University of Western Ontario Distinguished Lecture Series, April 2008

New Developments in Anabelian Geometry

Florian Pop, University of Pennsylvania

LECTURE I: Galois via Topology

• Theme: Non-tautological description of

$Gal_{\mathbb{Q}} = Aut(\overline{\mathbb{Q}})$

§ 1. From Topology to Numbers

- Recall RET: There exists equiv of categories

<u>Topology</u> & <u>Geometry</u> :	<u>Compl. algebraic curves</u> :
$\begin{array}{c} \text{compact Riemann} \\ \text{surfaces } \mathcal{X} \end{array}$	projective smooth complex curves X
<u>Function fields</u> :	

function fields \mathcal{F} in one variable over \mathbb{C}

 $\mathcal{X} \quad \longleftrightarrow \quad \mathfrak{M}(\mathcal{C}) = \mathcal{F} = \mathbb{C}(X) \quad \longleftrightarrow \quad X$

• **Basic Question** (Grothendieck):

Which \mathcal{X} , hence which X, hence which \mathcal{F} , are defined over $\overline{\mathbb{Q}} \subset \mathbb{C}$, hence number fields?

Theorem (Grothendieck/Belyi).

X is defined over $\overline{\mathbb{Q}}$ if and only if $\exists X \longrightarrow \mathbb{P}^1_{\mathbb{C}}$ ramified only at $0, 1, \infty$.

Proof:

"⇒" by Belyi. "⇐" by Groth. (étale fundam. groups).

Comments:

- This is the origin of Grothendieck's "Designs d'enfants".
- A cover $X \to \mathbb{P}^1_{\mathbb{C}}$ as in Theorem is a *Belyi map*.
- Study the action of Gal_Q on the space of "Designs" (many many people: Malle, Klüners–M., Schneps, Lochak–Sch., Zapponi, math-physicists, etc. etc. etc...)
- <u>Not yet reached Goal</u>: Topol./combin. description of $Gal_{\mathbb{Q}}$...

Interesting open Question/Problem

Higher dim extensions of the above Theorem.

Two possible ways:

- First, $X \to \mathbb{P}^1_C$ has at most n ram points.
- Replace curves by higher dim varieties, e.g., surfaces (?!?).
- Several partial results...

Theorem (Ronkine 2004; unpublished).

The birat. class of complex proj. surface of general type is defined over $\overline{\mathbb{Q}}$ iff \exists smooth fibration $X_0 \longrightarrow \mathbb{P}^1_{\mathbb{C}} \setminus \{0, 1, \infty\}.$

Another idea (Grothendieck)

- Study Gal_Q via its action on the "algebraic fundamental group" of P¹_C \{0, 1, ∞}:
 - That is $\widehat{F}_{<\tau_0,\tau_1>} =: \widehat{F}_2$ free on loops τ_0, τ_1 .
 - And \exists can embedd $\operatorname{Gal}_{\mathbb{Q}} \hookrightarrow \operatorname{Aut}(\widehat{F}_2)$.
 - Etc...

§ 2. Warm-up: π_1^{top} and $\text{Gal}_{\mathbb{R}}$

- $\mathfrak{Var}_{\mathbb{R}}$ category of \mathbb{R} -varieties X. Consider: a) $X^{\mathrm{an}} := X(\mathbb{C})$ and $\widetilde{X^{\mathrm{an}}} \to X^{\mathrm{an}}$ univ. cover. b) $\pi_1^{\mathrm{top}}(X) := \pi_1^{\mathrm{top}}(X^{\mathrm{an}}) = \mathrm{Aut}_{X^{\mathrm{an}}}(\widetilde{X^{\mathrm{an}}}).$ - $\mathrm{Gal}_{\mathbb{R}} \cong \{\pm 1\}$ acts on X^{an} and $\pi_1^{\mathrm{top}}(X^{\mathrm{an}}).$
- Get exact sequence

$$1 \to \pi_1^{\operatorname{top}}(X) \to ??? \to \operatorname{Gal}_{\mathbb{R}} \to 1$$

and repres $\rho_X : \operatorname{Gal}_{\mathbb{R}} \to \operatorname{Out}(\pi_1^{\operatorname{top}}(X)).$

- View $\pi_1^{\operatorname{top}} : \mathfrak{Var}_{\mathbb{R}} \to \mathfrak{Groups}$ as functor.
- Then $(\rho_X)_X$ gives rise to a morphism:

$$\rho_{\mathbb{R}} : \operatorname{Gal}_{\mathbb{R}} \to \operatorname{Aut}(\pi_1^{\operatorname{top}})$$

Theorem. $\rho_{\mathbb{R}}$ is an isomorphism.

Comments:

- New non-tautological description of $\operatorname{Gal}_{\mathbb{R}}$.
- What about other base fields $K \subset \mathbb{C}$?

§ 3. Étale/algebr. fundam. groups

- $-K \subseteq \mathbb{C}$ base field, e.g. \mathbb{Q} , \mathbb{R} .
- $-\mathfrak{Var}_K$ category of K-varieties X.

Idea: Play same game with K instead of \mathbb{R} !!!

- Bad News:
 - Gal_K does not act on X^{an} and/or $\pi_1^{\text{top}}(X^{\text{an}})$;
 - No "nice" $\rho_X : \operatorname{Gal}_K \to \operatorname{Out}(\pi_1^{\operatorname{top}}(X)).$
- Good News:
 - Finite covers $\mathcal{X} \to X^{\mathrm{an}}$ are algebraic (Serre's GAGA).
 - Gal_K acts on the set of all such $\mathcal{X} \to X^{\operatorname{an}}$.
- For each $X \in \mathfrak{Var}_K$, consider:
 - a) $\widehat{X} \to X$ proj.limit of all $\mathcal{X} \to X^{\mathrm{an}}$, the "algebraic universal cover" of X.
 - b) $\pi_1^{\text{alg}}(X) := \text{Aut}_X(\widehat{X}) = \pi_1^{\text{top}}(X^{\text{an}})$, the "algebraic fundamental group" of X.

Theory of étale fundam. groups (as developed by Grothendieck) gives: – ∃ canonical exact sequence:

 $1 \to \pi_1^{\mathrm{alg}}(X) \to \pi_1^{\mathrm{et}}(X) \to \mathrm{Gal}_K \to 1.$ - Represent $\rho_X : \mathrm{Gal}_K \to \mathrm{Out}(\pi_1^{\mathrm{alg}}(X)).$ - $\pi_1^{\mathrm{alg}} : \mathfrak{Var}_K \to \mathfrak{prof}.\mathfrak{Groups}$ is a functor
(where morphisms of $\mathfrak{prof}.\mathfrak{Groups}$ are all the continuous <u>outer</u> hom's).

– Finally $(\rho_X)_X$ gives rise to a morphism:

$$\rho_K : \operatorname{Gal}_K \to \operatorname{Aut}(\pi_1^{\operatorname{alg}})$$

Grothendieck's philosophy:

- Study Gal_K via the representation ρ_K .
- Same problem for the representations $\rho_{\mathcal{V}}$ arising from "well understood" sub-categories $\mathcal{V} \subset \mathfrak{Var}_K$.

§ 4. Studying Gal_K via ρ_K

Question/Problem:

1) Find categories \mathcal{V} for which $\operatorname{Aut}(\pi_{\mathcal{V}}^{\operatorname{alg}})$ has "nice" topological/combinatorial description.

2) Find such categories \mathcal{V} for which

 $\rho_{\mathcal{V}} : \operatorname{Gal}_K \to \operatorname{Aut}(\pi_{\mathcal{V}}^{\operatorname{alg}}) \text{ is isomorphism.}$

• This would give a new description of $\operatorname{Gal}_K!!!$

Example: Teichmüller modular tower

 $-\mathcal{M}_{g,n}$ moduli space of curves

(genus g, with n marked pts.)

- "Connecting" morphisms

("boundary" embeddings, gluings, etc.) $-\mathcal{T} = \{\mathcal{M}_{g,n} \mid g, n\}$ category of varieties over \mathbb{Q} , the *Teichmüller modular tower*.

$$-\underline{\text{Note}}: \quad \mathcal{M}_{0,4} \cong \mathbb{P}^1 \setminus \{0, 1, \infty\}.$$
$$\mathcal{M}_{0,n} \cong (\mathcal{M}_{0,4})^{n-3} \setminus \{\text{fat diagonal}\}$$

Facts (to Question/Problem 1):

$$-\widehat{GT} = \operatorname{Aut}(\pi_{\mathcal{V}_0}^{\operatorname{alg}}) \text{ is the famous}$$

Grothendieck-Teichmüller group.

Intensively studied by Drinfel'd, Ihara, Deligne,
 Schneps, Sch.–Lochak, Sch.–Nakamura,

Sch.-Harbater, Ihara-Matsumoto, etc., etc.

$$-\widehat{GT} = \{(\lambda, f) \mid \lambda \in \widehat{\mathbb{Z}}^{\times}, \ f \in [\widehat{F}_2, \widehat{F}_2], \ \text{rel. I, II, III}\}$$

- Several variants ${}^{I}GT$, ${}^{II}GT$, ${}^{IV}GT$, etc. of \widehat{GT} .
- Actually: rel. I, II, III, are not independent (Schneps, Sch.–Lochak; Furusho: III suffices)
- Boggi–Lochak (to be thoroughly checked):
 - \exists variant $^{\text{new}}GT$ of \widehat{GT} such that $^{\text{new}}GT = \text{Aut}(\pi_{\mathcal{T}}^{\text{alg}}).$

Conclusion: Question/Problem 1 has quite satisfactory answer(s) for $\mathcal{V} = \mathcal{T}$ and its subcategories. **Facts** (to Question/Problem 2):

- Belyi: Let
$$K|\mathbb{Q}$$
 be number field.
If $\mathcal{M}_{0,4} = \mathbb{P}^1 \setminus \{0, 1\infty\} \in \mathcal{V}$, then
 $\rho_{\mathcal{V}} \colon \operatorname{Gal}_K \to \operatorname{Aut}(\pi_{\mathcal{V}}^{\operatorname{alg}})$ injective.

– What about surjectivity?

• I/OM (Ihara/Oda–Matsumoto Conj). $\rho_{\mathbb{Q}} : \operatorname{Gal}_{\mathbb{Q}} \to \operatorname{Aut}(\pi_{\mathfrak{Var}_{\mathbb{Q}}}^{\operatorname{alg}})$ is isomorphism.

Theorem. I/OM has positive answer.

• <u>Actually</u>: Given $X \in \mathfrak{Var}_{\mathbb{Q}}$, dim(X) > 1, set:

- $\mathcal{V}_X = \{ \text{Zariski opens } V \subset X, \ U \subset \mathbb{P}^1 \}, \text{ and}$ canonical inclusions $V' \hookrightarrow V''$ and projections $V \to U$, as morphisms.

-Then $\rho_{\mathcal{V}_X} : \operatorname{Gal}_{\mathbb{Q}} \to \operatorname{Aut}(\pi_{\mathcal{V}_X}^{\operatorname{alg}})$ is isom.

Note: With $X = \mathbb{P}^2$, this gives (in principle) a pure topol./combin. construction of $\operatorname{Gal}_{\mathbb{Q}}$!

LECT. II: Grothendieck & beyond

\S 5. Anabelian phenomena (Exmpl)

a) \mathcal{X} compact Riemann surface, genus g.

Theorem.

 $\pi_1^{\operatorname{top}}(\mathcal{X}, x) \cong \langle \sigma_1, \tau_1, \dots, \sigma_g, \tau_g \mid \prod_i [\sigma_i, \tau_i] = 1 \rangle.$

Comment...

b)
$$K$$
 field, $\operatorname{Gal}_{K} = \operatorname{Aut}(K^{\operatorname{sep}}|K)$
absolute Galois group of K .

Theorem (Artin–Schreier, 1927). Suppose that Gal_K is finite $\neq \{1\}$. Then $\operatorname{Gal}_K \cong \{\pm 1\}$, and K is real closed.

Comments...

Questions:

- What about the isomorphy type of \mathcal{X} ?
- What about the isomorphy type of K?

c) Example: Global fields

Global fields are the finite extensions of:

- \mathbb{Q} , e.g., $K = \mathbb{Q}[\zeta_n], \, \zeta_n = e^{\frac{2\pi i}{n}}, \, \text{etc.}$

- $\mathbb{F}_p(x)$, e.g., $K = \mathbb{F}_p(x, y)$, $y^2 = x^3 + x + 1$, etc.

Theorem (Neukirch, Uchida, Iwasawa, 1970's).

Let L and K be global fields. Then one has:

 $\operatorname{Gal}_K \cong \operatorname{Gal}_L$ as prof.groups $\Rightarrow K \cong L$ as fields.

Comments:

- Actually, every isomorphism $\operatorname{Gal}_K \cong \operatorname{Gal}_L$ originates <u>functorially</u> from a unique field isomorphism $L \cong K$.
- It is though not clear how to "recover" the <u>field isomorphism type</u> of K from Gal_K .

§ 6. Grothendieck's Anab Geom

 $-X \in \mathfrak{Var}_K$, more general $X \in \mathfrak{Sch}_K$, then: $1 \to \pi_1^{\mathrm{alg}}(X) \to \pi_1^{\mathrm{et}}(X) \to \mathrm{Gal}_K \to 1.$

Grothendieck's idea is that under certain
 *** "anabelian" hypothesis on schemes X ***
 geometry/arithmetic of X should be encoded
 functorially in the homotopy sequence

$$\pi_1^{\operatorname{et}}(X) \to \operatorname{Gal}_K.$$

Comment: "Geometry/arithmetic" means isomorphy type, morphisms between anabelian varieties, rational points, etc.

Conjecture: The following are anab. schemes:

- Finitely generated infinite fields.
- Hyperbolic curves over such fields.
- Not clear which higher dim varieties should be.

Some results

I) Finitely generated (infinite) fields

– Finitely generated field are of the form:

$$K = \mathbb{Q}(x_1, \ldots, x_n)$$
 or $K = \mathbb{F}_p(x_1, \ldots, x_n)$.

- They are obvious generalization of global fields.
- They are exactly the function fields of (irreducible) varieties over \mathbb{Q} or \mathbb{F}_p (all p).

Theorem (P 1994).

- 1) The isomorphism type of fin. gen. infinite fields K is functorially encoded in Gal_K .
- 2) Every open embedding $\operatorname{Gal}_K \hookrightarrow \operatorname{Gal}_L$ arises functorially from some finite $L \hookrightarrow K$.

Comments:

- Thm above generalizes the famous Neukirch–Unchida Thm.
- Gives a "Galois characterization of finitely generated fields".

II) Hyperbolic curves

 $- X \to K \text{ is hyperbolic curve, if it has:}$ a) smooth geom. irred completion X^c. b) $\chi_X = 2 - 2g - r < 0, r = |\overline{X}^c \setminus \overline{X}|$ - And recall the canonical exact sequence:

$$1 \to \pi_1^{\operatorname{alg}}(X) \to \pi_1^{\operatorname{et}}(X) \to \operatorname{Gal}_K \to 1.$$

Examples:

- $X = \mathbb{P}^1 \setminus \{0, 1, \infty\}.$

- $X = E \setminus \{ \text{pt} \}, E$ elliptic curve.
- X smooth complete, genus > 1.

Theorem (Tamagawa, 1995).

- 1) $K \subset \mathbb{C}$ fin. gen. subfield. Then the isom type of an <u>affine</u> hyperbolic curve $X \to K$ is functorially encoded in $\pi_1^{\text{et}}(X)$.
- 2) Moreover, every open embedd $\pi_1^{\text{et}}(X) \hookrightarrow \pi_1^{\text{et}}(Y)$ arises functorially from some étale $X \longrightarrow Y$.

Further results:

- Tamagawa: <u>Similar</u> holds over finite fields K.
- Actually: This last result is the Key Fact! ...proceed using "specialization techniques".
- Mochizuki (1996): Same holds for complete hyperbolic curves over fin. gen. fields $K \subset \mathbb{C}$.

Comment: Tool kit includes Tamagawa's Key Fact.

- Stix (2000): <u>Similar</u> holds for <u>all</u> hyperbolic "non-constant" curves over fin. gen. fields.

Comment: Tool kit includes Mochizuki's methods, and a result by Raynaud, Pop–Saidi, Tamagawa.

Remark: $K \subset \mathbb{C}$ fin.gen, $X \to K$ hyperbolic.

- $\pi_1^{\text{top}}(X)$ tells only whether X^{an} open or not.
- OTOH, $\pi_1^{\text{et}}(X)$ encodes isom type of X.
- Isom types of X^{an} and of X are the same (GAGA).

Conclude: $\pi_1^{\text{et}}(X)$ encodes isom type of X^{an} !

§ 7. Beyond Grothendieck's...

• "Yoga" of Grothendieck's anabelian geometry is the presence of a reach arithmetical action...

 During the 1990's one realized that there are <u>unexpected</u> anabelian phenomena in total absence of arithmetical action!

1) Bogomolov (1990). Consider:

- K|k function field, td.deg > 1, $k = \overline{k}$.
- $\operatorname{Gal}'_{K} \to \operatorname{Gal}'_{K}$ maximal *abelian-by-central* pro- ℓ quotient of $\operatorname{Gal}_{K}, \ \ell \neq \operatorname{char}.$

Conjecture (Bogomolov's Program, 1990): $K|k \ can \ be \ recovered \ from \ Gal''_K.$

Comment:

- tr.deg(K|k) > 1 is necessary, because...

- This goes far beyond Grothendieck's anabelian idea:

- a) First, no Galois action, because $\operatorname{Gal}_k = \{1\}$.
- b) Gal_K'' carries only minimal Galois information.

2) Tamagawa (1990's). Consider:

- $K = \overline{K}$, char > 0, $X \to K$ affine hyperbolic. - $p^{\text{tm}} : \pi_1^{\text{alg}}(X) \to \pi_1^{\text{tm}}(X)$ the tame quotient. **Theorem** (Tamagawa).

a) The tame quotient is encoded in $\pi_1^{\text{alg}}(X)$.

b) Isom type of $X \subset \mathbb{P}^1_{\overline{\mathbb{F}}_p}$ encoded in $\pi_1^{\mathrm{tm}}(X)$.

3) Raynaud, P–Saidi, Tamagawa (2000 $\pm \epsilon$):

- $K = \overline{K}$, $\mathcal{M}_g(K)$ moduli space to genus g > 1.

- $\pi_g: \mathcal{M}_g(K) \to \mathfrak{Prof.groups}, \ C \mapsto \pi_1^{\mathrm{alg}}(C).$

• If char(K) = 0, then
$$\pi_g$$
 is constant:
 $\pi_g(X) = \pi_1^{\text{alg}}(X) = \widehat{\Pi}_g.$

• But if $K = \overline{\mathbb{F}}_p$, then π_g is "interesting":

Theorem (Raynaud, P–Saidi, Tamagawa). $\pi_g : \mathcal{M}_g(\overline{\mathbb{F}}_p) \to \mathfrak{Prof}.\mathfrak{groups} \ has \ finite \ fibers.$

Comments:...

§ 8. Bogomolov's Program

Recall:

- K|k function field, td.deg > 1, $k = \overline{k}$.
- $\operatorname{Gal}_{K}^{\prime\prime} \to \operatorname{Gal}_{K}^{\prime}$ maximal *abelian-by-central* pro- ℓ quotient of $\operatorname{Gal}_{K}, \ \ell \neq \operatorname{char}.$

Conjecture (Bogomolov's Program, 1990):

K|k can be recovered functorially from Gal_K'' .

Comment:

- tr.deg(K|k) > 1 is necessary, because...
- This goes far beyond Grothendieck's anabelian idea:
 - a) First, no Galois action, because $\operatorname{Gal}_k = \{1\}$.
 - b) Gal_K'' carries only minimal Galois information.

Evidence:

- Bogomolov (1990), B-Tschinkel (2002): Theory of commuting liftable pairs.

Comment: Recovering valuations of K...

Theorem (P 1999/2003/2007).

Bogomolov's Program okay over $k = \overline{\mathbb{F}}_p$.

Comment: B.-Tsch. special case for $\operatorname{tr.deg}(K|k) = 2$.

<u>Strategy of proof</u> (P):

<u>Main Idea</u>: Consider $\mathcal{P}(K, +) := K^{\times}/k^{\times}$

the "projectivization" of the k-v.s. (K, +).

• Then $(K, +, \cdot)$ can be recovered from

 $\mathcal{P}(K, +)$ endowed with its collineations,

via Artin's Fundam. Thm. Proj. Geometry.

NOW:

- Kummer Theory: $\widehat{K^{\times}} = \operatorname{Hom}_{\operatorname{cont}}(\operatorname{Gal}'_{K}, \mathbb{Z}_{\ell}).$

- And $\mathcal{P}(K,+) = K^{\times}/k^{\times} \hookrightarrow \widehat{K^{\times}}$.

<u>Hence to do list</u>: Given $\operatorname{Gal}''_K \to \operatorname{Gal}'_K$,

- 1) Recover $K^{\times}/k^{\times} \hookrightarrow \widehat{K^{\times}}$.
- 2) Recover the collineations inside K^{\times}/k^{\times} .
- 3) Check compatibility with Galois Theory.

HOW TO DO THAT:

- Local Theory, i.e., recover:
 - primes of K|k; divisorial sets D_X of primes.
- Global Theory, i.e., recover:
 - Div(X), then K^{\times}/k^{\times} , then collineations; and finally check Galois compatibility.

Local Theory (few words):

- primes of K|k: DVR R_v with $k \subset R_v \subset K$ such that $\operatorname{tr.deg}(Kv|k) = \operatorname{tr.deg}(K|k) - 1$.
- $D = \{v_i\}_i$ geometric, if \exists normal model $X \to k$ such that $D = D_X := \{v \mid \text{Weil prime div. of } X\}.$
- Recovering the primes:
- 1st Method: Use B.-Tsch. "commuting pairs"...
- 2nd Method: Use Mináč et al...

Comment: This is very very technical stuff...

LECTURE III: The *p*-adic world

§ 9. A result by Mochizuki

- $k|\mathbb{Q}_p$ finite field extension, $X \in \mathfrak{Var}_k$.
- $\pi_1^{\text{alg}}(X) \to \Pi_X^{\text{alg}}$ maximal pro-*p* quotient.
- \exists canonical exact sequence:

$$1 \to \Pi_X^{\mathrm{alg}} \to \Pi_X \to \mathrm{Gal}_k \to 1.$$

- $X \mapsto \Pi_X$ functor from \mathfrak{Var}_k to Gal_k -groups.

Theorem (Mochizuki 1999).

Let $X, C \in \mathfrak{Var}_k$ with C hyperbolic curve. Then every open Gal_k -hom $\Pi_X \to \Pi_C$ corresponds functorially to a dominant k-hom $X \to C$.

Comments:

- The proof is very very technical.
- Main technical tools: p-adic Hodge Theory,

and Faltings theory of almost étale covers.

Comments:

- The above theorem generalizes all the previous an abelian results for fin. gen fields $K\subset\mathbb{C}$ and hyperbolic curves over such fields.
- The above theorem goes beyond Grothendieck's anabelian geometry, as it uses p-adic arithmetic information only, and not global one.
- As an application, Mochizuki proves that k-surfaces which are "Artin neighborhoods" are anabelian.
 But it is not clear what to do / how to proceed in higher dimensions.
- Corry-P 2007: Using Thm above one shows:

Theorem (Corry–P 2007).

Let K|k, L|k be function fields. Then every open group Gal_k -hom $\Pi_K \to \Pi_L$ originates functorially from a field k-embed $L \hookrightarrow K$.

§ 10. On the section Conjecture

• It concerns the rational points of curves.

- k base field,
$$X \to k$$
 hyperbolic curve,
 $X_0 \supseteq X$ smooth completion; $S = X_0 \setminus X$.

 $-\widetilde{X} \to X$ algebraic univ cover, $pr_X : \pi_1^{\text{et}}(X) \to \text{Gal}_k$ canonical projection.

• For
$$x \in X_0(k)$$
, $\tilde{x} \in \widetilde{X}$ preimage,
let $D_{\tilde{x}|x} \subset \pi_1^{\text{et}}(X)$ decomposition group

<u>One has</u>:

Comments/Examples: Tangential base pts, etc...

• Let k be finitely generated infinite field,

 $X \to k$ hyperbolic curve over k,

 $X_0 \rightarrow k$ its smooth completion.

Section Conjecture.

Let $X \to k$ non-constant. Then every section $s: \operatorname{Gal}_k \to \pi_1^{\operatorname{et}}(X)$ of $pr_X: \pi_1^{\operatorname{et}}(X) \to \operatorname{Gal}_k$

arises from some $x \in X_0(k)$ as indicated above.

Birational section Conjecture.

Let $K := k(X) = k(X_0)$. Then every section

 $s: \operatorname{Gal}_k \to \operatorname{Gal}_K \text{ of } pr_K: \operatorname{Gal}_K \to \operatorname{Gal}_k$ arises from some $x \in X_0(k)$ as indicated above.

Comments:

- Initial motivation: Method to prove Mordell's Conj.
- Unfortunately: Relation to Mordell's Conj unclear yet.
- Unfortunately: Still completely mysterious/unknown.

Variants:

The corresponding *p*-adic conjectures:
obtained for *k* finite extension of Q_p.

- The corresp truncated (*p*-adic) conjectures:
 - obtained by replacing $\pi_1^{\text{et}}(X)$, resp Gal_K ,
 - by corresponding "verbal" quotients.
 - E.g., $\pi_1^{\text{et}}(X)$ replaced by Π_X , etc...
- The motivic variant: Replace $\pi_1^{\text{et}}(X)$ by the "motivic fundamental group".

Evidence:

- Nakamura (1990's): k number field, X ⊂ P¹.
 Then "cuspidal" k-rational points of X are in bijection with "cuspidal" sections.
- Tamagawa's "conditional" section Conj (1990's).
- Mochizuki's p-adic "cuspidal" sections (2005/06/07).

Results:

Theorem (Koenigsmann 2004). The birational p-adic section conjecture holds.

• Actually, one can do <u>much better</u>, as follows:

-
$$k|\mathbb{Q}_p$$
 finite with $\mu_p \subset k$, and $X \to k$,
and $X_0 \to k$, and $K = k(X)$ as above.
- $k''|k \hookrightarrow K''|K$ max. \mathbb{Z}/p meta-abelian ext.
- $\overline{\mathrm{pr}}_K : \overline{\mathrm{Gal}}''_K \to \overline{\mathrm{Gal}}''_k$ canonical projection.

Remarks:

- $\overline{\text{Gal}}_{k}''$ is a finite well known meta-abelian p-group (by local class field theory).
- $\overline{\operatorname{Gal}}''_{K}$ can be effectiv constructed/computed.

Theorem (P 2007). Every section $s: \overline{\operatorname{Gal}}_{k}^{\prime\prime} \to \overline{\operatorname{Gal}}_{K}^{\prime\prime} \text{ of } \overline{\operatorname{pr}}_{K}: \overline{\operatorname{Gal}}_{K}^{\prime\prime} \to \overline{\operatorname{Gal}}_{k}^{\prime\prime}$ arises from some $x \in X_{0}(k)$ as indicated above.

Theorem (M. Kim 2005):

Motivic section Conj holds for $X = E \setminus \{pt\}$, and gives new proof of Siegel's Theorem.

Hopes:

Minhyong Kim:

- Using non-abelian *p*-adic Hodge Theory: Section Conj + "minimal" Conj imply a (*p*-adically) effective Mordell's Conjecture!

<u>Sh. Mochizuki</u>:

- Using *p*-adic anabelian ideas: The "right" *p*-adic uniformization would imply the ABC Conjecture!

 $\underline{Others}?$

Short list of open Problems:

- 1) Prove/disprove: $\mathbb{Q} \hookrightarrow \widehat{GT}$ is isomorphism.
- 2) Prove pro- ℓ /truncated variants of I/OM.
- Prove such variants of I/OM for "generalized" Drinfel'd upper half-planes.
- 4) Relation between Problem 2 and the representations of Gal_Q, respectively Gal_{Qp} (global/local Langlans Philosophy).
- 5) Prove the hom-form of the anab. conjectures:
 - a) If K, L fin. gen infinite fields, then every open homomorphism $\operatorname{Gal}_K \to \operatorname{Gal}_L$ originates from a field embedding $L \hookrightarrow K$.
- b) If X → K, Y → L are hyperbolic curves, then every open hom π^{et}₁(X) → π^{et}₁(Y) originates from dominant morph X → Y.
 6) Prove pro-ℓ/truncated variants of Problem 5.

- 7) Generalize Belyi's Theorem.
- 8) What are the higher dim anabelian varieties?
- 9) Relation between the section Conjecture and effective Mordell's Conjecture.
- 10) Prove/disprove the global/*p*-adic section Conjecture.

_____ * * * _____