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LECTURE I: Galois via Topology

• Theme: Non-tautological description of

GalQ = Aut
(
Q

)
§ 1. From Topology to Numbers

– Recall RET: There exists equiv of categories

Topology&Geometry: Compl. algebraic curves:

compact Riemann projective smooth
surfaces X complex curves X

Function fields:

function fields F in
one variable over C

X ←→ M(C) = F = C(X) ←→ X
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• Basic Question (Grothendieck):

Which X , hence which X, hence which F ,

are defined over Q ⊂ C, hence number fields?

Theorem (Grothendieck/Belyi).

X is defined over Q if and only if

∃ X→→P1
C ramified only at 0, 1,∞.

Proof:
“⇒” by Belyi.

“⇐” by Groth. (étale fundam. groups).

Comments:
- This is the origin of Grothendieck’s “Designs d’enfants”.

- A cover X → P1
C as in Theorem is a Belyi map .

- Study the action of GalQ on the space of “Designs”

(many many people: Malle, Klüners–M., Schneps,

Lochak–Sch., Zapponi, math-physicists, etc. etc. etc...)

•Not yet reached Goal: Topol./combin. description of GalQ...
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Interesting open Question/Problem

Higher dim extensions of the above Theorem.

Two possible ways:
- First, X → P1

C has at most n ram points.

- Replace curves by higher dim varieties, e.g., surfaces (?!?).

- Several partial results...

Theorem (Ronkine 2004; unpublished).

The birat. class of complex proj. surface

of general type is defined over Q iff

∃ smooth fibration X0→→P1
C\{0, 1,∞}.

Another idea (Grothendieck)

• Study GalQ via its action on the “algebraic

fundamental group” of P1
C\{0, 1,∞}:

- That is F̂<τ0,τ1> =: F̂2 free on loops τ0, τ1.

- And ∃ can embedd GalQ ↪→ Aut(F̂2).

- Etc...
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§ 2. Warm-up: πtop
1 and GalR

– Var R category of R-varieties X. Consider:

a) Xan := X(C) and X̃an → Xan univ. cover.

b) πtop
1 (X) := πtop

1 (Xan) = AutXan(X̃an).

– GalR ∼= {±1} acts on Xan and πtop
1 (Xan).

• Get exact sequence

1→ πtop
1 (X)→???→ GalR → 1

and repres ρX : GalR → Out
(
πtop

1 (X)
)
.

– View πtop
1 : Var R → Groups as functor.

• Then (ρX)X gives rise to a morphism:

ρ R : GalR → Aut(πtop
1 )

Theorem. ρ R is an isomorphism.

Comments:

- New non-tautological description of GalR.

- What about other base fields K ⊂ C ?
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§ 3. Étale/algebr. fundam. groups

– K ⊆ C base field, e.g. Q, R.

– VarK category of K-varieties X.

Idea: Play same game with K instead of R !!!

• Bad News:

- GalK does not act on Xan and/or πtop
1 (Xan);

- No “nice” ρX : GalK → Out
(
πtop

1 (X)
)
.

• Good News:

- Finite covers X → Xan are algebraic

(Serre’s GAGA).

- GalK acts on the set of all such X → Xan.

– For each X ∈ VarK , consider:

a) X̂ → X proj.limit of all X → Xan, the

“algebraic universal cover” of X.

b) πalg
1 (X) := AutX(X̂) = π̂top

1 (Xan), the

“algebraic fundamental group” of X.
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Theory of étale fundam. groups

(as developed by Grothendieck) gives:

– ∃ canonical exact sequence:

1→ πalg
1 (X)→ πet

1 (X)→ GalK → 1.

– Represent ρX : GalK → Out
(
πalg

1 (X)
)
.

– πalg
1 : VarK → prof.Groups is a functor

(where morphisms of prof.Groups

are all the continuous outer hom’s).

– Finally (ρX)X gives rise to a morphism:

ρK : GalK → Aut(πalg
1 )

Grothendieck’s philosophy:

• Study GalK via the representation ρK .

• Same problem for the representations ρV arising from

“well understood” sub-categories V ⊂ VarK .
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§ 4. Studying GalK via ρK

Question/Problem:

1) Find categories V for which Aut(πalg
V ) has

“nice” topological/combinatorial description.

2) Find such categories V for which

ρV : GalK → Aut(πalg
V ) is isomorphism.

• This would give a new description of GalK!!!

Example: Teichmüller modular tower

– Mg,n moduli space of curves

(genus g, with n marked pts.)

– “Connecting” morphisms

(“boundary” embeddings, gluings, etc.)

– T = {Mg,n | g, n} category of varieties

over Q, the Teichmüller modular tower.

– Note: M0,4
∼= P1 \ {0, 1,∞}.

M0,n
∼= (M0,4)n−3 \ {fat diagonal}
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Facts (to Question/Problem 1):

– ĜT = Aut(πalg
V0

) is the famous

Grothendieck–Teichmüller group.

– Intensively studied by Drinfel’d, Ihara, Deligne,

Schneps, Sch.–Lochak, Sch.–Nakamura,

Sch.–Harbater, Ihara–Matsumoto, etc., etc.

– ĜT = {(λ, f) | λ ∈ Ẑ×, f ∈ [F̂2, F̂2], rel.I,II,III}

– Several variants IGT , IIGT , IVGT , etc. of ĜT .

– Actually: rel. I, II, III, are not independent

(Schneps, Sch.–Lochak; Furusho: III suffices)

– Boggi–Lochak (to be thoroughly checked):

• ∃ variant newGT of ĜT such that
newGT = Aut(πalg

T ).

Conclusion: Question/Problem 1 has quite

satisfactory answer(s) for V = T
and its subcategories.
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Facts (to Question/Problem 2):

– Belyi: Let K|Q be number field.

If M0,4 = P1 \ {0, 1∞} ∈ V, then

ρV : GalK → Aut(πalg
V ) injective.

– What about surjectivity?

• I/OM (Ihara/Oda–Matsumoto Conj).

ρQ : GalQ → Aut(πalg
VarQ

) is isomorphism.

Theorem. I/OM has positive answer.

• Actually: Given X ∈ VarQ, dim(X) > 1, set:

- VX = {Zariski opens V ⊂ X, U ⊂ P1}, and

canonical inclusions V ′ ↪→ V ′′ and

projections V → U , as morphisms.

-Then ρVX
: GalQ → Aut(πalg

VX
) is isom.

Note: With X = P2, this gives (in principle)

a pure topol./combin. construction of GalQ!
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LECT. II: Grothendieck &beyond

§ 5. Anabelian phenomena (Exmpl)

a) X compact Riemann surface, genus g.

Theorem.

πtop
1 (X , x) ∼= <σ1, τ1, . . . , σg, τg |

∏
i[σi, τi] = 1 >.

Comment...

b) K field, GalK = Aut(Ksep|K)

absolute Galois group of K.

Theorem (Artin–Schreier, 1927).

Suppose that GalK is finite 6= {1}.
Then GalK

∼= {±1}, and K is real closed.

Comments...

Questions:
• What about the isomorphy type of X ?

• What about the isomorphy type of K?
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c) Example: Global fields

Global fields are the finite extensions of:

- Q, e.g., K = Q[ζn], ζn = e
2πi
n , etc.

- Fp(x), e.g., K = Fp(x, y), y2 = x3 +x+1, etc.

Theorem (Neukirch, Uchida, Iwasawa, 1970’s).

Let L and K be global fields. Then one has:

GalK
∼= GalL as prof.groups ⇒ K ∼= L as fields.

Comments:

- Actually, every isomorphism GalK
∼= GalL originates

functorially from a unique field isomorphism L ∼= K .

- It is though not clear how to “recover” the

field isomorphism type of K from GalK .
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§ 6. Grothendieck’s Anab Geom

– X ∈ VarK , more general X ∈ SchK , then:

1→ πalg
1 (X)→ πet

1 (X)→ GalK → 1.

• Grothendieck’s idea is that under certain

∗∗∗ “anabelian” hypothesis on schemes X ∗∗∗

geometry/arithmetic of X should be encoded

functorially in the homotopy sequence

πet
1 (X)→ GalK .

Comment: “Geometry/arithmetic” means isomorphy type,

morphisms between anabelian varieties, rational points, etc.

Conjecture: The following are anab. schemes:

- Finitely generated infinite fields.

- Hyperbolic curves over such fields.

• Not clear which higher dim varieties should be.
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Some results

I) Finitely generated (infinite) fields

– Finitely generated field are of the form:

K = Q(x1, . . . , xn) or K = Fp(x1, . . . , xn).

– They are obvious generalization of global fields.

– They are exactly the function fields of

(irreducible) varieties over Q or Fp (all p).

Theorem (P 1994).

1) The isomorphism type of fin. gen. infinite

fields K is functorially encoded in GalK .

2) Every open embedding GalK ↪→ GalL arises

functorially from some finite L ↪→ K.

Comments:

- Thm above generalizes the famous Neukirch–Unchida Thm.

- Gives a “Galois characterization of finitely generated fields”.
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II) Hyperbolic curves

– X → K is hyperbolic curve, if it has:

a) smooth geom. irred completion Xc.

b) χX = 2− 2g − r < 0, r = |Xc \X |

– And recall the canonical exact sequence:

1→ πalg
1 (X)→ πet

1 (X)→ GalK → 1.

Examples:

- X = P1 \ {0, 1,∞}.
- X = E \ {pt}, E elliptic curve.

- X smooth complete, genus > 1.

Theorem (Tamagawa, 1995).

1) K ⊂ C fin. gen. subfield. Then the isom

type of an affine hyperbolic curve X → K

is functorially encoded in πet
1 (X).

2) Moreover, every open embedd πet
1 (X) ↪→ πet

1 (Y )

arises functorially from some étale X→→Y .
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Further results:

– Tamagawa: Similar holds over finite fields K.

• Actually: This last result is the Key Fact!

...proceed using “specialization techniques”.

– Mochizuki (1996): Same holds for complete

hyperbolic curves over fin. gen. fields K ⊂ C.

Comment: Tool kit includes Tamagawa’s Key Fact.

– Stix (2000): Similar holds for all hyperbolic

“non-constant” curves over fin. gen. fields.

Comment: Tool kit includes Mochizuki’s methods, and

a result by Raynaud, Pop–Saidi, Tamagawa.

Remark: K ⊂ C fin.gen, X → K hyperbolic.

- πtop
1 (X) tells only whether Xan open or not.

- OTOH, πet
1 (X) encodes isom type of X .

- Isom types of Xan and of X are the same (GAGA).

Conclude: πet
1 (X) encodes isom type of Xan !
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§ 7. Beyond Grothendieck’s...

• “Yoga” of Grothendieck’s anabelian geometry

is the presence of a reach arithmetical action...

• During the 1990’s one realized that there are

unexpected anabelian phenomena in

total absence of arithmetical action!

1) Bogomolov (1990). Consider:

- K|k function field, td.deg > 1, k = k.

- Gal′′K → Gal′K maximal abelian-by-central

pro-` quotient of GalK , ` 6= char.

Conjecture (Bogomolov’s Program, 1990):

K|k can be recovered from Gal′′K .

Comment:
- tr.deg(K|k) > 1 is necessary, because...

- This goes far beyond Grothendieck’s anabelian idea:

a) First, no Galois action, because Galk = {1}.
b) Gal′′K carries only minimal Galois information.
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2) Tamagawa (1990’s). Consider:

- K = K, char > 0, X → K affine hyperbolic.

- ptm : πalg
1 (X)→ πtm

1 (X) the tame quotient.

Theorem (Tamagawa).

a) The tame quotient is encoded in πalg
1 (X).

b) Isom type of X ⊂ P1
Fp

encoded in πtm
1 (X).

3) Raynaud, P–Saidi, Tamagawa (2000 ± ε):

- K = K, Mg(K) moduli space to genus g > 1.

- πg :Mg(K)→ Prof.groups, C 7→ πalg
1 (C).

• If char(K) = 0, then πg is constant:

πg(X) = πalg
1 (X) = Π̂g.

• But if K = Fp, then πg is “interesting”:

Theorem (Raynaud, P–Saidi, Tamagawa).

πg :Mg(Fp)→ Prof.groups has finite fibers.

Comments:...
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§ 8. Bogomolov’s Program

Recall:

- K|k function field, td.deg > 1, k = k.

- Gal′′K → Gal′K maximal abelian-by-central

pro-` quotient of GalK , ` 6= char.

Conjecture (Bogomolov’s Program, 1990):

K|k can be recovered functorially from Gal′′K .

Comment:
- tr.deg(K|k) > 1 is necessary, because...

- This goes far beyond Grothendieck’s anabelian idea:

a) First, no Galois action, because Galk = {1}.
b) Gal′′K carries only minimal Galois information.

Evidence:

– Bogomolov (1990), B–Tschinkel (2002):

Theory of commuting liftable pairs.

Comment: Recovering valuations of K ...
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Theorem (P 1999/2003/2007).
Bogomolov’s Program okay over k = Fp.

Comment: B.–Tsch. special case for tr.deg(K|k) = 2.

Strategy of proof (P):

Main Idea: Consider P(K, +) := K×/k×

the “projectivization” of the k-v.s. (K, +).

• Then (K, +, ·) can be recovered from

P(K, +) endowed with its collineations,

via Artin’s Fundam. Thm. Proj. Geometry.

NOW:

- Kummer Theory: K̂× = Homcont(Gal′K , Z`).

- And P(K, +) = K×/k× ↪→ K̂×.

Hence to do list: Given Gal′′K→→Gal′K ,

1) Recover K×/k× ↪→ K̂×.

2) Recover the collineations inside K×/k×.

3) Check compatibility with Galois Theory.
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HOW TO DO THAT:

• Local Theory, i.e., recover:

- primes of K|k; divisorial sets DX of primes.

• Global Theory, i.e., recover:

- Div(X), then K×/k×, then collineations;

and finally check Galois compatibility.

Local Theory (few words):

- primes of K|k: DVR Rv with k ⊂ Rv ⊂ K

such that tr.deg(Kv |k) = tr.deg(K|k)− 1.

- D = {vi}i geometric, if ∃ normal model X → k

such that D = DX := {v |Weil prime div. of X}.

• Recovering the primes:

- 1st Method: Use B.-Tsch. “commuting pairs”...

- 2nd Method: Use Mináč et al...

Comment: This is very very technical stuff...
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LECTURE III: The p-adic world

§ 9. A result by Mochizuki

- k|Qp finite field extension, X ∈ Vark.

- πalg
1 (X)→ Πalg

X maximal pro-p quotient.

• ∃ canonical exact sequence:

1→ Πalg
X → ΠX → Galk → 1.

- X 7→ ΠX functor from Vark to Galk–groups.

Theorem (Mochizuki 1999).

Let X, C ∈ Vark with C hyperbolic curve. Then

every open Galk–hom ΠX → ΠC corresponds

functorially to a dominant k–hom X → C.

Comments:

- The proof is very very technical.

- Main technical tools: p-adic Hodge Theory,

and Faltings theory of almost étale covers.
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Comments:

- The above theorem generalizes all the previous

anabelian results for fin. gen fields K ⊂ C
and hyperbolic curves over such fields.

- The above theorem goes beyond Grothendieck’s

anabelian geometry, as it uses p-adic arithmetic

information only, and not global one.

- As an application, Mochizuki proves that k–surfaces

which are “Artin neighborhoods” are anabelian.

But it is not clear what to do / how to proceed

in higher dimensions.

- Corry-P 2007: Using Thm above one shows:

Theorem (Corry–P 2007).

Let K|k, L|k be function fields. Then every

open group Galk–hom ΠK → ΠL originates

functorially from a field k–embed L ↪→ K.
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§ 10. On the section Conjecture

• It concerns the rational points of curves.

– k base field, X → k hyperbolic curve,

X0 ⊇ X smooth completion; S = X0\X.

– X̃ → X algebraic univ cover,

prX : πet
1 (X)→ Galk canonical projection.

• For x ∈ X0(k), x̃ ∈ X̃ preimage,

let Dx̃|x ⊂ πet
1 (X) decomposition group.

One has:

1) If x ∈ X, then prX : Dx̃|x → Galk isom.

Hence ∃ conjugacy class of sections

sx : Galk → πet
1 (X) defined by x.

2) If x ∈ S, i.e., “cuspidal point” of X.

Then ∃ “bouquet” of conjugacy classes of

sections sx : Galk → πet
1 (X) defined by x.

Comments/Examples: Tangential base pts, etc...
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• Let k be finitely generated infinite field,

X → k hyperbolic curve over k,

X0 → k its smooth completion.

Section Conjecture.

Let X → k non-constant. Then every section

s : Galk → πet
1 (X) of prX : πet

1 (X)→ Galk

arises from some x ∈ X0(k) as indicated above.

Birational section Conjecture.

Let K := k(X) = k(X0). Then every section

s : Galk → GalK of prK : GalK → Galk

arises from some x ∈ X0(k) as indicated above.

Comments:

- Initial motivation: Method to prove Mordell’s Conj.

- Unfortunately: Relation to Mordell’s Conj unclear yet.

- Unfortunately: Still completely mysterious/unknown.
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Variants:

• The corresponding p-adic conjectures:

- obtained for k finite extension of Qp.

• The corresp truncated (p-adic) conjectures:

- obtained by replacing πet
1 (X), resp GalK ,

by corresponding “verbal” quotients.

- E.g., πet
1 (X) replaced by ΠX , etc...

• The motivic variant: Replace πet
1 (X)

by the “motivic fundamental group”.

Evidence:

- Nakamura (1990’s): k number field, X ⊂ P1.

Then “cuspidal” k-rational points of X are

in bijection with “cuspidal” sections.

- Tamagawa’s “conditional” section Conj (1990’s).

- Mochizuki’s p-adic “cuspidal” sections (2005/06/07).
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Results:

Theorem (Koenigsmann 2004).
The birational p-adic section conjecture holds.

• Actually, one can do much better, as follows:

- k|Qp finite with µp ⊂ k, and X → k,

and X0 → k, and K = k(X) as above.

- k′′|k ↪→ K ′′|K max. Z/p meta-abelian ext.

- prK : Gal
′′
K → Gal

′′
k canonical projection.

Remarks:

- Gal
′′
k is a finite well known meta-abelian p-group

(by local class field theory).

- Gal
′′
K can be effectiv constructed/computed.

Theorem (P 2007). Every section

s : Gal
′′
k → Gal

′′
K of prK : Gal

′′
K → Gal

′′
k

arises from some x ∈ X0(k) as indicated above.
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Theorem (M. Kim 2005):

Motivic section Conj holds for X = E\{pt},
and gives new proof of Siegel’s Theorem.

Hopes:

Minhyong Kim:

- Using non-abelian p-adic Hodge Theory:

Section Conj + “minimal” Conj imply a

(p-adically) effective Mordell’s Conjecture!

Sh. Mochizuki:

- Using p-adic anabelian ideas:

The “right” p-adic uniformization would

imply the ABC Conjecture!

Others?
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Short list of open Problems:

1) Prove/disprove: Q ↪→ ĜT is isomorphism.

2) Prove pro-`/truncated variants of I/OM.

3) Prove such variants of I/OM for

“generalized” Drinfel’d upper half-planes.

4) Relation between Problem 2 and the

representations of GalQ, respectively GalQp

(global/local Langlans Philosophy).

5) Prove the hom-form of the anab. conjectures:

a) If K, L fin. gen infinite fields, then

every open homomorphism GalK → GalL

originates from a field embedding L ↪→ K.

b) If X → K, Y → L are hyperbolic curves,

then every open hom πet
1 (X)→ πet

1 (Y )

originates from dominant morph X → Y .

6) Prove pro-`/truncated variants of Problem 5.
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7) Generalize Belyi’s Theorem.

8) What are the higher dim anabelian varieties?

9) Relation between the section Conjecture and

effective Mordell’s Conjecture.

10) Prove/disprove the global/p-adic section

Conjecture.

————— ∗ ∗ ∗ —————
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