order definable family.

We claim that S =
⋂

w∈WT
Ow. First, “ ⊂ ” is clear, because T ⊂ Ow implies that S ⊂ Ow,

hence S ⊂
⋂

w∈WT
Ow. Second, for “ ⊃ ” let X 1 ⊂ Spec(S) be the set of minimal non-zero

prime ideals p. Then the local rings Sp, p ∈ X 1 are valuation rings of geometric prime divisors
of K, and S =

⋂
p∈X 1 Sp, see e.g. [Ma], Thm 11.5, (ii). Hence S =

⋂
p∈X 1 Sp ⊃

⋂
w∈WT

Ow.

In particular, the ring S =
⋂

w∈WT
Ow is a definable subset of K.

Case 1. char(K) > 0. Then A = κ is a finite field, hence RT = ST is first-order definable,
and there is nothing left to prove.

Case 2. char(K) = 0. Set e = td(K|κ). The geometric prime e-divisors of K are the
valuations w of K which are trivial on κ and have wK = Ze lexicographically ordered. By
general valuation theory, a valuation w of K is a geometric prime e-divisor of K if and only
if w is of the form w = w1 ◦ · · · ◦ we (as composition of places) such that we is a discrete
valuation of K, and wi is a discrete valuation of the residue field κ(wi+1) of wi+1 for i < e.
Since dimK = e + dimκ, each wi must in fact be a geometric prime divisor of κ(wi+1).

By uniform definability of geometric prime divisors of fields of fixed finite Kronecker di-
mension (Theorem 1.3 and Remark 4.4), the set De

K|κ of geometric prime e-divisors is a
first-order definable family, using induction on Kronecker dimension and the following easy
observation:

Fact 5.2. If Ow′ ⊂ F and Ow′′ ⊂ Fw′ are first-order definable valuation rings, then the
residue map Ow′ → Fw′ is first-order definable, hence so is Ow′′◦w′ ⊂ F , as being the
preimage of the first-order definable set Ow′′ under the first-order definable map Ow′ → Fw′.

Further, the residue fields κw := Kw are finite extensions of κ, hence Pfin(κw) and the
integral closures Aw|A of A in κw are uniformly first-order definable, see [Ru], Introduc-
tion, I, II, III. For w ∈ De

K|κ and a prime divisor v ∈ Pfin(κw), we set wv := v ◦ w, and for

the given transcendence basis T = (t1, . . . , te) of K|κ, denote:

VT = {wv | w ∈ WT , v ∈ Pfin(κw) such that wv(ti) > 0 for i = 1, . . . , e }.
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Note that VT is a definable family by the fact that WT and Pfin(κw) are so. Hence the
definability of RT follows from Lemma 5.3 below. �

Lemma 5.3. One has RT =
⋂

wv∈VT
Owv

. Hence RT is first-order definable.

Proof. For every wv = v ◦ w ∈ VT , one has Owv
⊂ Ow. Hence setting R′

T :=
⋂

wv∈VT
Owv

and reasoning as above in the case of ST , one gets RT ⊂ R′
T ⊂ ST . Hence to complete the

proof of Lemma 5.3, it is left to prove the converse inclusion RT ⊃ R′
T .

First, setting K0 := κ(T ), one has that K|K0 is a finite field extension, and RT ⊂ ST

are the integral closures of R0,T := A[T ] ⊂ κ[T ] =: S0,T in the field extension K|K0.
Define W0,T and V0,T correspondingly for K0 instead of K, and notice that WT and VT
are the prolongations of W0,T and V0,T to K under the finite field extension K|K0. Then
by the characterization of integral closure using valuations, R′

T is the integral closure of
R′

0,T :=
⋂

wv∈V0,T
Owv

, in the field extension K|K0. Therefore, it is sufficient to prove that

R0,T = R′
0,T , or equivalently, to prove Lemma 5.3 in the special case K = K0 = κ(T ),

RT = R0,T = A[T ], and that will be assumed from now on.

We already proved that A[T ] = RT is contained in R′
T , hence it is left to prove that

R′
T ⊂ A[T ]. Recalling that R′

T ⊂ ST = κ[T ], and A[T ] =
⋂

v∈Pfin(κ)
Ov[T ], we have to prove:

Claim. Every f ∈ R′
T is in Ov[T ] for all v ∈ Pfin(κ).

Proof of Claim. Let f ∈ R′
T be given, and v ∈ Pfin(κ) be fixed, say with residue field

κv = κv. Since R′
T ⊂ κ[T ], we can set f = c · g with c ∈ κ and g ∈ Ov[T ] such that the

reduction g ∈ κv[T ] is non-zero, e.g. c = 0 and g = 1 if f = 0. Hence in order to prove
the Claim, it is sufficient to prove that v(c) > 0. Since g 6= 0, there is an e-tuple ζ in the
algebraic closure of κv such that g(ζ) 6= 0. Then ζ is an e-tuple of roots of unity of order
prime to char(κv), and we identify ζ with its lift in the algebraic closure of κ. Let w ∈ WT

be such that T 7→ ζ under Ow → Kw. Then Kw = κ[ζ] =: κ′, and if v′ prolongs v to
κ′, then the valuation wv′ := v′ ◦ w lies in VT and satisfies: g 7→ g(ζ) 7→ g(ζ) 6= 0 under
Owv′

→ Ov′ → κ′v′ = K0wv′ . Hence g is a wv′-unit, implying that wv′(f) = wv′(c). Finally,
since f ∈ R′

T ⊂ Owv′
, one has wv′(f) > 0, hence v(c) = v′(c) = wv′(c) = wv′(f) > 0,

concluding that v(c) > 0, thus f = c · g ∈ Ov[T ], as claimed. �

Remark 5.4. The first-order definition from the proof of Proposition 5.1 can be seen to be
uniform for fixed d, i.e. allowing for variables for the elements of T , the defining formula can
be chosen not to vary for all fields K satisfying Hypothesis (Hd).

We are now ready to prove the bi-interpretability theorem: a field K satisfying Hypothesis
(Hd) is bi-interpretable with Z, where both K and Z are considered as structures in the
language of rings. We refer the reader to [AKNS, Section 2] for a brief introduction to the
notion of bi-interpretability.

Proof of the bi-interpretability theorem. Let K be a field satisfying (Hd), and RT ⊆ K the
definable subring from Proposition 5.1. Since R = RT is a finitely generated integral domain,
it is bi-interpretable with the ring Z by [AKNS, Thm 3.1].

The field K is interpretable in R as a localization, cf. [AKNS, Examples 2.9 (4)]. Then K
is definably isomorphic to the interpreted copy of K in the definable subset R ⊆ K, namely
by assigning to each x ∈ K the class of pairs (a, b) ∈ R×(R\{0}) with x = a/b, and likewise
R is definably isomorphic to the copy of R defined in the interpreted copy of K, namely by
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identifying r ∈ R with the pair (r, 1) (thought of as standing for r
1

in Frac(R) = K). Thus
K is bi-interpretable with R, and therefore, by transitivity, bi-interpretable with Z. �

The resolution of the strong form of the EEIP now follows from [AKNS, Proposition 2.28].
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