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ON THE PYTHAGORAS NUMBER OF FUNCTION FIELDS
OF CURVES OVER NUMBER FIELDS

FLORIAN POP ∗

Abstract. We show that the Pythagoras number p(K) of the function field K of an in-
tegral curve over a number field satisfies p(K) 6 6. That is, every sum of squares in K is
representable as a sum of at most six squares in K.

1. Introduction

Let F be an arbitrary field, and Σ(F ·2) ⊂ F be the set of finite sums of squares
∑

i a
2
i of

elements ai ∈ F . For a ∈ Σ(F ·2), let `(a) denote the least number n such that a is a sum of
n squares, and set `(a) =∞ if a is not a sum of squares of elements of F . It turns out that
Σ(F ·2) plays a fundamental role in the arithmetic of F and beyond. For instance, Hilbert
Problem 17 is about Σ(F ·2) in the case F = R(t1, . . . , td) is the field of rational functions in
d variables t1, . . . , td over the field of reals numbers R, and asks whether every f ∈ F which is
semi-positive definite lies in Σ(F ·2). Hilbert Problem 17 was solved by Artin by introducing
and studying the formally real fields, i.e., fields F which allow some total ordering. In the
process, Artin showed that a field F allows a total ordering if and only if −1 /∈ Σ(F ·2),
that is, `(−1) = ∞, and in particular, a formally real field F has char(F ) = 0. Moreover,
Σ(F ·2) ⊂ F is precisely the set of totally positive elements x ∈ F , i.e., x ∈ F× which are
positive in all total field orderings of F . See e.g. [Pf2, Ch. 6] for details about this.

Related to Σ(F ·2), one of the intriguing fine invariants of general fields F is the so called
Pythagoras number p(F ) of F , which is defined by

p(F ) := sup {`(a) | a ∈ Σ(F ·2)},
that is, if p(F ) is finite, then every a ∈ Σ(F ·2) is a sum of at most p(F ) squares of elements
of F . The Pythagoras number plays an important role in number theory, the theory of
quadratic forms, the semi-algebraic geometry, e.g. the real Nullstellensatz, and the study
of the real spectrum in algebra, model theory, etc., and the research in this direction is
classical and extensive, see e.g. [Ar,Ca,Gr,Pf1,Pf2,Pf3,La,Pr1,Sch,Wi], where much more
on this matter can be found. One should notice right away that the question about p(F ) is
significant/interesting only over fields of characteristic zero, because for char(F ) = p > 2,
one has −1 = a2 + b2 in Fp, hence the sum of three squares q3 = x2

1 + x2
1 + x2

2 represents 0,
thus represents everything. Therefore, if not explicitly otherwise stated, all the fields F,K,
etc., we will consider below have characteristic zero. Among the classical facts about the
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principles à la Kato, Pfister forms, function fields of curves, finitely generated fields, formally real fields.
1



Pythagoras number one has the following (which is just a very tiny portion of what would
be a comprehensive list), see e.g. [Pf2, Ch. 7, especially §1] for more details about this.

- If K is a number field, then p(K) 6 4 by [Si], cf. [Pf2, Ch. 7, 1.4, (2), (3)].

- If K = R(t1, . . . , td), then d+ 1 6 p(K) 6 2d by [Pf1], cf. [Pf2, Ch. 7, 1.4, (5)].
Moreover, p(K) = 2d for d 6 2, by [CEP,CT1], not known whether p(K) = 2d for d > 2.

- If K = Q(t), then p(K) 6 8 by [La]. More precisely, if K = k(t) with k a number field,
then p(K) 6 5 by [Po,H-J], cf. [Pf2, Ch. 7, Thm 1.9].

For general fields F one has the following:

- If F is not formally real, then p(F ) is either 2n or 2n + 1, cf. [Pf2, Ch. 7, Lemma 1.3].

- For every n > 0 there is some (formally real) F with p(F ) = n, see [Ho].

Note that the fields F above are in general rather “far away” from being arithmetical fields,
e.g. function fields over global and/or local fields.

A major progress on studying p(K) for K finitely generated with char(K) = 0 and absolute
transcendence degree d = td(K) the transcendence degree of K over Q was achieved using,
first, the Milnor Conjecture [Mn], proved by Orlov–Vishik–Voevodsky [OVV] with input
from Voevodsky, Rost, see [Kh, Pf3], and second, higher Hasse local-global principles type
results à la Kato, as initiated by Kato in his seminal paper [Ka], see Colliot-Thélène [CT2]
for d = 1, Colliot-Thélène–Jannsen [CT-J] for d = 2, and Jannsen [Jn] for d > 2. Namely,
as corollaries of the named results one has the following.

Theorem A (See [CT2, CT-J], [Jn, Cor. 0.7]). Let K be a finitely generated field with
char(K) = 0. Then p(K) 6 7 if td(K) = 1, respectively p(K) 6 2d+1 if d = td(K) > 1.

The proof is based on both the (proved) Milnor Conjecture and one of the higher di-
mensional Hasse local-global principles, conjectured by Kato [Ka, Conjecture 0.4], proved in
[Ka, Thm 0.6] in the case td(K) = 1, respectively in Jannsen [Jn, Thm 0.4] in the general
case. The weaker upper bound p(K) 6 2d+2 in case td(K) = d can be obtained by more
elementary means, still using the Milnor Conjecture, cf. Pfister [Pf3, 4., (b)].

The bounds for the Pythagoras number p(K) in the context of Theorem A above are not
sharp, at least not sharp in all cases, e.g. p

(
Q(t)

)
= 5 by Pourchet [Po]. The aim of this

short note is to give a sharpening of Theorem A above in the case d = td(K) = 1.

Theorem B (See [P]). In the above notation, suppose that td(K) = 1. Then p(K) 6 6.

We will prove actually a stronger result, see Theorem 2.5 in Section 3, which suggests that
Pfister’s Conjecture [Pf2, Ch. 7, 1.10] asserting that p(K) 6 5 for td(K) = 1 is plausible.

Short historical note. The result above that p(K) 6 6 for char(K) = 0, td(K) = 1 was
first announced in 1991, but was never “officially” published, and not very much publicized.
It was supposed to be presented at the special program in algebra, number theory and model
theory in Tel Aviv, but the author did not participate. I would like to thank several experts
on the matter, especially J.-L. Colliot-Thélène, Uwe Jannsen, Albrecht Pfister, and many
others among whom Moshe Jarden, Alex Prestel, Peter Roquette whom I consulted with
once upon a time while producing the first version of this manuscript.

Acknowledgements. Finally, I would like to thank the referee for the very careful reading
of the manuscript and suggestions towards improving the presentation.
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2. Proof of (Refinements of) Theorem B

Let K be finitely generated with char(K) = 0 and td(K) = 1. Letting k ⊂ K be the field
of constants of K, i.e., the relative algebraic closure of Q in K, one has: First, k is a number
field, and second, K = k(X) is the function field of a projective smooth geometrically integral
k-curve X. Let |X| ⊂ X be the set of closed points, hence the Weil divisor group Div(X) is
the free abelian group on |X|. For P ∈ |X|, let OP ,mP be its local ring and κP = OP/mP

be its residue field. Recall that |X| is in bijection with k-valuations rings Ow of K|k via
(Ow,mw) = (OP ,mP ), and κP = OP/mP = Ow/mw is finite over k, hence a number field.

Let P(k) be the set of places of k, and kv be the completion of k at v ∈ P(k). We denote
by Pp(k) ⊂ P(k) the set of places above places p of Q, including p = ∞. In particular,
v ∈ Pp(k) are p-adic places if p is a prime number, respectively v ∈ P∞(k) are archimedean
places. Recall that v ∈ P∞(k) is either real, i.e., kv = R, or complex, i.e., kv = C.

This being said, we say that P ∈ |X| is real, if κP has a real place, i.e., there is a field
embedding κP ↪→ R of κP in R; if so, any real place of κP defines a real place of k. Let
X

real ⊂ |X| be the set of real closed points of X, and notice that X
real

might be empty. For

D =
∑

P nPP ∈ Div(X), we set D
real

=
∑

P∈Xreal nPP (possibly trivial). Finally, if f ∈ K is a

non-constant function, let (f)
real ∈ Div(X) be the real part of the Weil divisor (f) ∈ Div(X)

of f . Then one has the following more precise assertion about p(K).

Theorem 2.1 (See [P]). In the above notation, for every non-constant f ∈ Σ(K ·2) one has:

1) If (f)
real

is trivial, then f is a sum of at most five squares.

2) In general, f is a sum of at most six squares.

We will prove actually a stronger but more technical result, see Theorem 2.5 below, which
might serve as a technical tool towards tackling Pfister’s Conjecture [Pf2, Ch. 7, 1.10].

We begin by introducing notation and proving Lamma 2.2 and Lemma 2.3 below and
summarizing consequences of work by Witt [Wi] in Fact 2.4. Everything we say here
should/might be well known to experts.

Namely, in the above notation, for P ∈ |X|, let wP : K → Z be the discrete k-valuation
of K with valuation ring OwP

= OP . We denote by KP the wP -completion of K and notice
the following: First, the relative algebraic closure of k in KP is κP , and second, given any
uniformizing parameter tP ∈ mP at P , one has a (canonical) k-isomorphism KP = κP ((tP )).

For v ∈ P(k), let Xv := X ×k kv be the base change of X under kv|k. Then Xv is
a projective smooth geometrically integral kv-curve, because X was geometrically integral
over k. Further, Kv = kv(Xv) = kv(X) is nothing but the (free) compositum Kv = kvK of
kv and K over k. Finally, the closed points Pv ∈ Xv are in bijection with the kv-valuation
rings Owv of Kv via OPv = Owv (and if needed, write wPv for the valuation defined by Pv).

We next recall a few facts about Kv for v ∈ P∞(k) the archimedean places of k.

Lemma 2.2. In the above notation, the following are equivalent:

(i) K = k(X) has a total ordering.

(ii) There is a real place v ∈ P(k) such that X(kv) = Xv(kv) is non-empty.

(iii) X
real

is non-empty.
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Proof. (i) ⇒ (ii): Let 6 be a total ordering of K and pK : K → R be its k-place. Then pK
being trivial on k gives rise to a field embedding k ↪→ R, hence to a real place v ∈ P(k). If
so, kv = R and the k-place pK defines a kv-rational point of X, hence X(kv) is non-empty.

(ii)⇒ (iii): Let v be a real place of k, hence kv = R, such that X(kv) is non-empty. Recall
that the field of real algebraic numbers kabs

v ⊂ kv is real closed, and in particular, kv|kabs
v is

an elementary k-extension of real closed fields. Hence since X is defined over k and X(kv)
is non-empty, one has that X(kabs

v ) is non-empty, see e.g. [P-R, Introduction, Thm 5] or
[Pr2, §5, 5.2].1 On the other hand, every x ∈ X(kabs

v ) is given by a closed point P ∈ X

together with a k-embedding κP ↪→ kabs
v ↪→ kv. Hence P ∈ X real

by mere definition.

(iii) ⇒ (i): Let pP : K → κP be the k-place of K at a given P ∈ X real
and ıP : κP ↪→ R

be a k-embedding defining P as a real point of X. Then the k-embedding ıP ◦ pP : K → R
gives rise to real place of K, hence to a total ordering of K. �

Next, recall that for closed points P ∈ |X| and any fixed uniformizing parameter tP ∈ mP ,
we identify the wP -completion KP of K = k(X) with κP ((tP )). In particular, every non-zero
f ∈ K has a unique representation in KP = κP ((tP )) of the form

f = aP t
n
P + f•, where f• :=

∑
i>n ait

i
P ∈ κP ((tP )) with aP 6= 0, n = wP (f) .

The coefficient aP ∈ κP is called the tP -leading coefficient of f at P . We notice that the
tP -leading coefficient has the properties:

a) If f ∈ O×P is a wP -unit, the tP -leading coefficient aP ∈ κP of f is nothing but the image
of f in κP under OP � κP , hence independent of the uniformizing parameter tP .

b) Let t′P = at +
∑

i>1 ait
i
P be another uniformizing paramater at P. If aP , respectively

a′P are the corresponding leading coefficients of f at P , then a′P = a−wP (f)aP .

c) The tP -leading coefficient is multiplicative in the following sense: If f = gh in K× and
aP , bP , cP ∈ κP are the corresponding tP -leading coefficients at P , then aP = bP cP .

To complete the list of notations, for effective divisors Ai ∈ Div(X), i ∈ I finite, we denote:

gcd(Ai)i =
∑

P∈X miniwP (Ai)P , lcm(Ai)i =
∑

P∈X maxiwP (Ai)P

Lemma 2.3. For P ∈ X
real

, let f, fi ∈ K× have tP -leading coefficients a, ai ∈ κP and set
f = atn + f•, fi = ait

ni + fi• with n = wP (f), ni = wP (fi). If f =
∑

i f
2
i , one has:

1) Let n0 := 2 mini ni and set ΣP = {i | 2ni = n0}. Then n = n0 and a =
∑

i∈ΣP
a2
i .

In particular, a ∈ κP is totally positive, i.e., a > 0 for all field embeddings κP ↪→ R.

2) (f)
real

0 and (f)
real

∞ satisfy: (f)
real

0 = 2 gcd
(
(fi)

real

0

)
i and (f)

real

∞ = 2 lcm
(
(fi)

real

∞
)
i .

In particular, (f)
real

is of the form (f)
real

= 2(A−B) with A,B > 0, gcd(A,B) = 0.

Proof. To 1): Given P ∈ X real
and fi one has: If i /∈ ΣP , then wP (f 2

i ) > n0 and if i ∈ ΣP ,
wP (f 2

i ) = n0. Hence f =
∑

i f
2
i =

∑
i∈ΣP

(a2
i t

n0
P + fi•) +

∑
i/∈Σ f

2
i = (

∑
i∈ΣP

a2
i )t

n0
P + f◦ with

wP (f◦) > n0. Since ai ∈ κP and κP has real embeddings, it follows that the sum of squares
a :=

∑
i∈Σ a

2
i ∈ κP is positive for all embeddings κP ↪→ R, hence f◦ = f• and n = n0.

To 2): This follows instantly from assertion 1), because for all P ∈ X real
one has: If P is a

zero of f of order n, then wP (f) = n = n0 = mini 2wP (fi), hence (f)
real

0 = 2gcd
(
(fi)

real

0

)
i by

1 See e.g. [F-J,Pr2,P-R] for basics of model theory (of real closed fields). For those who “do not use logic”
in their proofs, the same can be achieved using the Implicit Function Thm, invoking that X is smooth, etc.
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mere definition. Next let P be a pole of f of order n. Then −n = wP (f) = miniwP (fi), hence

n = −wP (f) = −miniwP (fi) = maxi

(
− wP (fi)

)
. Thus one has (f)

real

∞ = 2lcm
(
(fi)

real

∞
)
i. �

We finally recall special cases of some (more extensive) results of Witt [Wi].

First, let v ∈ P(k) be given. Then kv is locally compact in the v-topology, hence if
X(kv) = Xv(kv) is non-empty, it is a compact topological space in the v-topology. Second,
every rational function fv ∈ Kv defines a continuous map fv : X(kv)→ kv ∪∞, which might
have zeros and/or poles in Xv(kv). In particular, if xv ∈ X(kv) is defined by a closed point
Pv ∈ Xv and wPv is the corresponding kv-valuation of Kv, one has:

(i) fv(xv) = 0 iff wPv(fv) > 0; (ii) fv(xv) ∈ k×v iff wPv(f) = 0; (iii) fv(xv) =∞ iff wPv(f) < 0.

In particular, if v is real and X(kv) is non-empty, every fv ∈ Kv defines a continuous
function fv : X(kv)→ R ∪∞, which might be (semi)positive/negative definite of indefinite.

This being said, the special cases of results by Witt [Wi] we will need are as follows.

Fact 2.4 ([Wi, I , page 4; I′, page 5]). In the above notation, let v ∈ P(k) be archimedean.
Then fv ∈ K×v is a sum of two squares in Kv provided the hypothesis (†) below is satisfied:

(†) If kv = R and X(kv) is non-empty, then fv(xv) > 0 for all xv ∈ Xv(kv).

Proof. First, let (†) be satisfied, i.e., kv = R and X(kv) is non-empty and fv(xv) > 0 for all
xv ∈ Xv(kv). Then by Witt [Wi, I , page 4], it follows that fv is a sum of two squares in Kv.

Second, suppose that (†) is not satisfied, i.e., either kv = C or kv = R and X(kv) is empty.
Then for every Pv ∈ Xv one has κP ∼=kv C, hence KPv

∼=kv C((tPv)) for any uniformizing
parameter tPv at Pv, and fv = (1

2
fv + 1

2
)2 + ( i

2
fv − i

2
)2 is a sum of two squares in KPv .

Equivalently, the cyclic algebra α = (−1, fv) is trivial over KPv for all closed points Pv ∈ Xv.
Hence the local-global principle of Witt for the Brauer group of Kv, see [Wi, I′, page 5],
implies that α = (−1, fv) is trivial over Kv, thus fv∈ K×v is a sum of two squares in Kv. �

We now announce the stronger assertion from which Theorem 2.1 above —hence Theo-
rem B from Introduction— immediately follows using Lemma 2.3 above.

Theorem 2.5. Let K = k(X) be the function field of a projective smooth geometrically inte-
gral curve X over a number field k. Let f ∈ K× have totally positive tP -leading coefficients
aP ∈ κP at all P ∈ X real

for some choice of uniformizing parameters tP . Then one has:

1) If (f)
real ∈ 4 ·Div(X), then f is a sum of five squares in K.

2) If (f)
real ∈ 2 ·Div(X), then f is a sum of six squares in K.

Proof. Set (f)
real

= 2m(A − B) with 1 6 m 6 2 and A,B ∈ Div(X) satisfying A,B > 0,

gcd(A,B) = 0; in particular, A
real

= A and B
real

= B, maybe trivial. Let D > 0 be a divisor

with trivial real part D
real

= 0 and degree deg(D)� 0, e.g. deg(D) > 2gX + 2. By Riemann-
Roch, there are g1, h1 ∈ K with (g1)∞ = A + D, (h1)∞ = B + D. Hence g := g2

1 + 1 and

h := h2
1 + 1 have (g)

real

0 = 0 = (h)
real

0 and (g)∞ = 2A+ 2D, (h)∞ = 2B + 2D, thus (g)real
∞ = 2A,

(h)real
∞ = 2B. Hence um := (h/g)m = hm/gm satisfies:

(um)
real

= −(gm)
real

+ (hm)
real

= 2mA− 2mB = (f)
real

implying that f0 := f/um has (f0)
real

= 0. Further, since g and h are sums of squares,

by Lemma 2.3, 1) above, it follows that their tP -leading coefficients at every P ∈ X real
are
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totally positive in κP . Hence recalling that the tP -leading coefficient is multiplicative (see

item b) before Lemma 2.3 above), the tP -leading coefficient of f0 = f/u at every P ∈ X real

is totally positive in κP , because those of f and u are so.

To 1): We first reduce the general case (f)
real

= 4(A − B) to the special case when

(f)
real

= 0. Namely in the above notation, one has (f)
real

= 2m(A − B) with m = 2, and

further, f0 = f/um = f/u2 has (f0)
real

= 0 and totally positive tP -leading coefficient in κP
at every P ∈ X real

. Hence if f0 =
∑5

i=1 f
2
i in K, then f = u2f0 =

∑5
i=1(ufi)

2 in K as well.

Therefore it is left to prove assertion 1) in the case (f)
real

= 0. In order to do so, choose
any a ∈ Q having small absolute value |a| and large 2-adic value |a|2, e.g. a = 1

2n
with

n� 0. For the given f ∈ K, consider the function:

(∗) f̃ := f − (af + a)2 = −
[(
af + a− 1

2a

)2
+ 4a2(1− 1

4a2
)
]
∈ K .

Notation/Remark. Let q(n) be the n-fold Pfister form q -1, . . . , -1, i.e., the sum of 2n squares.
Then q(n) being a Pfister form, its the image q(n)(K

2n) is closed under multiplication, see
e.g. [Pf2, Ch. 2, 2.2]. This extends the classical facts —which follow from Euler’s identity—
that the set of sums of two, respectively four squares are closed under multiplication.

Recalling that Pp(k) ⊂ P(k) is the set of places of k above p, including p =∞, one has:

(I) If v ∈ Pp(k) is a p-adic place, p 6= 2, then q(2) represents 0 over Qp ⊂ Kv. Therefore:

(∗)p q(2) represents f̃ over Kv for any p-adic place v ∈ Pp(k), p 6= 2.

(II) If v ∈ P2(k) is dyadic, 1− 1
4a2

= b2 is a square in Q2, hence −f̃ =
(
af +a− 1

2a

)2
+(2ab)2

is a sum of two squares in Kv, hence a sum of four squares as well. Hence the Pfister form
q(2) represents both −f̃ and −1 over Kv, thus q(2) represents f̃ = (−f̃)(−1) over Kv as well,
because the image q(2)(Kv) is closed under multiplication. Hence we conclude:

(∗)2 q(2) represents f̃ over Kv for any dyadic place v ∈ P2(k).

(III) If v ∈ P∞(k), hence an archimedean place, we have the following case discussion.

Case 1. kv = R and Xv(kv) is empty, or kv = C.

Then by Fact 2.4 one has that every fv ∈ Kv is a sum of two squares in Kv, therefore:

(∗)′∞ q(2) represents f̃ over Kv, if either kv = R and Xv(kv) is empty, or kv = C.

Case 2. kv = R and X(kv) is non-empty.

Claim. There are positive constants c′v, c
′′
v > 0 such that c′v < f(xv) < c′′v for all xv ∈ X(kv).

Proof of the Claim. We first prove that f has no zeros (poles) in X(kv). By contradiction,
suppose that xv ∈ Xv(kv) is a zero (pole) of f , and recall that kabs

v ⊂ kv is a k-extension of
real closed fields. Since X and f ∈ k(X) are defined over k, it follows by [P-R, Introduction,
Thm 5] or [Pr2, §5, 5.2], that there is x0 ∈ X(kabs) which is a zero (pole) of f .2 Hence

by Lemma 2.2, x0 defines a zero (pole) P ∈ X
real

of f , implying that (f)
real

is non-trivial,
contradiction! Thus we conclude that f is defined and has no zeros (poles) on Xv(kv).
Finally, reasoning as above, it follows that if f(xv) < 0 for some xv ∈ Xv(kv) = X(kv), then

2 See e.g. [F-J,Pr2,P-R] for basics of model theory (of real closed fields).
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there are points x0 ∈ X(kabs
v ) such that f(x0) < 0. In particular, if P0 ∈ X is the closed

point defined by x0 (i.e., x0 is defined by a k-embedding κP0 ↪→ kv), then P0 ∈ X
real

and the
leading coefficient aP ∈ κ×P0

of f at P0 is nothing but f(x0), hence negative, contradiction !

Next recall that X(kv) is compact in the v-topology, and the map fv : X(kv) → kv,
xv 7→ f(xv) defined by the rational function f ∈ K is continuous. Hence since f(xv) > 0 for
all xv ∈ X(kv), there are positive constants c′v, c

′′
v such that one has c′v < f(xv) < c′′v for all

xv ∈ X(kv). The proof of the Claim is complete.

Next let Σ ⊂ P∞(k) be the set of all real places v ∈ P(k) with X(kv) non-empty. Then Σ
is obviously finite, and if Σ is non-empty, set c′ := minv∈Σ c

′
v, c

′′ := maxv∈Σ c
′′
v, where c′v, c

′′
v

are as defined/introduced in the Claim. Further choose a ∈ Q× with |a| sufficiently small,

to be precise such that a2(c′′ + 1)2 < c′. Then f̃ := f − a2(f + 1)2 ∈ K satisfies:

For all real v ∈ P∞(k) with X(kv) non-empty one has: f̃(xv) > 0 for all xv ∈ X(kv).

In particular, fv := f̃ satisfies the hypothesis (†) from Fact 2.4 for all real places v ∈ P(k)

with Xv(kv) non-empty, hence f̃ is a sum of two squares over Kv. Therefore, if |a| is
sufficiently small as indicated above, the following holds:

(∗)′′∞ q(2) represents f̃ over Kv for all real v ∈ P∞(k) with X(kv) non-empty.

Finally, we conclude that for a ∈ Q having sufficiently small absolute value |a| and
sufficiently large 2-adic value |a|2, e.g. a = 1

2n
with n� 0, the Pfister form q(2) represents

f̃ = f − (af + a)2 over Kv for all v ∈ P(k). Hence by Kato [Ka, Thm 0.8, (2)],3 one has:

q(2) represents f̃ over K, i.e., f̃ = (sum of four squares) in K.

Therefore, since f̃ = f − (af + a)2 in K, one has:

f = (af + a)2 + f̃ = (sum of five squares) in K.

This concludes the proof of assertion 1) of Theorem 2.5.

To 2): Since (f
real

) = 2m(A−B) with A,B > 0 relatively prime and m = 1, in the notation

at the beginning of the proof of Theorem 2.5, one has that that f0 = f/u has (f0)
real

= 0

and totally positive tP -leading coefficients in κP for all P ∈ X real
. Hence by assertion 1), it

follows f0 is a sum of five squares in K, say f0 =
∑5

i=1 f
2
i . On the other hand, recalling that

g = g2
1 + 1 and h = h2

1 + 1, one has that u = h/g = (h2
1 + 1)/(g2

1 + 1) = u2
1 + u2

2 for some
u1, u2 ∈ K (which are explicit in terms of g1, h1 above). Hence finally one has:

f = f0u = (f 2
1 + f 2

2 )(u2
1 + u2

2) + (f 2
3 + f 2

4 )(u2
1 + u2

2) + f 2
5 (u2

1 + u2
2),

hence a sum of six squares in K by the fact that q(1)(K
2) is closed under multiplication.

This concludes the proof of assertion 2), hence the proof of Theorem 2.5 is complete. �

3. Concluding Remarks / open Questions

Naturally, the “elephant in the room” is the question whether Pfister’s Conjecture [Pf2,
Ch. 7, 1.10] is true for td(K) = 1, i.e., whether p(K) 6 5 for finitely generated fields K with
char(K) = 0 and td(K) = 1. Note that the (more technical) hypothesis on f in Theorem 2.5

3 See also the comments about this in loc.cit. at the top of p.146.
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is apparently weaker than the hypothesis that f is a sum of squares in K. This suggests
(and the author tends to believe) that there is room for improving the bound p(K) 6 6, but
for the moment it is unclear how to proceed to sharpen the result.

Another interesting question/open problem is about the right generalization of the hypoth-
esis of Theorem 2.5 to higher dimensions. The hope is that finding the “right” generalization
of the hypothesis under discussion might be useful in giving better bounds for p(K) in the
case td(K) > 1. Beyond finding better/sharp(er) bounds for p(K), I think that relating `(f)
to other arithmetical/geometrical properties of functions f ∈ K would be very interesting.
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