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Introduction and main results

The motivation for this paper is at least threefold. First we give a positive answer to
a long standing conjecture which originates in an unpublished note of Roquette and
asserts that the absolute Galois group of a countable PAC hilbertian field is w -free,
see [F-J], Problem 24.41. This conjecture was proved in the characteristic zero case
by Fried—Voélklein [F-V] using the theory of Hurwitz spaces. Their proof relies on the
Riemann Existence Theorem and this is the reason why they are only able to prove
the conjecture in the characteristic zero case. Secondly we give new evidence for the
conjecture of Shafarevich which asserts that the Galois group of Q" is w-free. Finally,
one of the most interesting applications of the theory we develop here is the insight
into the Galois structure of the field of all totally & -adic numbers.

Let x be an arbitrary field and &* its separable closure. A locality of x is an
algebraic separable extension A of k which is either real closed or Henselian with
respect to a non-trivial valuation of k. We say that & satisfies a universal local-global
principle if there exists a set £ (which could be empty) of localities of & such that
for every smooth variety V over « the following holds:

V(k) # ¢ provided V(A) # ¢ for all A € L.

The fields with a universal local-global principle represent a natural generalization of
the PAC, PRC and PpC fields, see e.g. the literature list from [P2]. Concerning the
terminology one has:

1) If £ is empty then & is a PAC field in the usual sense.

2) If £ consists of all real closures, respectively p-adic closures of x then one says
that « is a PRC, respectively a PpC field.

3) A natural generalization of the classes of fields above is obtained in the following
way: A locality A of some field is said to be quasi-local if either A is a real
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closed field or A is henselian with respect to a non-trivial valuation v which has
finite residue field Av and value group vA not ¢-divisible for all rational prime
numbers ¢ # char(Av). We say that a set £ of localities of & is quasi-local if
every A € L is a quasi-local locality of & and furthermore, £ has the following
compactness properties:

i) The cardinality of the residue fields Av (A € £) is bounded.

ii) There exists a finite set {t1,...,%,} of elements of & such that for every A € £
and g # char (Av) there exists k such that vty is not divisible by ¢ in vA.

iii) The set L is quasi-compact in the étale topology.
Examples: Fields of totally & -adic numbers and their algebraic extensions

Interesting examples of PAC, PRC and PpC fields, or more generally, of fields satisfying
a universal local-global principle are the fields of totally & -adic elements and their
algebraic extensions. These can be described as follows: Let x be a field and & its
algebraic closure. We say that a place p of « is of local type if the completion x, of
k with respect to p is a locally compact field and &, is separable over . Let C, be
the completion of the algebraic closure of k. We say that an element a € & is totally
p -adic if for all x-embeddings ¢ : kK — C, one has ((a) € &p.

We remark that the notion of a totally p-adic element generalizes the notion of a
totally real or totally p-adic algebraic number in a natural way.

Let & be a finite set of places of local type of k. We say that an algebraic element
a over k is totally G-adicif a is totally p-adic for all p € &. We denote by £ the
set of all totally & -adic elements in the algebraic closure of x. By general valuation
theory it follows that «® is a field and moreover, x€|x is a Galois extension. Further
we denote by L£” the set of the decomposition fields of all the prolongations of p to
x* and by L the the union of all £* (p € G). Clearly, L® is a quasi-local set of
localities of x and k€ is exactly the intersection of all A € L. One of the basic
properties of the algebraic extensions of £ is given by the following theorem, see e.g.
[G-P-R], the semilocal theory, combined with [P2], the overfield theorem (2.8):

Theorem (6). Let «' be some algebraic extension of k% and L' = {Ax' | A € LT}

the prolongation of LS to x'. Then «' satisfies a universal local-global principle with

respect to L'.

In particular it holds:

(1) IKfall A" € L' are separably closed, then «' is a PAC field.

(2) The field of all totally real, respectively totally p-adic algebraic numbers is a
PRC, respectively a Pp C field.

We now can announce one of the main results of the paper. For definitions we
refer to the beginning of section 1 of the paper and to section 2, proof of Theorem B.



Main Theorem. Let s be a hilbertian field satisfying a universal local-global prin-
ciple. Then every split embedding problem for the absolute Galois group G, of k has
a proper solution.

The main theorem will be proved in section 2. The proof relies on (1.5), which itself is
a consequence of the I Riemann Existence Theorem with Galois Action, see [P4]. As
applications of the main theorem we derive the following Theorem A and Theorem B
from which the results announced above easily follow.

Theorem A. Let « be a hilbertian countable field satisfying a universal local-global
principle. If k has cohomological dimension 1 then the absolute Galois group G, of
Kk is w -free.

As corollaries one has:
Theorem 1. Let x be a hilbertian countable PAC field. Then G, is w -free.

The proof follows immediately from Theorem A, taking into account that the PAC
fields have cohomological dimension 1 by Ax [A].

Theorem 2. Let « be a hilbertian countable field and & a finite set of places of
local type of k. Let k®¥®" denote the maximal cyclotomic extension of k. Then the

&, cycl

absolute Galois group of k is w -free.

Proof. Tt is clear that &' = k®<< is the compositum of ¢ with the maximal

cyclotomic extension k™ of k.

We first remark that &' is a hilbertian field. Indeed, if X # & is a set of prime
numbers which are # char(x) and x®(py) denotes the extension of k© obtained by
adjoining all the roots of unity which have order divisible only by the prime numbers
in X, then one has:

1) k®(py) is not contained in «®, as the latter field has localizations isomorphic
to local fields.

2) If X and Y are not comparable sets of rational primes as above (with respect
to the inclusion relation), then x®(uy) and k®(uy ) are not comparable (with
respect to the inclusion relation).

Now choose non-comparable X and Y such that X UY consists of all rational prime
numbers # char(x). Then £%(uy) and £%(uy ) are Galois extensions of the hilbertian
field &, they are not comparable with respect to the inclusion and their compositum
is k. By the result of Haran—Jarden [H-J] it follows that &' is a hilbertian field.
Next we remark that &' has cohomological dimension equal to 1. Indeed, let L'
be the prolongation of £® to «'. By [P2], theorem (3.3) the absolute Galois group
of k' is relatively projective with respect to {G,, | A’ € L'} viewed as set of closed
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subgroups of G/. On the other hand, if such a locality A' prolongs some A € L to &'
we have A = Axs = A™ and, as the completion of A is a local field, it follows that
A”" has cohomological dimension 1. Thus every A’ has cohomological dimension 1
and consequently, every extension of a finite group by G,, is split. Therefore, by the
definition of the relative projectivity, see [P2], Ch1, it follows that every extension
of a finite group by the absolute Galois group of &' is split. Equivalently, ' has
cohomological dimension equal to 1. To finish the proof of the theorem one applies
Theorem A.

The theorem above gives us new evidence for Shafarevich’s conjecture which as-
serts that the absolute Galois group of k™ is w-free for every global field . Indeed,
taking into account that every non-trivial place of a global field is of local type, it fol-
lows that in a precise sense the theorem above 1s the semi-local version of Shafarevich’s
conjecture. The result is interesting because the fields £ approximate %< “from
the top” as & runs over all finite sets of places of «.

Theorem B. Let s be a hilbertian countable field which satisfies a universal local-
global principle with respect to a quasi-local set of localities L, which is closed by
conjugation with elements from G. Then there exists an étale compact subset G of
Ge={Gp | A € Ly} suchthat G, is G -free.

In particular, the subgroup G, of G generated by all G (A € L) is the
generalized profinite free product on some fundamental domain of G, with respect to
the action of G,&.

For the proof one uses the main theorem above together with a generalization of a
theorem of Iwasawa from [I]. As a consequence of Theorem B we have the following
description of the absolute Galois group of the field of all totally & -adic elements:

Theorem 3. Let « be a finitely generated field and & a finite set of places of local
type of k. Then the absolute Galois group of the field of totally & -adic elements &€
is isomorphic as profinite group to the profinite free product

Gre g"‘F:'}',g.xp (pcB)
. ;

where F . 1is the generalized profinite free product of G, = G, on the space X,
of all the prolongations of p to k¢ (all p€ &).

Proof. We begin with the following obvious remark: Let & be a finite set of indepen-
dent places p of a field x. Let L? be the set of the decomposition fields of all the
prolongations of p to x°. We suppose that these decomposition fields are not sepa-
rably closed. Further let £ be the union of all £* (p € &). By general valuation
theory the following holds:
1) L is étale compact and homeomorphic as a G -space to G, /Z,, where Z, is
the decomposition group of some prolongation of p to &°.
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2) L€ is the disjoint union of all £? (p € &) and it is étale compact.

Let &', &" be finite sets of places of local type of £ which strictly contain & and sat-
isfy 6'NG" = &. Let A denote the compositum A = k5 k® . Clearly, A is contained
in the field k© of totally & -adic elements, as both £ and x® are contained in
xS. Let further £' and £" denote the prolongations of £ and respectively £5 to
A. By [P2], theorem (2.8) it follows that A satisfies a universal local-global principle
both with respect to £’ as well as with respect to £". Using the density and unicity
theorem (2.6) from loc.cit. it follows that A satisfies a universal local-global principle
with respect to £ = £' N L". On the other hand, every Ay € £ is of the form A
for some A € £%. Hence Ay = A, as both x® and x® are contained in A. Thus
L = L. Next we remark that A is hilbertian by the result of Haran—Jarden [H-J]. In
particular we can apply Theorem B to A endowed with £y := £, which clearly is a
quasi-local set of localities of A. With the notations from Theorem B it follows that
G s 1is exactly the subgroup G, of G,. Hence G, s 1s the generalized profinite
free product on some fundamental domain, say G of G, with respect to the action
of G, s. By the remark at the beginning of the proof and using the notations from
there it follows that setting G* = G N {Gar | A € £?} one has: G* is a fundamental
domain for {G, | A € L?} with respect to the action of G,s and clearly, G is the
disjoint union of all G* (p € & ). By the properties of the generalized free products,
see remark (2.2), it follows that G.s is isomorphic to the profinite free product of
the generalized profinite free products F,, (all p € &). On the other hand, G® is
canonically homeomorphic (by the Galois correspondence) to a fundamental domain
of L£* with respect to the action of G e. Hence, it is homeomorphic to the space X,
of all prolongations of p to x%. To proceed we again apply the remark (2.2).

1. Regular resolvents for fields satisfying a universal local-global principle

Let G be an arbitrary profinite group. An embedding problem EP = (v,a) for G
consists of a diagram of profinite group homomorphisms of the form

where « and -y are surjective.
EP is called finite if B is a finite group.
EP is called split if o has a section, or equivalently, if ker(a) has a complement.

A solution of EP is a group homomorphism f§: G — B with af = v. Obviously,
every split embedding problem has a solution.

5



A proper solution of EP is a surjective group homomorphism g : G — B with
&b =
(1.1) Example and Definition. Let the following situation be given:

e A homomorphic image G —> A of G with A finite.

e A finite family 3y = (Qﬁk)k of finite cyclic groups :Eind a finite family ¥ = (Qlk,t,) -
of isomorphic copies tk o : €ro —> € (0 € A) of & (all k). For gr € € we
let gk, denote its preimage by ik -

Let F be the profinite free product on X. There exists a natural right action of A on
F which is defined by (gx,0)7 = gk,s for all k,o,7. With respect to this action we
denote by A F the semi-direct product of F' by A. We identify A and F with the

subgroups A1 and respectively 1 X F' of AxF. We further use ¥ also to denote
the family of all €, viewed as subgroups of F.

For normal subgroups D of A F which are contained in F' we set C = F/D and
identify (Ax F)/D with AxC. Let ap : AXF— AxC and aP : AxC— A
denote the canonical projections and P (or simply ¥ if no confusion is possible)
the image of X by ap.

Clearly, EP? = (v,aP) is an embedding problem for G. We call such an embedding
problem an adjusted embedding problem for G. We say that EPP is an adjusted
finite embedding problem for G if D is an open normal subgroup of A F.

Let EP = (y,«) and EP' = (4',a') be embedding problems for G. We say that
EP' dominates EP, if there exist surjective group homomorphisms 7o : A’ — A and
By : B' — B such that v = 707, afo = &' and By (ker(a')) = ker(a). In this
context we have: If §' is a (proper) solution of EP' then o' is a (proper) solution
of EP.

(1.2) The class of all adjusted finite embedding problems for G is cofinal with respect
to the domination relation in the class of all finite split embedding problems for G.
More precisely, let EP = (v,a) be a given finite split embedding problem for G
and & a section of «. Further let Yo = (ka)k be a finite set of cyclic subgroups of
ker(a) such that Yo generates ker(a) and is closed by conjugation with elements
from A =@(A). Then with v and Zo as in the hypothesis for (1.1) there exist open
D and surjective group homomorphisms fy : AxC — B such that:

1) @(o) = fo(ox1) for all o € A.

2) Bo(=P) =3y and By maps every €, isomorphically onto (o) €k a(o)™t.
In particular, EPP dominates EP.

Proof. First we remark that A acts from the right on ker(«) and its subsets by
means of @ as follows: ()7 = (-)*) the conjugation being considered in B. Using
the construction from (1.1) there exists a surjective homomorphism

0:F—ker(a) by o(gr,0)= (Qk)gnl
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which is compatible with the action of A on F' and C. Hence ¢ canonically induces
a group homomorphism

axp: AxF— B by (1,9)—a(t)e(g).

One clearly has (@x¢)|4 = @. Further @x¢ maps every &€, isomorphically onto
(€x)o! =a(o) €r (o)™ and hence (@x¢)(XZ) = To. By a standard limit argument
it follows that there exist open normal subgroups D of AXF asin (1.1) such that
ax factorizes through ap. [

Let H be another profinite group and 7 : H — G a surjective group homomor-
phism. Then every embedding problem EP = (v, a) gives rise in a canonical way to
an embedding problem EPy = (yg4,a) for H by setting vy = ym. We say that a
solution B of EPy is regular if B(ker(w)) = ker(a). One has: Suppose that EP and
EP' are embedding problems for G and that EP' dominates EP. Then for every
regular solution f% of EP% it follows that Sofy is a regular solution for EPg.

We say that H is a regular resolvent for G if for every finite split embedding
problem EP for G, the corresponding embedding problem EPpy has a proper regular
solution. Using (1.2) we get:

(1.3) H is a regular resolvent for G if and only if for every adjusted finite embedding
problem EP for G the corresponding embedding problem EPy for H has a proper
regular solution.

For an arbitrary field x and a regular field extension K|« let 7 : Gx — G,
denote the canonical projection homomorphism. As K|« is regular it follows that
is surjective. By the observations above, every embedding problem EP for G, gives
rise by means of 7y, canonically to an embedding problem EPg for Gk.

We say that K is a regular resolvent for k if Gk is a regular resolvent for G .

We remark that by (1.3), to show that K is a regular resolvent for x it is sufficient
to prove that for every adjusted embedding problem EP for G, the corresponding
embedding problem EPg for Gx has a proper regular solution.

We make a further restriction on the embedding problems which is necessary to be
considered in order to verify that K is a regular resolvent for . For this we introduce
the following notations:

- For a given finite family ¥ of finite groups, let my, denote the lowest common
multiple of the orders of all the groups in X.

- For a given embedding problem EP = (y,a) for G, let g, denote the fixed
field of ker(v) in the separable closure of &.

We say that an embedding problem EP for G, isrationally adjusted if it is an adjusted
embedding problem and )., contains the roots of unity pmy of order msy.
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(1.4) Every finite split embedding problem EP for G is dominated by a rationally
adjusted finite embedding problem.

Indeed, for a given split finite embedding problem EP = (v,a) for G, and given
o and Yy as in (1.2) let D C G« be an open normal subgroup which is contained
in ker(y) and such that the fixed field " of D contains pmy. We set A’ = G./D
and denote by o' : Gx — A" and v, : A' — A the canonical projections. Let us
further set B' = B x4 A" andlet o : B' — A' and fy : B' — B be the canonical
projections. Then it follows that EP' = (4',«') dominates EP. Moreover, by the
universality property there exists a (unique) section @ : A" — B’ of o' such that
Boa = @. Further, By maps C = ker(a') isomorphically onto C' = ker(a). Denoting
by Zf the preimage of Xy in C one has: By maps X bijectively onto ¥y and every
¢’ € X! isomorphically onto the corresponding € € ¥o. In particular, ¥j is a set of
cyclic subgroups of C which generate C and X is closed by conjugation with respect
to elements of A = &' (A'). Moreover, Mg = Mg,

Our claim now follows by (1.2) and (1.1) applied to EP'.

The main result of this section is:

(1.5) Theorem. Suppose that & satisfies a universal local-global principle. Then
the rational function field in one variable x(t) is a regular resolvent for . Equivalently,
if EP is a finite split embedding problem for G, then the corresponding embedding
problem EP ) for G has a proper regular solution.

Proof. The technical core of the proof consists of the following lemma, which is
a special case of (1.5) and is a consequence of % Riemann Existence Theorem with
Galois action, see [P4].

(1.6) Lemma. For an arbitrary field « we let & = x((u)) be the power series field
in one variable over k. Then the rational function field in one variable K = i(t) over
& is a regular resolvent for k.

Proof (of the lkermma). We first recall the content of 3 Riemann Existence Theorem
with Galois action for opens of the 1-dimensional projective space P} over .

Let S be a finite set of closed points in P and U the complement of 5. We
denote by S = {s1,...,5ns} and U the base change of S and U to the algebraic
closure of #. We fix a function t € #(PL) such that #(PL) = &(¢) and set K = &(%).
By means of ¢ we identify P1() with QU oo for every overfield £ of &. We shall
suppose that S does not meet the pole of {. There exists an exact sequence

1—+?T](ﬁ).-—}?T1(U)——-—>G;¢—)1

which is split, as P1 has &-rational points. We suppose that ng = 2n 1s even and
by the conventions above we identify S with a finite subset of the algebraic closure of
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. We say that S is pairwise adjusted if the elements of S can be organized in pairs
pr = (zk,yx) (1 <k <n) which are permuted by G between themselves and satisfy
v(zk — yx) > v(zg — zpr) for all k # k', where v denotes the canonical valuation of
% and also its unique prolongation to the algebraic closure of &.

Now suppose that S is pairwise adjusted. We consider the profinite group II on
ne generators and relations as follows: :

ﬁ:<gz1:hy1:"'agznﬁhyn1 grkhykzl for all k)

e |
endowed with the right G; -action defined by (gz, )7 = (g%_lx )X(T ) and correspond-
k

ingly for hy,, where x is the cyclotomic character of Gz and 7 € Gi is arbitrary.
By the main result from [P4] one has the following (n.b., we are here in the equal
characteristic case):

The canonical ezact sequence
1——}?71(@ —)Wl(U)“—%GR — 1
has in a canonical way the following quotient:
14— K —s G — 1,

the semi-direct product being considered with the canomnical right action of Gz on IL
Moreover, the generators g, and hy, are inertia elements associated to x,, respec-
tively y, (all k).

We return to the proof of (1.6). By (1.4) and (1.3) it is sufficient to show that
for a given rationally adjusted finite embedding problem EP = EPP for G:, say of
the form

G

|

Arl Dy 2 3

the corresponding embedding problem EPx for G has a proper regular solution. Let
A=A\, be the fixed field of ker(7) in the separable closure of &. For a fixed normal
basis X = {z,}oca of A|& we choose elements a; of & such that all Th,y = Qo
(all k,0) are distinct. We further take for every k some by # ar in & (which is close
enough to a, in the valuation topology) and set y; , = b 2o (all k,0). Let S' CPL
be the finite set of closed points defined by z; , and Y o (all k,0). With these
notations S is exactly the set of all 2y, and y; . (all k,o). Moreover, if by are
sufficiently close to ak, then S’ is pairwise adjusted, the pairs being p; , = (azk,o, ykja)
for all k,o. Let U’ denote the complement of S in P. and let T be the profinite
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group on generators g _,hy  (all k,0) and relations as follows:

M =lg, B | 9. K =1 forall £o)

ko yk,a‘ ko yk,o‘

endowed with the right G; -action defined by (ga,k 6)1"’ = (gn_l )X({: ) and corre-

ko

spondingly for hy__, where x 1s the cyclotomic character of G; and T € G; is
arbitrary. As remarked above, the canonical exact sequence

1 -—%?T](ﬁ') —)71'1(11.1’) — G — 1
has in a canonical way as a quotient the exact sequence

1—>ﬁ‘—>G;;D<ﬁr—'—>Gk—)’1,

the semi-direct product being considered with respect to the canonical action of G
on ﬁ" Moreover, the generators 9o, , and hy“ are inertia elements associated to
T oo respectively y; , (all k,0).

In the context from (1.1) for every k we fix a generator gx of €; and denote by
gk,o the corresponding generator of €, (all k,0 ). In particular, (gh,ro)7 = gk,o for

all £ and o,7 € A. We next define ¢ : T—F by setting ¢(gz, ) = (92 a)XEP(J_ )v
where xgp is the cyclotomic character of Gal (ilfc) = A. Taking into account that A

contains the roots of unity of order m, (all k), an immediate verification shows that
¢ is compatible with the action of Gz on I and F via ~. Hence there exists a
commutative diagram of exact sequences of the form:

1— ﬁ.f — G',r;lxﬁF —_— Gy —1

lzp l"rwp l'r
T AxF = Ay e

Therefore, fx : Gx — m1 (U) — Gi X T — AxF — Ax(F/D) is a proper regu-
lar solution of the embedding problem EPy. The proof of (1.6) is finished.

We now return to the proof of (1.5). The proof is based on the following field
theoretical assertions.

(1.7) Lemma. Let #|x be a field extension with k existentially closed in &. %) Let
K|x be a regular function field over £ and suppose that K and & are linearly disjoint
over k. Let K#% be the compositum of K and % (in some universe containing both
of them ). Then, if K& is a regular resolvent for &, sois K for k.

Proof. The proof follows immediately using non-standard type arguments con-
cerning function fields, see for instance [vdD-S], [R-R], [P1] and others. Therefore

2} See for instance [B—S] for definitions and basic facts.
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we will only sketch the proof here. First, as & is existentially closed in &, there ex-
ists an ultrapower % = x’/U of k and a x-embedding & — %, see [B-S]. Setting
K = KT/U it follows that *K is linearly disjoint over K to the algebraic closure of K.
We further consider the composita K& and K% as subfields of K. Let EP = (y,a)
be a split embedding problem for G. We remark that &|s and %|s are regular field
extensions, hence by means of the canonical projections Gx — G and G — G,
we can consider the induced embedding problems EP; and EPs which are split. As
KF£ 1s by hypothesis a regular resolvent for & it follows that EP iz has a proper reg-
ular solution fgi. Therefore, if 7 : G+ — Gii denotes the canonical projection,
then B+ = Bxi7 1s a proper regular solution for EPg+. Let N be the fixed field of
ker (5 K*n) in the separable closure of K%. Then N|K% is a finite Galois extension
and in particular, N|% is a function field. Moreover, denoting by A the fixed field
of ker ('}f) in the separable closure of k¥ and \ = A /U, it follows that *\ = %\ and
N|*\ is a regular field extension. Using the terminology from [P4], p.164 and especially
the facts (7)—(9), it follows that K® = K are local representatives for K%. Taking
local representatives N'|x for N|% it follows that locally N*|K are Galois extensions
which give rise to proper regular solutions of EPgx. O

(1.8) Lemma. Let k be a field with a universal local-global principle. Then & is
existentially closed in the power series field in one variable & = k((z)) over .

Proof. It is well known that & is separable over . Hence our assertion follows if
we are able to show that k is existentially closed in every finitely separably generated
subextension R|x of k|k. For such a field extension R|x one has the following general
fact:

k 1is existentially closed in R if and only if for every smooth model V' of R which is
defined over k one has V(k) # &.

To prove that in the context above we have V (k) # ¢ we use the fact that « satisfies
a universal local-global principle with respect to some family of localities £ of «.

Casel) L=¢.
Then & is a PAC field and so V(k) # &.
Case 2) L # ¢.

Let A € £ be arbitrary. Although we cannot give a precise reference, a proof will
appear in [K], it is a well known fact for the specialist in model theoretic algebra that
every non-trivial valued henselian field A is existentially closed (as a field and a valued
field) in its power series field in one variable A = A((z)). As V(R) # ¢ and since
R C & C A it follows that V(ﬁs.) # 4. Hence V(A) # ¢ as A is existentially closed

in A. As k satisfies a universal local-global principle with respect to £ and A € £
was arbitrary, it follows that V(x) # 4. O

To finish the proof of (1.5) one applies (1.6), (1.7) and (1.8).
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2. Proof of Main Theorem, Theorem A and Theorem B (Introduction)
Proof of Main Theorem

We set K = k(t) and let : Gg — B be a proper regular solution for EPx which
exists by (1.5). Equivalently, there exists a commutative diagram of surjective group
homomorphisms of the form:

MKk
e —— G,

s e

B — A4
We denote by A and N the fixed fields of ker(y) in «° and respectively, of ker(f)
in K. Then N N&°= X and the exact sequence

1—ker(a) = B——A—1
is canonically isomorphic to
1 — Gal(N|L) — Gal(N|K) = Gal (A\|k) — 1,

where L = A(t) = KA and = is the canonical projection. Let & be a section of «
and 7T the section of 7 corresponding to @. Further let M denote the fixed field of
the image of . Then M|K is a finite separable extension, [N : M] = [\ : k] and
N = MA. Hence M|k is a regular function field of one variable. As & is hilbertian
there exist (many) & -rational places p of K, ie specializations t — a for some a € &,
such that:

e p isinert in M. Equivalently, Mq|Kp is separable and p has a unique prolon-

gation q to M and so, [M : K| = [Mq: Kp].

e Mg and )\ are linearly disjoint over k.
If now p is such a place of K it follows that p is inert not only in M but also
in N. Equivalently, p has a unique prolongation t to N, Gal(N|K) = Z(t|p) is
the decomposition group of t|p and the inertia group T'(t|p) = 1 is trivial. Taking
some prolongation t® of t to the separable closure of K we denote by Z and T the
decomposition, respectively the inertia group of t°|p. By general valuation theory it
follows that the images of Z and T in Gal(N|K) are exactly Z(t|p), respectively

T(t|p). Hence these images are respectively Gal(N|K) and 1. Therefore we have
B(Z) =B and B(T) = 1. Hence the restriction of § to Z factorizes as follows

B:Z—2Z|T i} B,
where the first map is the canonical projection and B is surjective.

Next we remark that the restriction of the canonical projection 7g. : Gx — G, to
Z defines the canonical exact sequence for Z = Z(¢*|p):

ooy e it o,

12



As p is k rational,ie Kp = k, we have Gy = G,. Hence the restriction of T tO
Z factorizes as follows

:rrKK:Z—-—r,Z/T—&+G,C,

where the first map is the canonical projection and 7 is an isomorphism. Therefore,
the above commutative diagram gives rise to a commutative diagram of the form

Zi et
2 &
B —— A

with # an isomorphism and # surjective. Hence, 7}

The proof of Main Theorem is finished. []

1s a proper solution of EP.

Proof of Theorem A

We consider the situation of Theorem A and prove that G is w-free. By Iwasawa’s
theorem 4 from [I] it is sufficient to prove that every finite embedding problem EP

G

K

B == 4

for G, has a proper solution. First, as G, has cohomological dimension 1, if follows
that EP has solutions. Starting with such a solution [ there exists a general pro-
cedure to construct a split finite embedding problem EP’ = (7,a') which dominates
EP. Namely we set A’ = Gy/ker() and G, —— A' for the canonical projection.
There exists a unique isomorphism A' —- §(G,) such that # = ¢’ and a unique
surjective homomorphism A’ 2 A such that v = voy'. With respect to the surjec-
tive homomorphisms B %> A and A’ =% A we consider B' = B x4 A’ and denote
by B’ ', A' and B' 2% B the structural projections. Clearly, the embedding prob-
lem EP' = (v',a') dominates EP. Moreover, by the universality property of the fibre
product it follows that there exists a unique group homomorphism @' : A’ — B’ such
that o'a’ =ida and Boy@ = . In particular, EP' is a split embedding problem which
dominates EP. Hence, without loss of generality we can suppose that EP is a split
embedding problem for G. One proceeds by applying the main theorem. [J

Proof of Theorem B

We first briefly recall basic facts about relatively projective groups and generalized
profinite free products, see Haran [H], section 3, Mel’nicov [M], and [P2], Ch 1.
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Let G be a profinite group. We endow the set of all closed subgroups of G with
the étale topology, which by definition has as basis the sets of the form

Uy ={I'|I'CNT},

where I' and N run over the sets of all closed subgroups of G and the set of all open
normal subgroups of G, respectively. When speaking about the action of G on spaces
of subgroups of G we always mean the inner conjugation. This action is continuous
in the étale topology.

Let G be a profinite group and G an étale quasi-compact set of its closed subgroups.

We denote by con(G) the smallest set of closed Subgroups of G which is G -invariant
and closed by taking subgroups and remark that con(G) is étale quasi-compact. Fur-
ther we denote by G___ the set of all maximal elements of G with respect to the in-
clusion relation and remark that G___ is étale quasi-compact and con(G_, ) = con(G).
Finally, a fundamental domain for G is by definition an étale quasi-compact subset
of (con(G)) -

following fact is an easy exercise with directed projective systems of finite sets:

containing exactly one representative from each conjugacy class. The

(2.1) If G is countably generated then every étale quasi-compact set G of closed
subgroups has a fundamental domain.

A (finite) G -embedding problem EP, = (v,«,B) for G consists of:

1) A diagram of the form
G

|
B -2, 4

where a and + are surjective (and B is finite).

2) A set B of subgroups A such that every 7| factorizes through «|, for some
Aec B,

We remark that condition 1) asserts that EP = (v, «) is a (finite) embedding problem
for G as described at the beginning of section 1. The second point can be viewed as
”local splitting conditions” in the following way: For every I' € G we can consider the
induced embedding problem EP_ as follows:

T
a(l)) =% am)

The condition 2) above asserts that EP has solutions for every I' € G.

A solution of EP_ is any homomorphism f#: G — B such that v = aff. A strong
solution of EP, is a solution § satisfying B(G) C con(B).

14



We say that G is (strongly) G -projective if every finite G-embedding problem for G
has a (strong) solution.

A profinite group junk is by definition a totaly disconnected compact space X
endowed with a set X of distinguished profinite groups I' (which are topological
subspaces of X ) such that X =|JI' (I' € & ). A morphism of profinite group junks

(X,X) and (Y,)) isa continuougmapping f : X — Y having the property that for
every I' € X there exists some A € Y such that f(I') CA and f: T— A isa
group homomorphism.
For G a profinite group and G an étale quasi-compact set of closed subgroups,
we denote |G| = |JT (I € G) and remark that |G| endowed with G is a profinite
162

group junk. For simplicity, we will denote this group junk by G, because no confusion
can appear. We say that G is the (generalized) profinite free product on G if for every
finite group A and every morphism of profinite group junks ¢, : |G| — A there exists
exactly one group homomorphism ¢ : G — A which extends ¢, to G.

We will say that G is G -free if there exists an étale quasi-compact free set H of
subgroups of G such that |G| N |H| = {1} and G is the free product on GUH.

Let (X,X) be a profinite group junk. Then there exists a unique profinite group
F. . endowed with an étale quasi-compact set F of closed subgroups and a surjective
morphism of profinite group junks 6 : X — |F| such that the following universality
property is satisfied: Every profinite group junk homomorphism ¢ : X — A into a
finite group A factorizes through 6, ie there exists a morphism of profinite group junks
¥, : |F|— A such that ¢ = 1,0 and secondly, there exists a unique prolongation
of %, to a morphism of profinite groups ¢ : Fy , — A. In particular, Fy , is the
generalized profinite free product on F.

To construct (Fy ,, F, 6) one can proceed as follows: Let § be the discrete free
group on X and j : X — § the structural mapping, thus 6 maps every I' € &

isomorphically onto the corresponding factor of §. Let AN be the set of all normal
subgroups N of finite index in § for which the canonical mapping

X-L.g iy
induces a homomorphism of profinite group junks X — §/N. An immediate verifica-
tion shows that the set N is decreasingly filtered by inclusion. Hence one can consider
the profinite completion of § with respect to A. We denote by F, , the profinite
completion of § with respect to N and let j, : § — Fx , be the structural mor-
phism. We denote by F the image of j(X) by 75, hence that of A by ;7. An easy
verification shows that F is étale-quasi compact and that 7,7 induces a continuous
surjective mapping 6 : X — |F|, which turns to be a homomorphism of profinite

group junks. Moreover, it is almost a tautology to verify that F , endowed with the
set of subgroups F and the morphism of profinite group junks 6 : X — |F| verifies

15



the universality property we have given.

(2.2) Directly from the construction of the generalized profinite free product associ-
ated to a profinite group junk we get:

(1) The correspondence (X,X)— Fy . is covariant functorial.

(2) If (X,X) is the disjoint union of two profinite group junks (X3, &%) (k =1, 2)

then the canonical homomorphism Fy . *Fy , — F, . is an isomorphism.

(3) Let (Fy »,F,0) be the generalized profinite free product on some profinite group
junk (X,X) andlet F, denote the generalized profinite free product associated
to the profinite group junk F. Then the canonical homomorphism F

XA FJ—'

induced by 6 : X — |F]| is an isomorphism.
We give two typical examples of generalized profinite free products.

1) The profinite free product of a profinite group on a boolean space

Let I' be a profinite group and 1" a boolean space, ie a compact totally disconnected
space. We define the profinite free product of I" on the space 7', notation B, mthe
following way: We consider the direct product X =T x T as a totally disconnected
compact space and endow it with the set X of all isomorphic copies of I' of the form
I'c =T x{z} (all £ € T'). The profinite free product of I' on T is by definition
the generalized profinite free product associated as above to the profinite group junk
(X,X). We will denote by F the image of X in Fj,,.

2) The profinite free envelope of a relatively projective group

It goes about the following: Let G be relatively projective with respect to an étale
quasi-compact set G of subgroups. As mentioned above, G gives rise to a profinite
group junk, which we will also denote by G. We consider the generalized profinite free
product associated to this profinite group junk and denote it by F,. As usually we
denote by F the image of G in F,. Further, we consider the generalized profinite free
product of Z on the underlying topological space of the profinite group G and denote it
by F,. Finally weset F; , = F+F, and call it the free envelope of (G, G). Using the
separating theorern (1.7) from [P2] one verifies that the canonical mappings G — F
and |G| — |F| are isomorphisms. Therefore there exists a canonical projection

F,,—G

which maps F and |F| isomorphically onto G, respectively |G| and the generator
1, of Zx {g} to g (all ¢ € G). In particular, if G___ is a fundamental domain for
G then F,___ is a fundamental domain for F and

(FG,G %] fmax) _Tr_}' (GJ gmax)
is a cover as defined in [P2], after theorem (1.7).

We now have the following generalization of Theorem 4 of Iwasawa [I].
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(2.8) For a profinite group G endowed with an étale quasi-compact set G of closed
subgroups we consider the following conditions:

i) Every G-embedding problem for G has a proper, strong solution.

i) G_.. = ¢ is a fundamental domain for G.

(2.4) Theorem. Let Gy (k=1,2) be countably generated profinite groups which
are endowed with étale quasi-compact sets Gy of closed subgroups such that the con-
ditions i), ii) above are satisfied. Further suppose that there exists an isomorphism of
profinite group junks |G| = |G2|. Then there exists an isomorphism Gy = G, which
maps con(Gy) isomorphically onto con(Gz).

Proof. The proof idea is the same as in Iwasawa’s loc.cit., to which we refere.
We explain the suplimentary difficulty one has here. In the context from (2.3) let
us consider two profinite group junks homomorphism ¢,¢" : |G| — C into some
profinite group C. We say that ¢,¢' are quasi-conjugated, notation ¢ ~ ¢', if for
every I' € G there exists ¢ € C such that ¢° = ¢’ on T, ie ¢(g)° = ¢'(g) for all
g € T'. Let now EP = (7,a) be some embedding problem for G and g, : |G| — B
a morphism of profinite group junks. We say that [, is compatible with EP if
af, = on |G|. We say that B, is quasi-compatible with EP if of, ~ v as
profinite group junks from |G| into A. If so, then f, gives rise in a canonical way to
a G-embedding problem EP, = ('y, O:,B) for G by setting B = g, (g) We will call
such a G -embedding problem a quasi-cover for (G, g) and denote it by (fy, o, ﬁg). The
suplimentary difficulty we have spoken about, consists in showing that in the situation
from (2.3) the following holds: Every finite quasi-cover (']r,cv,ﬁg) for (G,g) has
proper solutions B such that § ~ B, when viewed as homomorphisms of profinite
group junks from |G| into B. This assertion is the content of the lemma below.
After proving the lemma the induction procedure from loc.cit. does work without any
changes. Therefore we will omit the straightforward verifications.

Lemma. Let G together with G satisfying the conditions 1), ii) above. Then every
finite quasi-cover EP, = (7,0:,,6’9) for (G,G) has proper solutions # such that the
induced profinite group junk homomorphism f : |G| — B is quasi-conjugated to 3, .

Proof. We first show that there exists another profinite group junk homomorphism
B, : |G| — B which is compatible with EP and quasi-conjugated to f;. Indeed, for
every I' € G we take a € A such that afi;, = v* on I Then I' has an étale open
quasi-compact neighbourhood G, such that af, = v* on |G.|. Clearly, the family
(gr)r is an open covering of G, hence we can extract from this a finite subcovering,
say (Gr)r. Moreover, replacing this subcovering by a finer one we can suppose that
B,(I") =1 if IV is element of two different members of the covering. We now define
the profinite group junk homomorphism B, we are looking for as follows: For every

G there exist some a, € A such that of, = v** on |Gi|. We take a preimage b,
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of a; in B and define 3, to be the unique mapping from |G| into B such that
ﬁ;b’“ = fB; on |Gk| (all k). One easily verifies that (. exists and has the properties
we asked for. Hence, without loss of generality we can suppose that af, =~ on |G].

We next remark that it is sufficient to prove the lemma in the case where « is
injective on every [, (I'). Indeed, there exists a finite quotient A' = G/D of G such
that D C ker(y) and B, factorizes through the canonical projection ~' : G — A'.
Using the same construction as in the proof of Theorem A we find an embedding prob-
lem EP' = (¢',a') for G which dominates EP and such that the deduced morphism
of profinite group junks 8! is compatible with EP’ and moreover, &' is injective on
the image of B,. Hence o' is injective on every B.(T). Finally, if 8' is a proper,
strong solution of (7',a/,B,) such that B’ is quasi-conjugated to B, when viewed
as profinite group junks from |G| into B’, then clearly, the induced solution S for
EP will have the properties we asked for. Hence, without loss of generality, we can
suppose that « is injective on every g, (I").

Hence it remains to prove the lemma in the case where a8, = v on |G| and
a is injective on B, (I') (all T' € G). To prove the lemma in this particular case we
shall use the profinite free envelope F , —— G of (G,G). We first remark that we
can suppose that B is a quotient ¢ : F — B of F := F,, and so, f,7 = ¢ on |F|
and if ® € F corresponds to I' € G then also ¢(®) = 5, (T').

We proceed as follows: For every open normal subgroup C of F' we set D = n(C)
and consider the following commutative diagram

F i G

e L
o =% @
where the morphisms are the canonical projections. Clearly, denoting by G, the image
of G in G/D and defining F_ correspondingly, it follows that a(F.) =G, hence
a, (con(F,)) = con(G,). Moreover, the family of all mappings
a, : con(F, ) — con(G,)

is a projective system of finite sets which has as limit « : con(F) — con(G). On the
other hand,

(Fo0,F) = (&,9)

is a cover as defined in [P2], after theorem 1.8, as we already have remarked above.
Hence it follows by loc.cit. lemma (1.11) that for every A € con(F) the preimage of
m(A) in con(F) is exactly A¥™ (™. Next, for every C and A € con(F) welet F,
be the preimage of a,(A/C) in con(F,). Then the sets

KXo = {ch [A/CECOH(FC)}
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form a projective system with respect to the canonical projections F/C' — F/C.
Their projective limit is the set

X={FAcF}

where F, is the preimage of 7(A) in con(F). Hence, X' consists of all subsets of F of
the form A¥™(™ (A € con(F)), as we have already remarked above. By a standard
limit argument, for every C there exists C' containing C such that the following
conditions are satisfied: for all C" which contain C', the image of X and that of
AX_, in the set of subsets of F, are equal. In particular, for such a C' the image
of every F, ., in F, consists exactly of the orbit of A/C under the conjugation
with elements from ker(w)/C. We now set C' = ker(¢) and for such a C' let B’ bea
proper, strong solution of the quasi-cover (v,,,a,,, ﬁ;) defined by g, := ¢ w1, Let
B be the compositum of f’ with the canonical projection F/C' — F/C = B. Then
B is a proper, strong solution of (v, @, B,). We are going to show that [ satisfies the
other requirement of the lemma. Indeen, take I' € G arbitrary and let ® € F be its

preimage. Then

o (®/C) =T/D' =« A(T),

hence §'(T) lies in 7, ,. Thus B(T) = @/C = B,(T) for some b € ker(n)/C. We
claim that actually B® = 8, on TI. Indeed, as b lies in ker(w)/C, hence in ker(a), it
follows that a8 = af. Hence we have af, =y = af® on T. Thus B° = B, on T,

as o is injective on B,(T'). The proof of the lemma is finished.

(2.5) Corollary. Let G be a countably generated profinite group endowed with an
étale quasi-compact set of subgroups G such that the conditions from (2.3) above are
satisfied. Then G 1is isomorphic to the profinite free product

Gt &

of the generalized profinite free product on G with an isomorphic copy of the profi-
nite w -free group F, . Moreover, denoting the image of G in F, by F, the above
isomorphism maps con(G) isomorphically onto con(F).

In particular, denoting by G, the normal closed subgroup of G which is generated
by G, one has:

1) G/G, is w -free.
2) G

o 1s the profinite free product on some étale quasi-compact subset of con(G).

Proof. It is clear that F, *F, is a countably generated profinite group. Moreover,
if F istheimageof G in F,, then F_ *F, is F -projective and satisfies the conditions
i), ii) from above. Furthermore, 7 = F___ is a fundamental domain for F. As §
and F are isomorphic as profinite group junks, we can apply theorem (2.4). The
remaining assertions 1) and 2) immediately follow from the structure of F, * F,. O

19



We now come to the proof of Theorem B. We first remark that every G, -embedding
problem EP, for G, has proper solutions. Indeed, by [P2], theorem (3.3), it follows
that EP_  has solutions, as Gxis G -projective. Using the procedure from the proof
of Theorem A it follows that EP, is dominated by a split embedding problem EP
for G«. By the main theorem there exist proper solutions for EP, and therefore also
for EP,_. Next, by [P2], Ch2, §1, A), we can suppose without loss of generality that
Ly is closed in the subfield topology. Hence applying [P3], theorem (4) together with
the proposition preceding it, it follows that G, is strongly G -projective. Moreover,
if we in lemma (6) from loc.cit. consider only proper solutions B, of the emebdding
problems EP in discussion there (these proper solutions exist by the remark above),
it follows that all B, are actually proper, strong solutions. Combining this result
with lemma (5) from loc.cit. it follows that every G, -embedding problem has proper,
strong solutions. Finally, as & is countably generated it follows that its absolute Galois
group G is countably generated. In particular, G, has a fundamental domain, say
G. Hence the profinite group G endowed with G satisfies the conditions from (2.3).
To conclude we apply (2.5).
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