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The geometric case of a conjecture of Shafarevich

— Gy is profinite free —

by Florian Pop* at Heidelberg

Introduction and main results

We are interested in the following conjecture due to Shafarevich:

(SC) The absolute Galois group of the mazimal cyclotomic extension K™° of a global
field K s w -free.

The strongest evidence for this conjecture comes from two well known results: The
first is a theorem of Iwasawa [I] which asserts that the Galois group of the maximal
solvable extension of K is prosolvable free. The second is the result of Tate, see for
instance [S1], that the absolute Galois group of X~ has cohomological dimension 1,
and hence it is projective by a theorem of Gruenberg [G].

In this paper we will show that (SC) is true in the geometric case, ie for all global
fields K of positive characteristic. Such global fields K are exactly the function fields
of one variable over finite fields « and in particular, K ¥ is the constant extension of
K by making the base field x algebraically closed. After this remark, the geometric
case of (SC) is a special case of the following theorem which at the same time gives a
positive answer to a long standing open question:

Theorem. Let x be an algebraically closed field and K|k a function field of one
variable over k. Then the absolute Galois group G of K is a profinite free group.

The result above is well known in characteristic zero and was proved by Douady [D]
using the Riemann Existence Theorem, hence relying on analytical and topological
methods. More precisely, Douady uses in his proof the precise structure theorem
for the fundamental group 73 (U) of small affine opens U of the projective smooth
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model X of K|k. It is namely known, that denoting by ¢ the genus of X and by
s the number of closed points deleted from X in order to get U, one has: m(U)
is the profinite free group on 2g + s — 1 generators in an ”almost canonical” way.
Unfortunately, the corresponding assertion in positive characteristik is false, see e.g.
Abhyankar’s conjecture, which is now proved by Harbater [H] using Raynaud’s proof
for the affine line case [R], see also results of Serre [S2]. Worse, the structure of (U)
is not known, it depending first on the base field « and usually also on the deleted
points from X in order to get U. This makes the question concerning the structure of
G of independent interest and naturally more interesting then in the characteristic
Z€Ero case.

We use in our approach methods belonging to the rigid analytic geometry. Hence
our proof could be viewed as an algebraic one, and therefore it is interesting also in the
characteristic zero case, where the result is already known. We attack the problem by
considering special type opens of projective, normal, agebraically integral curves over
a henselian field and studying the Galois action on large quotients of the fundamental
group of such opens. The result we get enables us to solve embedding probles for G
and then we conclude by using Iwasawa’s characterization of the profinite free groups.
As a matter of fact, we generalize here both i Riemann Existence Theorem with
Galois Action from [P1] and Main Theorem from [P2]. After these explanations we
can say that the catchy result announced in the title relies on mathematical phenomena
which in our oppinion are much more important and interesting, namely the problem
concerning the Galois action on the fundamental group of a curve. The paper is
organized as follows:

The first section is of purely formal, ie axiomatic nature and describes the glueing
procedure from [P1], section 1 and 2 in a more general setting. We hope that the
results proved here could also be useful in understanding the fundamental group of an
affine smooth curve in positive characteristic, relative to the fundamental group of the
affine line (which itself is a big mistery). After presenting the context and indicating
the new aspects of the problem the proofs from loc.cit. work usually just with minor
changes. Therefore we will omit most of them.

In the second section we first give generalizations of both the main result from [P1]
and that from [P2] and this is done by using the glueing procedure presented in the
first section. We first give in subsection A) a generalization of % Riemann Existence
Theorem with Galois Action from [P1] by considering opens of a particular type of
arbitrary projective, normal, geometrically integral curves over a henselian base field
and studying the Galois action on large quotients of the fundamental group of such
opens. Further we generalize in subsection B) the main result from [P2]. We hope that
this more general result could be useful in understanding the structure of G also for
function fields of one variable K|x for some special non-algebraically closed fields &,
for instance for x a p-adic field. We end up with a proof of the theorem above. In the
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proof we use Iwasawa’s characterization of the w -free groups [I], theorem 4, as well as
a theorem of Mel'nicov [M] concerning projective limits of profinite free groups.

1. Glueing well behaved families of Galois covers of a projective curve

For definitions and basic facts we reffer to [B-G-R] or to the course notes [F].

Let « be a complete rank 1 valued field and A|x some finite normal extension of x.
When speaking about projective varieties over A viewed as analytical A-spaces we
always mean the usual analytification of them, see eg [F], Ch 5. Admissible opens as
well as admissible coverings and connectedness have to be understood in the same way.
Every \-analytical space can be viewed also as k-analytical space in a canonical way.

A) The glueing procedure

(1.1) Let X be a projective, normal, geometrically integral curve over A and set
L = A(X) the function field of X. Let L = (Lk|L)k be a finite family of finite Galois
extensions and &j = Gal(Lr|L) the Galois group of Li|L. Let X 2, X be the
normalization of X in the field extension Lg|L (all k). Then X} are finite Galois
coverings of X. By general formalism, the automorphism group Aut,(Xy) operating
on X3 from the left is canonically isomorphic to the opposite group of &j. Hence,
denoting the opposite operator by bold face writing, we have: AutX(Xk) >~ &;. By
the analytification functor and GAGA principles, & is in a canonical way also the
group of X -automorphisms of X Zn , hence a group of analytical A-automorphisms of
X;Cm. We will say that the family £ is ¢ well behaved famzly if it satisfies the following
conditions i), ii) below:

i) Xy are projective, normal, geometrically integral curves over A (all k). Equiv-
alently, Lg|\ are regular field extension.

ii) For every k there exists an admissible covering U, U U of X by affinoids
defined over A\ such that the following conditions are satisfied:
a) UpNUgr = ¢ (all k' # k") and further, U =N U}, (all k) is connected and
has ) -rational points, ie Hom (\,U) is not empty.
b) The preimage V} of U by ¢ (which is an admissible open of X . ) contains
an admissible open V; , which is mapped by ¢ isomorphically onto U L
c) The preimage Vi of Up by ¢x (which is an admissible open of X; )i
connected, hence in particular U} is connected.
Setting OUy = UpNUy it follows that OUj is non-empty, as X ** is connected. Further
Uy are disjoint (all k), as Uy themselves are disjoint by assumption ii) a). Hence,
U contains in a natural way an isomorphic copy of the disjoint union of all Uy which

we denote by OU. This is an admissible open of U. One gets X ™ canonically from
[{Ur and U by identifying [] 0Uy with 0U. We remark that oVi = Vi NV} also is
k k
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an admissible open of X, and hence of Vi and V{. Clearly, Vi, V} and 8V; are
&, -invariant. We define 0V, := V,;,L N Vi and remark:

(1.2) Setting V; = gx(Vy,) and 0V, = g4(8Vk,.) for all g; € &; the following
holds for every k:

(1) ¥, (9, =8 %) are pairwise disjoint admissible opens of V]| and moreover, one
has ¢} (Vg,) = Vyic!nc for all g;,¢% € G;. Hence (V;k)gk. is a & -invariant
admissible disjoint covering of V. Therefore, ¢ gives rise to a & -isomorphism

of A-analytical spaces
Vi — & x U,

which is canonical up to the choice of Vj ,.

(2) Correspondingly, the same holds for 9V,, and OVi. We shall call 9V, the
components of dVi. These are exactly the connected components of 9V} if and
only if OUj is connected.

Finally, we remark that the fields L are linearly disjoint over L. Indeed, from con-
dition ii) it follows that the fibre product Xy = X Xj (all k) of all X3 over X is
geometrically integral and normal. Hence in particular, the field extensions Lg|L are
linearly disjoint over L and X, is the normalization of X in the field extension Lo|L,
where Lo is the compositum Lq = ULy (all k) of all the fields L in the algebraic
closure of L. In particular, Lo|L is a Galois extension and there exists a canonical
isomorphism Gal(Lo|L) =[] && by g+ (gx)r with gr the restriction of g to L.
k

Let now £ = (Lk|L)k a well behaved family, and set as usual & = Gal (Ly|L).
Let F = * &; be the profinite free product and Fy = [[ &, the direct product of the
E k

groups ®g. There exists a canonical projection homomorphism
F—— Fy

and let FO be its kernel. We are going to show that there exists a canonical "universal”
Galois extension L,.|L with Galois group Gal(L.|L) = F' which intuitively represents
a kind of 7universal compositum” of the family of Galois extensions Lg|L (all k) in
the same way as Lo with Gal(Lg|L) = F, is the usual compositum of all Li|L. The
field I, will be obtained as function field of some”canonical” quotient of the universal
covering (in rigide analytical sense) of Xj.

To do this we will use the idea from [P1], section 1. The construction and the proof
is literary the same. For the sake of completeness we briefly indicate here, how 1t goes.
Let 3 denote the ”"canonical” isomorphic copy of &; in F. Further we denote by
Fr C F the kernel of F'—— Fp =i &y, where pj are the structural projections.
Clearly, Fi is a complement of §x viewed as subgroup of F. Let D C F% be an
open normal subgroup of F' and let F ¥, C = F/D denote the canonical projection.
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Further, we set Cp = ¢(F) and € = ¢(Fx). Then ¢ maps every Fr isomorphically
onto €, C} is a complement of €; (all k) and (I?Zk)k generate C.

Recalling that bold face writing denotes the opposite operator we next consider
the following analytical A -spaces:

(1) U=CxU
which is by definition the disjoint union of |C| copies of U.
(2) Y =11CrxV,

k

where Cj x V, is by definition the disjoint union of |C}| copies of Vi. We remark
that C has a natural left action on both ¢/ and V defined as follows:

On U : h(g,(-)) = (hg,(-)) forall g,h.

On V: Rk(ki,(-) = (k}, g%(-)) with ki € Ci, g € € defined by hhy = higj.
We glue the analytical A-spaces from (1) and (2) by identifying all over the A-spaces
hr x OV, and g X OUp by means of ¢r if g = hrgy. (Recall that ¢ maps the
analytical \-space 0V, isomorphically onto the analytical A-space dUy. ) We denote
the resulting analytical space by Y™. We further remark that the action of C on

U and YV is compatible with the glueing we have done. This is nothing but the
commutativity of the diagrams

hy xOVg g, — hrx0V,,
J{st iﬁﬁk
hg x Uy ——  gxIU

for all g,k € C. Hence C also acts in a canonical way on Y . Asin [P1] we have the
following: C\Y ™ is A-isomorphic to X~ and in particular ¥ is finite over X,
and further Y™ is connected. Hence Y is a finite connected (analytical) covering
Y™ — X and C\Y" is canonically isomorphic to X . Therefore, the canonical
homomorphism C % Aut Xm(Ym) is an isomorphism. By the GAGA principles, see
for instance [Ko], there exists a Galois covering ¢ : ¥ — X such that ¥~ — X
is the analytification of ¢. Furthermore, Aut,(Y) = C and C\Y is canonically
isomorphic to X. Next we remark that for points of Y™ lying over points in U the
analytical A-space Y is locally isomorphic to U. In particular, ¥ ()\) # ¢. Again,
by the GAGA principles it follows that ¥ ()\) # &, hence Y viewed as curve over
)\ has )-rational points and in particular, it is geometrically integral. Further, the
glueing procedure has good functorial behaviour, and one concludes as in loc.cit..



B) The Galois Action

Let as usual L|A be a regular function field of one variable and & a finite group of «-
automorphisms of L. Let K denote the fixed field of & in L. To fix the ideas we shall
further suppose that « is the fixed field of & in A, hence A|« is a finite Galois exten-
sion and k = K NA. Let Z be a normal projective model for K|« and X — Z the
normalization of Z in the field extension L|K. By the general formalism, the opposite
group & of & will be identified canonically with the group of Z -automorphisms of
X. Clearly, every o € & defines an analytical k-automorphism of X~ viewed as
«-analytical space. Hence we can speak about & -invariant admissible coverings, etc.

Definition. Let L = (LHL)}C be a well behaved family of finite Galois extensions.

1) We say that L is Galois invariant (with respect to K ) if every o € Gx maps L
onto itself.

2) We say that L is Galois compatible well behaved if it is Galois invariant and there
exist coverings Uy U U of X satisfying the condition ii) from (1.1) such that

{UY U {U}, is a & -invariant covering of X .

Exactly as in [P1] one has:

(1.3) Let £ = (Li|L), be Galois compatible well behaved. With the usual notations
the following holds:

(1) The compositum Lg of all the fields L is a normal extension of K. In particular,
there exists a canonical exact sequence given by Galois theory

1 — Gal(Le|E) ——Gal (LglK)— B = 1.

(2) Let o, be a prolongation of some o € & to Lg. Via this prolongation o, to Ly
we can define an action of o on the subfields of Lo, etc. Using this convention we
have: For fixed k,k’ such that oLy = Ly there exists (via o, ) a commutative
diagram of the form :

Ly 2= L

o
and hence isomorphisms & L B and & _ir &, the conjugation being

the one defined by o, in Gal(L¢|K).

With the usual notations, o induces (via o, ) isomorphisms of Z -schemes (which
we also denote by o ) making the following diagrams commutative:
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X T

and o defines (via o, ) group isomorphisms &y L & and Gy o B the
conjugation being considered in Aut,(Xy).

(3) Every 0 € & maps U «k-isomorphically onto itself and permutes the other
members Uy of the admissible covering. More precisely, if oLy = L then
o(Ur) = Uy and moreover, ¢ maps OU; isomorphically onto Uy
Furthermore, by the commutativity of the diagrams above it follows that the
# -isomorphisms Xy «~>— X map Vi and 9V isomorphically onto Vi, re-
spectively V.

Definition. Let £ = (Lk[L)k be a Galois compatible well behaved family and «,
a group theoretical section of the canonical projection Gal(Lo|K) —— &. For every
k let H;p be the stabilizer of Ly in o,(®). We say that «, is a good section for L
if for every k there exists an admissible open 0V, of OVy which is mapped by ¢
isomorphically onto 0Uy and is stabilized by Hy.

Convention. For a given Galois compatible well behaved family £ = (Lx|L) , and a
good section «, for L, when speaking about the action of & on Lo and its subfields
or about the action of & on X, and its quotients we mean the action defined via q
as at (1.3) (2) above.

Going on with the remarks from above we have as in [P1], section 2:

(4) Let o, be a good section for L. Then there exists a labeling 9V, of the
components of AV; as indicated at (1.2) such that for all ¢ € & one has
o (8V,,) = 0Vy,,, where gp = %g; (all k).

Let now £ = (L) , be a Galois compatible well behaved family and «, a good
section for £. Via @, we have an action of & on the family of groups (& k)k as
indicated at (1.3) (2) above. In particular, via o, we can define a right action of
® both on Fy = [[ &, and on F = ?:st and the canonical projection F' — Fj

k
is compatible with this action. With respect to this action we further consider the
semi-direct products & x Fy and & ix F. By the definition of the action if follows that
the two canonical exact sequences

1—=Fy—8BxFy—6 =1
and

1 — Gal (Lo|L) — Gal(Lo|K) = 0,(®) Gal (Lo|L) — & — 1
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are canonically isomorphic. Now the main result of this subsection is the following
theorem. Its proof is literarlry the same as the one of the main result from section 2,
loc.cit. and therefore we omit it. |

(1.4) Theorem. Let £ = (Lk)k be a Galois compatible well behaved family and «o,
a good section for L. Then with the above notations it holds:

(1) The universal Galois extension L.|L constructed in the previous subsection is a
normal extension of K.

(2) The section «, can be prolongued to a section o, of Gal(L.|K)— & in such a
way that the canonical exact sequence coming from the Galois theory

1— Gal(L,|L) — Gal(L,|K)=0,(8)Gal (L, |L) — & — 1
is canonically isomorphic to the exact sequence

1l - F —— 6l —® 1.

2. Applications

In this section we first prove a Riemann existence type theorem with Galois action
which generalizes the main result from [P1]. Secondly we show that every split embed-
ding problem for a function field of one variable over a field with a universal local-global
principle has proper, regular solutions and this is a generalization of the main result
from [P2]. We finish by giving a proof of the theorem from introduction.

A) Riemann existence type theorem with Galois action

In this subsection we shall give an example where the conditions from section 1 above
are satisfied. This example reduces in the case X = P! to the situation considered in
[P1]. It goes about the following: Let A|x be a finite normal field extension and L
a function filed of one variable over A such that L|\ is a regular extension. Let &
be a finite group of k-automorphisms of L and denote by K the fixed field of & in
L. Hence, L|K is a finite Galois extension, & = Gal(L|K) and to fix the ideas we
suppose that « is the fixed field of A under the action of &. In particular, K is a
function field of one variable and K|« is a regular field extension. If g = Gal(\|«)
then there exists a canonical projection map ® — g which is surjective. Its kernel
go is the group of geometrical isomorphisms of L|K and the fixed field of gy in L is
exactly KA. Let Z be a projective normal geometrically integral model for K and
X — Z the normalization of Z in field extension L|K. Then K = x(Z), L = A\(X)
and & = AutZ(X) canonically and Z 1s the quotient of X by &.

Let further X' be a normal extension of & which contains A. We denote by
L' = L)' the compositum of L and A in the algebraic closure of K and remark
that L'|K is a normal extension containing L. We denote &' = Gal(L'|K) and
remark that the canonical projection &' — & maps g isomorphically onto gy and
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g onto g. Furthermore, denoting X' = X x, X' the base change to )\ it follows
that L' = X'(X') is the function field of X'. We further remark that X(\") = X'(\)
canonically, and &' acts in a canonical way (from the left) on X'(\'), so on X(\').
If )’ is the algebraic closure A of A hence of «, then we use the notations X' = X

and &' = &,, & = &,. In this case one has g' = G,.

Definition. Let M|k be a finite normal extension containing A and z a smooth
A' -rational point of X'. A special neighbourhood of z is by definition an admissible
affinoid U of X'*" which satisfies the following conditions:
i) U is invariant by the decomposition group of z in &', ie if o'z = z then
o'U = U. Equivalently, there exist rational functions uq,-+-,um on X' which lie
in the decomposition field L' of ¢ in L'|K such that

U={z'|0<v(uls")) foral 1<I<m }.

i1) There exists an analytical A'-isomorphism 6 : U — Uy of U onto the unit ball
Uy of X' such that 6(z) =0 and 6 is equivariant with respect to the elements
in the decomposition group of z, ie fo' = g0 for all ¢' in the decomposition
group of z, where o is the image of o' by the canonical projection &' — g'.

iii) Let U denote the preimage by 6 of the "boundary” OUx: of the unit ball.
Then there exists an admissible affinoid U' of X' such that U'NU = 0U. In
particular, U' is invariant with respect to the decomposition group of = too and
is connected. To fix notations we shall say that OU is the "boundary” of the
special neighbourhood U. Further, we will call the preimage of the ”interior” of
Uy by 6 the ”interior” of U.

We remark that every smooth )’ -rational point of X' which is not ramified in L'|K
has a fundamental system of v-adic neighbourhoods which are special. This is just
the non-archimedean implicit function theorem.

Let S be a finite set of closed smooth points of X which are not ramsfied in L|K.
Equivalently, the decomposition group of any s € S in & does not meet the group of
geometrical automorphisms. Let further U denote the complement of S in X and as
usual, let S = {s;,...,5ns} and U be the base change to the algebraic closure A of
A.

Definition. With the above notations we say that S is pairwise adjusted if ng = 2n
is even and the following conditions are satisfied:

j) The elements of S can be organized in pairs (z;,y;) Which are permuted by &,
between themselves.

jj) For every k there exists a special neighbourhood U of zx such that yi lies in
the interior of Ug.

jjj) The affinoids U are pairwise disjoint.



Convention. Let S be pairwise adjusted and let A'|x be some finite normal extension
which contains A such that S consists of )’ -rational points (which are smooth, as
S consists of smooth points). Choosing in every orbit of S under the action of &' a
fixed generator zp we can suppose that for a conjugate, say zp = o'z, of z,, the
data for the special neighbourhood Ui of zp are defined as being the image of the
ones for Ux by o', ie we have Uy = ¢'Uy, U}, = 0'U;, and o' = d'6y.

Clearly, if the condition holds for some A’ then it holds in the same form for any
larger normal extension A'|k of «.

Now suppose that S is pairwise adjusted and let U be the complement of S in
X. We denote as usual by X and U the base change to the algebraic closure of x and
remark that S is invariant with respect to the action of the group &, = Aut Ax)
which is the opposite of &,. Therefore, there exists an exact sequence of the form

1 —>’ﬂ'1(ﬁ) —>?T1(U)—>@,; — 1.

As in loc.cit. we are going to show that this exact sequence has an ”interesting” quo-
tient, whose structure can be explicitely given. Let us describe first this quotient.

Let m = (my) be a system of positive integers such that mp = my if the
pairs (z,,y,) and (z.,y;) are conjugated under &,. We say that S is pairwise
m -adjusted if one has v(0k(yx)) > €m, (all k), where for a natural number m we set
em = 0 if either v(m) = 00 or v(m) =0 and e, = v(p)/(p — 1) + v(m) otherwise,
where p is the residual characteristic. Clearly, the system M of all m for which S
is pairwise m -adjusted is inductive and we can define the ”Steinitz numbers” s, of S
to be the projective limit over the K" component of all m € M. In particular, S is
pairwise m -adjusted if and only if m, divides the k™ Steinitz number 5, of S. As
in [P1] we associate to S the profinite group Ion2n=n s generators and relations
as follows:

M=1{9q b

i

3gzn7hyn | gxkhyk = 1? 9;’“ =1 all k)
2

endowed with the right &, -action defined by (gz,)o = (g”k)X(U) and correspond-

ingly for hy,, where x is the cyclotomic character of &,. We call I endowed with
&, the canonical v-quotient associated to S.

(2.1) Theorem (Riemann existence type theorem with Galois action).
In the context above the canonical exact sequence:

1m>7r1(@—>7rl(1U)—-~+Q5,¢ — 1
has in a canonical way the following quotient:
t-5H 4B RI—0. — I,
the semi-direct product being considered with the canonical action of &, on II. More-

over, the generators gs,, hy, are inertia elements associated to z, y, (all k).
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Proof. The proof follows the same main lines as the proof of the main result from
[P1]. The only problem is to construct for every m € M a family £ = L™ of cyclic
Galois extensions which has good functorial properties as asked for in loc.cit. section 3.
We shall do this using Kummer theory and Artin—Schreier theory via Witt vectors.

Thus, let m € M be fixed. We consider some finite normal extension M|k
containing A such that S consists of (smooth) )\ -rational points and further )’
contains the roots of unity of order m, (all k). Replacing A by X' (and so, L by
L', etc) we associate to m a Galois compatible well behaved family £ = (LHL)}C
of cyclic Galois extensions of L with Gal(Lg|L) isomorphic to the cyclic group &
of order mp. Moreover, there will exist good sections for £ and the way we do this
has good functorial properties. We begin by recalling the following facts, see [P1],
section 3, (3.6) for notations and definitions.

(2.2) Let Uy and OU, denote the unit ball, respectively its ”boundary” in A viewed
as admissible affinoids of P}. For ¢ = O (yx) weset u* =1+c¢/z, u*=c?/[2(z +c)].
Let M be the cyclic field extension of A(z) defined by the character 6;, (u*)+6z, (u®)
and ¥ -2 P the normalization of P} in the field extension M |\(z). Let V3 j and
0V x denote the preimages of Uy, respectively U, by ¢x. Then Vax and 9V  are
admissible opens of Y™ and moreover, dV)  is isomorphic as an analytical \-space
to € x OUx i, where €; is the opposite of € = Gal (M|A(z)).

Using the observation above we get:

(2.3) Lemma. Forevery k there exists a unique cyclic extension Li|L such that de-
noting by X %%, X the normalization of X in the field extension Li|L the following
holds:

1) & = Gal(Lg|L) is isomorphic to the cyclic group of order my.

2) The preimage V| of U, by ¢ is analytically \-isomorphic to &y x 9U'.

3) The preimage Vi of Ur by ¢ is analytically \-isomorphic to the above Vj g,
say by i : Vi — Vi x, such that orpr = 0rdy

In particular, ¢y is ramified only in zp,yr and &y is generated by inertia elements
9i> by of zx, respectively yi such that g h, = 1.

Proof. The existence follows immediately by glueing the A-analytical spaces V)
and & x U, along the "boundaries” &j; x 0Uy and 0V,, via 6. The result-
ing analytical \-space is a finite separated connected Galois covering of X with
Aut_., (X Zu) = 6. By the GAGA principles it follows that the above covering is the
analytification of a unique Galois covering Xj P X of X with AutX(Xk) = 6.
The unicity up to X -isomorphism follows immediately by conditions 2) and 3) which
imply the existence of an analytical X~ -isomorphism of any two such coverings, hence
an X -isomorphism by the GAGA principles. The remaining assertions follow by the
special construction from (2.2). Next we remark:
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(2.4) The family £ = (Lle)k constructed above is Galois compatible well behaved
in the sense of the previous section.

Proof. By our convention it follows that the admissible covering {U} U {U},
1s & -invariant. Hence the only problem is to prove that £ is Galois invariant. Let
o € Gg be arbitrary and o denote its restriction to L. For a fixed k let L} be the
preimage of Ly by & and X; the normalization of X in the cyclic field extension
Ly|L. Let further k' be such that oxi = zy. We are going to show that L} = Ly
and so X; = Xp. To do this we shall use the unicity part from (2.3) above. We
namely remark that the canonical commutative diagram

L

L <5 L
of K -morphisms of fields induces in a canonical way a commutative diagram of mor-
phisms of Z -schemes

P X

X
J'GV;; J'E?f'k
X &— X
The X-analytical structure of X is exactly the image of the A -structure of X}, by &.
As the morphisms 6 are & -equivariant, it follows using the unicity part from (2.3)
above that X; is isomorphic over X to Xj. Hence L} is L -isomorphic to Ly and
so, L}, = Ly because Li|L is a Galois extension. Thus we also have X = X.

Our next step i1s to show that for the Galois well behaved family £ there exist
good sections in the sense of B) above.!) With the usual notations we remark that
by construction there exist generators ¢,, and hs;, of & which are inertia elements
associated to z,, respectively y, such g¢;,hs, =1 and the action of & on them is
given by (gz, )o = (g,“)X(U) and correspondingly for hy,, where x is the cyclotomic
character of &. Hence, endowing [] & with this & right action it follows that

k
Gal(Lo|L) = [] & as right &-modules. In particular, using Shapiro’s Lemma it

k
follows that the 2-cohomology class describing Gal (Lg|K) as an extension of & by
Gal (Lo|L) is trivial. Thus

1 — Gal(Lg|L) — Gal(Ly|K) — & — 1
splits and 1s 1somorphic to

]_—)H({’)k—)@b((n({’)k)—«—)(ﬁ——)l,
k

k

1) We remark that the method from [P1] does not work in this new context.
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where the semi-direct product is considered with respect to the action defined above.
The existence of good sections is now of purely formal nature.?) Let namely a! be
some section of the canonical projection Gal(Lo|K)—— &. Then & acts via o/ on
the set of all boundaries dV,, (all k¥ and g; € & ). Indeed, this follows by the
fact that in our special situations the boundaries 9V, are the connected components
of the corresponding OV and clearly, every o via « maps connected, admissible
affinoids of X:D onto connected, admissible affinoids of the corresponding X::l In
particular, for every o viewed via «| there exists a unique g, = (g;), such that
o(0V.,) = 0V, if o(Lp) = Ly (all k). One verifies without difficulties that the
system (g,), isa 1-cocycle of & with valuesin Aut,(X,). In particular, the map-
ping a, : & — Gal(Lo|K) defined by «,(¢0) = a!(0)g;" is again a section of the
canomnical projection. Clearly, via this new section every o permutes the boundaries
indexed by the neutral elements €; € &;. In particular, «, is a good section for L.
The rest of the proof is identical with the one in [P1].

B) Embedding problems for function fields of one variable
Our aim here is to give a natural generalization of the main result from [P2]. For the
convenience of the reader we begin by recalling the following facts from [P2], section 1.

Let G be an arbitrary profinite group. A (finite) embedding problem EP = (v, «)
for G consists of a diagram of profinite group homomorphisms of the form

G

|~

B —s 4

where o and v are surjective (and B is finite). EP is called split if o has a section, or
equivalently, if ker(«) has a complement. A (proper) solution of EP is a (surjective)
homomorphism §: G — B with aff =+.

(2.5) Let the following situation be given:
¢ A homomorphic image G —> A of G with A finite.

e A finite family ¥ = ((’:k)k of finite cyclic groups and a finite family > = (Q:k:o)k 3
of isomorphic copies txs : €ro —> € (0 € A) of & (all k). For gx € € we

let gi o, denote its preimage by ¢z o-
Let F be the profinite free product on Y. There exists a natural right action of A on

F' which is defined by (g&,ro)7 = gr,o for all k,o,7. With respect to this action we
denote by A F' the semi-direct product of F' by A. We identify A and F' with the

2) We believe that the ”canonical” section defined by the semi-direct product is a good section.
Unfortunately we cannot prove it.
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subgroups AX1 and respectively 1 X F of Ax F. We further use T also to denote
the family of all € , viewed as subgroups of F.

For normal subgroups D of AKX F which are contained in F we set C = F/D
and identify (AXF)/D with AxC. Let ap : AKF— AxC, oP : AxC — A
denote the canonical projections and LY (or simply X if no confusion is possible )
the image of X by ay. Clearly, EPP = (7,aP) is an embedding problem for G. We
call such an embedding problem an adjusted embedding problem for G. We say that
EP? is an adjusted finite embedding problem for G if D is an open normal subgroup
of A F.

Let EP = (y,a) and EP' = (v/,¢/) be embedding problems for G. We say that
EP’' dominates EP, if there exist surjective group homomorphisms ~o : A' —s A and
Bo : B' — B such that v = 707!, afo = Yo' and By (ker(af’)) = ker(a). In this
context we have: If 8’ is a (proper) solution of EP' then $of’ is a (proper) solution
of EP.

We remark that for a given split embedding problem EP = (y,a) for G and a
homomorphic image 7' : G — A’ of G such that ker(y) contains ker(y') there exists
a ”canonical” embedding problem EP’' = (v',a') for G which dominates EP. Indeed,
let 70 : A" — A be the canonical projection. We set B' = B x, A' and denote by
Bo:B'— B and o' : B' — A’ the structural projections. The embedding problem
we are looking for is exactly EP' = (7', a'). Moreover, 8y maps ker(«') isomorphically
onto ker(a).

(2.6) The class of all adjusted finite embedding problems for G is cofinal with respect
to the domination relation in the class of all finite split embedding problems for G.

More precisely, let EP = (y,a) be a given finite split embedding problem for G
and & a section of a. Further let Xy = ((’:k)k be a finite set of cyclic subgroups of
ker(a) such that Y, generates ker(a) and is closed by conjugation with elements
from A =@a(A). Then with v and %y as in the hypothesis for (2.5) there exist open
D and surjective group homomorphisms By : Ax C — B such that:

1) @(o) = Po(ox1) for all o € A. :

2) Bo(ZP) =y and By maps every €0 isomorphically onto @(o) €, @(o) .
In particular, EP? dominates EP.

Let now x be an arbitrary field and K|x a regular field extension. For a homo-
, the fixed
field of ker(¢) in the separable closure of K, respectively «. Let EP = (vy,a) be
an embedding problem for K and § a solution of it. We say that 8 is a reqular

morphism ¥ of Gk into some profinite group we denote by K, and «

solution of EP if K, |« is a regular field extension, or equivalently, , = k,. We
remark that if we restrict ourselves to embedding problems for K which are induced
by embedding problems for G, through the canonical projection G — G, then the
notion of regular solution from here coincides with the one defined in [P2], section 1.
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The generalization of Main Theorem from loc.cit. we have in mind is the following:

(2.7) Theorem. Let k be a field with a universal local-global principle and K a
function field of one variable such that K|k is a regular field extension. Then every
finite, split embedding problem for Gx has a proper, regular solution.

Proof. The technical core of the proof consists of the following lemma, which is a
special case of (2.7) and is a consequence of main result of the previous subsection.

(2.8) Lemma. For an arbitrary field £ we let & = s((u)) be the power series field
in one variable over k. Let K be a function field of one variable over & such that
K|& is a regular field extension. Then every finite, split embedding problem for Gy
has a proper, regular solution.

Proof of the lemma. Let EP = (v,a) be a finite embedding problem for G
and to simplify notations set L := K, and A := & . Let Z be a projective normal
geometrically integral model for K|& and X — Z the normalisation of Z in the field
extension L|K. Then X is a projective, normal, geometrically integral curve over M.
Let M|k be some finite Galois extension of % containing A and L' = L)' denote
the compositum of L and X' in the separable closure of K. Then L'|K is a Galois
extension and setting A’ = Gal(L'|K) and denoting by +': Gx — A’ the canonical
projection, we consider the ”canonical” embedding problem EP’' dominating EP as
above. An easy verification shows that if A’ is a proper, regular solution for EP' then
B = Bof' is a proper, regular solution for EP. Hence, it is sufficient to prove that
there exists some )\ as above such that the corresponding embedding problem EP'
has proper, regular solutions.

With the above notations let X' be the normalization of X in the field ex-
tension L'|L, and hence of Z in the field extension L'|K. As usual, we denote
®' = Gal(L'|K). Clearly, ' = Aut,(X') acts on the set of ) -rational points
X'A)=X(\)=Hom (X, X") of X' by o(z') = 0 0z'. Next we have:

Claim. Let N'|& be a finite Galois extension containing A and z' a smooth \' -rational
point of X'. Then every v -adic neighbourhood of z' in X'(\') contains points which
have trivial stabilizer in &'

Proof. Indeed, as the ramification locus of L'| KA consists of only finitely many
points, it follows that in every v-adic neighbourhood of z' there exist smooth points
z which have ftrivial stabilizer in the K\’ -automorphisms group of L'. Hence it is
sufficient to prove the claim for such a point z. On the other hand, for such a point z
there exists a non-constant function ¢t in K such that ¢ — ¢(z) is a local uniformizer
at z. For such a t let X -?—HP’}\, be the morphism defined by ¢. Then for every
y € X'()') and o € & one has ¢(oy) = od(y), where the action of & on P}, is
defined via the canonical projection &' — g'. On the other hand, since z is smooth,
it follows by the implicite function theorem that there exists a v-adic neighbourhood
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U, of z which is maped by ¢ isomorphically onto a v-adic neighbourhood of &(z).
Now take some yo € ¢(U,) which has trivial stabilizer in g’ and is non-ramified in
L'|KX. Then clearly, its preimage zo in U, has trivial stabilizer in &'. The claim
is proved.

Let now EP be some finite split embedding problem for Gx and suppose we have
the situation from (2.6). Let my_ be the lowest common multiple of the orders of
all the groups in Y. Replacing L by a constant extension L' = L)' and considering
the corresponding finite quotient 7' : Gxg — A' of Gx we can suppose that the
following holds: The fixed field L' of ker(y') contains the roots of unity of order
my, and the projective normal geometrically integral model X' of L'|\' satisfies the
conclusion of the claim above. Starting with these data we consider the ”canonical”
split embedding problem EP' = (7/,a') which dominates EP as above. As f, maps
ker(a') bijectively onto ker(a) it follows that denoting by i the preimage of Ty by
Bo we have Mg, = Mg, . Hence working with EP' instead of EP we can suppose

that L contains the roots of unity of order my_and the projective normal model
X of L|X contains (many) smooth A-rational points z which have trivial stabilizer
in & = Aut,(X). We proceed by associating to EP an adjusted finite embedding
problem by the procedure from (2.6). Therefore, it is sufficient to prove the lemma for
adjusted finite embedding problems EP = EP? = (7,aP) such the fixed field L := B
of ker(y) contains the roots of unity of order my. and the model X of L|\ contains
(many) smooth A -rational points z which have trivial stabilizer in & = Aut,(X). To
prove the lemma in this special case we choose for every &, € X a smooth point
Tk in X(A) which has trivial stabilizer in & and moreover, we do this in such a
way that the following condition is satisfied: Tz, = 2, for all k,0,7. We further
choose smooth A-rational points yi , which are sufficiently close to zj , and satisfy
TYk,70 = Yk,o- We proceed as in [P2], proof of (1.6). The proof of (2.8) is finished.

To finish the proof of (2.7) one applies the lemma above together with the
lemma (1.8) from [P2] and the following one:

Lemma. Let &|s be a field extension with « existentially closed in . %) For a func-
tion field of one variable K|k which is regular over « we denote by 7 : Gxir — G
the canonical projection. Let EP = (y,a) be a finite, split embedding problem for
Gx. Then EP has proper, regular solutions, provided the corresponding embedding
problem EP = (ym,a) for Ggi has proper, regular solutions.

The proof is, after the obvious necessary changes, identical with the proof of
lemma (1.7) from [P2], and therefore we omit it.

%) See for instance [B~S] for definitions and basic facts.
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C) Proof of the theorem from the Introduction

Let x be an arbitrary algebraically closed field. Then x is the inductive limit of all its
algebraically closed, countably subfileds «,. In particular, (%) is the inductive limit
of all x,(t), hence Gy is the projective limit of Gg, (1) 1n a canonical way. By the
result of Mel’nicov [M] it follows that Gy is profinite free if every factor G (1) isa
profinite free group. Hence it is sufficient to prove the assertion of the main theorem
in the case where & is countable. Then £(t) is countable too, and G () is countably
generated. On the other hand, in this case we can apply Iwasawa’s theorem 4 from
[I]. Indeed, for a given embedding problem EP for G, there always exist solutions,
as G(y) has cohomological dimension 1. Starting with such a solution we construct
as in [P2], section 2, proof of Theorem A, a finite, split embedding problem EP' for
G () which dominates EP. By (2.7) it follows that EP' has proper solutions. Hence
EP has proper solutions too. We conclude by applying Iwasawa’s theorem.

References

[B-G-R] Bosch, S. — Guntzer, U. — Remmert, R Non-archimedean analysis, Grundl. Math. Wiss.,
Bd. 261, Berlin Heidelberg New York Springer 1984.

Chevalley, C. Introduction to the theory of algebraic functions of one variable, AMS, New
York 1951.

Deligne, P. Le groupe fondamental de la droite projective mois trois points, GGalois groups
over Q, Math. Sci. Res. Inst. Publ. 16, 79-297, Springer 1989.

[D] Douady, A. Détermination d un groupe de Galois, C. R. Acad. Sci. Paris 258 (1964), 5305—
5308.
van den Dries, L. — Ribenboim, P. Application de la théorie des modéle aux groupes de

Galois de corps de fonctions, C. R. Acad. Sci. Paris 288, AT89-AT792.

[F] Fresnel, J. Geometrie Analytique Rigide, Notes, Bordeaux 1984.
[G] Gruenberg, K. W. Projective profinite groups, J. London Math. Soc. 42 (1967), 155-165.
[F-J] Fried, M. — Jarden, M. Field Arithmetic, Springer Verlag Berlin Heidelberg 1986.
Harbater, D. :
Galois covers of the arithmetic line, in LNM 1240, Springer Verlag 1987, 185-195.
[H] A proof of Abhyankar’s conjecture(?), manuscript 1993.

Gerritzen, L. — van der Put, M. Schottky groups and Mumford curves, LNM 817, Springer-
Verlag Berlin Heidelberg New York 1980.

Grothendieck, A. SGA 1. Revétements Etale et Groupe Fundamental, LNM 224, Springer-
Verlag Berlin Heidelberg New York 1971.

1] TIwasawa, K. On solvable extensions of number fields, Ann. of Math. 58 (1953), 548-572.

[Ko] Kopf, U. Uber eigentliche Familien algebraischer Varietiten iiber affinoiden Riumen, Schrif-
tenreihe des Math. Inst. Univ. Miinster, 2. Serie, Heft 7 (1974).

Krull, W. — Neukirch, J. Die Struktur der absoluten Galoisgruppe tiber dem Korper R(%),
Math. Ann. 193 (1971), 197-209.

Liu, Q. Tout groupe fini est un groupe de Galois sur Q, (%), manuscript, Bordeaux 1991.

Litkebohmert, W. Riemann’s existence problem for a p-adic field, Invent. math. 111 (1993),
309-330.

1¥



[P1]
[P2]

[R]

(1]
[52]

Matzat, B.-H. Der Kenntnisstand in der Konstruktiven Galoisschen Theorie, in: Progress in
Mathematics, Vol. 95, Birkhauser Verlag Basel.

Mel “nicov, O.V. Subgroups and homologies of free products of profinite groups, Izv. AN
SSSR, Ser. Math. 52 (989), 97-120 (russian).

Mumford, D. An analytic construction of degenerating curves over complete local rings, Com-
positio Math., Vol 24, Fasc. 2 (1972), 129-174.

Pop, F.:
1 Riemann Existence Theorem with Galois Action, to appear in Birkhauser PM Series 1993(7).
Hilbertian fields with a universal local-global principle, Preprint, Heidelberg 1993.

Popp, H. Fundamentalgruppen algebraischer Mannigfaltigkeiten, LNM 176, Springer-Verlag
Berlin-Heidelberg—New York 1970.

Raynaud, M. :

Géométrie analytique rigide d “apres Tate, Kiehl, ..., Mémoire de Soc. Math. de France, t. 39—
40 (1974), 319-327.

Revetements de la droite affine en caractéristique p > 0 et conjecture d “Abhyankar, manu-
script 1992.

Roquette, P.:

Analytic theory of elliptic functions over a local field, Hamburger Mathematische Einzelschrif-
ten, Neue Folge, Heft 1 1970.

Some tendences in contemporary algebra, in: Perspectives in Mathematics, Anniversary of
Oberwolfach 1984, Basel 1984, 393-422.

ServesJP. :
Cohomologie galoisienne, LNM 5, Springer Verlag 1973.

Reveternents de courbes algébriques, Sém. Bourbaki n° 745 (1991-1992), to appear.
Topics in Galois Theory, Research notes in Math., Jones and Bartlett 1992.
Tate, J. Rigid analytic spaces, Inv. Math. 12 (1971), 257-289.

Mathematisches Institut der Universitat, Im Neuenheimer Feld 288, D-6900 Heidelberg

18



