Due: Friday, May 10, 2024, at 12(noon) Math 6030 / Final Exam (two pages)

Academic Integrity Statement:

My signature below certifies that I have complied with the University of Pennsylvania's Code of Academic Integrity in completing this Math 6030 exam. [That means, among other things, that you are allowed to: (a) get hints from your colleagues, but do not work out solutions together; (b) ask any member the Math Dept about hints to the exam problems, but you must first mention to her/him that it goes about problems on a take home exam; (c) consult resources (books, Internet, etc.), but you must design your own proofs, and not copy word-by-word from other sources.]

Name (printed): _____ Date _____

Note: There are 9(nine) problems on this exam.

Points: Separate for each problem (extra and/or partial credit possible).

Grading: $D < 60 \le C-, C, C+ < 75 \le B-, B, B+ < 90 \le A-, A, A+$

Procedures: Write your name (printed) and sign the above Academic Integrity Statement. Indicate clearly the number of each problem you work out. Your submission should show the necessary work/ideas, but be concise.

• Recall: A complete proof must contain all the necessary explanations/steps, and in order to *disprove* an assertion you must give a counterexample showing that the assertion is not true.

1) (12 pts) Prove/disprove/answer the following (justify your answer!):

- a) Enumerate up to isomorphism the semisimple rings R with 1_R of cardinalities 6, 9, 12, 16.
- b) Find a Galois extension $K|\mathbb{Q}$ of degree 13 s.t. the trace $\operatorname{Tr}_{K|\mathbb{Q}}: K \to \mathbb{Q}$ is not surjective.
- c) Give a non-maximal prime ideal $\mathfrak{p} \subset \mathbb{Z}[t]$ which is not principal.

2) (12 pts) Let k be a field and $S = k[x_1, x_2] = k[t_1, t_2]/\mathfrak{a}$, where $\mathfrak{a} = (t_1^2 t_2 - t_1 + t_2)$ and $x_i := t_i \pmod{\mathfrak{a}}, i = 1, 2$. Setting $R := k[t], S_1 = k[x_1]$, prove/disprove/answer the following:

- a) S is an integral domain.
- b) $R \to S_1, t \mapsto x_1$ is an isomorphism, and $S \subset \text{Quot}(S_1) = k(x_1)$.
- c) Describe the integral closure \tilde{S} of S in $\text{Quot}(S_1) = k(x_1)$.

[Hint to b): $x_1^2x_2 - x_1 + x_2 = 0 \Rightarrow x_2 = \frac{x_1}{x_1^2 + 1} \in S \subset k(x_1)$ (WHY), etc. To c): Show that $S = [x_1, \frac{1}{x_1^2 + 1}]$, hence integrally closed (WHY), etc...]

3) (10 pts) In the context from Problem 2) above, define $\varphi : R \to S, t \mapsto x_2$. Prove/disprove/answer:

- a) First, φ is injective. Second, S|R is an integral ring extension under φ .
- c) For $k = \overline{k}$, compute the fibers of $\varphi^* : \operatorname{Spec}(S) \to \operatorname{Spec}(R)$ and of $i^* : \operatorname{Spec}(\widetilde{S}) \to \operatorname{Spec}(S)$.
- 4) (14 pts) Let $R \subset \mathbb{Q}$ be a subring strictly containing \mathbb{Z} , S be a commutative ring with $1_S \neq 0_R$, and N be a free S-module. Prove/disprove:

- a) $Q := (R, +)/(\mathbb{Z}, +)$ is an injective module in the category of \mathbb{Z} -modules.
- b) $N_Q := \operatorname{Hom}_{\mathbb{Z}}(N, Q)$ is an injective S-module under $r \cdot \varphi(x) := \varphi(rx) \, \forall r \in S, x \in N$.
- $[\text{Hint: } M^{D} := \text{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z}) \text{ is an injective } S \text{-module for every free } S \text{-module } M \text{ (WHY). Further, every } R \subset \mathbb{Q} \text{ is a fraction} \\ \text{ring } R = \mathbb{Z}_{\Sigma} \text{ with } \Sigma \subset \mathbb{N}, \cdot \text{ generated by primes, and } \Sigma \cup \Sigma' = \mathfrak{Primes} \Rightarrow \mathbb{Z}_{\Sigma} + \mathbb{Z}_{\Sigma'} = \mathbb{Q}, \ \mathbb{Z}_{\Sigma} \cap \mathbb{Z}_{\Sigma'} = \mathbb{Z}_{\Sigma \cap \Sigma'} \text{ (WHY), etc. } \ldots]$
- 5) (12 pts) Which of the following is a PID/UFD/Noetherian/Artinian/valuation ring?
 - a) $R = F[t_1, \ldots, t_d]_{\mathfrak{p}}$, where F is a field and $\mathfrak{p} = (t_1, \ldots, t_r)$ for some $r \leq d$.

b)
$$R = \mathbb{Z}[t_1, t_2]/(t_1^2 t_2^3 - 3, t_1^2 - t_2^4).$$

[Hint to b): R is finitely generated over \mathbb{Z} (WHY), not a domain (WHY), and Krulldim(R) > 0 (WHY), etc...]

6) (12 pts) Let R be a commutative ring with 1_R , R[[t]] be the power series ring, $S = R[x_1, ..., x_n]$ be a finitely generated commutative R-algebra. Prove/disprove:

- a) The nil radical $\mathcal{N}(R[[t]])$ is nilpotent iff the nil radical $\mathcal{N}(R)$ is nilpotent.
- b) If S is Noetherian then R is Noetherian. Same question provided S|R is ring extension.

[Hint to b): There are "many" domains R and $x \in R$ s.t. $S = R[x_1] = \text{Quot}(R)$, where $x_1 = \frac{1}{x}$ (WHY)...]

7) (14 pts) Let R be a Dedekind ring, K = Quot(R). Prove/disprove:

- a) There is a proper integral ring extension S|R with $S \subset K(t)$.
- b) One has $Max(R[t]) \cap R \neq Max(R)$.

8) (10 pts) For a field k, let $R = k[t_1, t_2, t_3]$, $\mathfrak{a} = (t_4^3 - t_1 t_2 t_3) \subset R[t_4]$ and consider the factor ring $S = R[t_4]/(t_4^3 - t_1 t_2 t_3) = k[x_1, x_2, x_3, x_4]$, where $x_i = t_i \pmod{\mathfrak{a}}$. Prove/disprove/answer:

- a) If $k = \mathbb{R}$, then every $\mathfrak{n} \in \operatorname{Max}(S)$ is of the form $\mathfrak{n} = (x_i a_i)_{1 \leq i \leq 4}$ with $a_i \in \mathbb{R}$.
- b) There are fields k for which some prime ideals $\mathfrak{p} \in \operatorname{Spec}(S)$ have height $\operatorname{ht}(\mathfrak{p}) = 4$.
- $[\text{Hint to a}): \text{ For } \boldsymbol{a} = (a_1, a_2, a_3, a_4) \in \overline{k} \text{ let } \varphi_{\boldsymbol{a}} : k[t_1, t_2, 4_3, t_4] \rightarrow \overline{k}, (t_1, t_2, 4_3, t_4) \mapsto \boldsymbol{a}. \text{ Then } \mathfrak{m}_{\boldsymbol{a}} = \text{Ker}(\varphi_{\boldsymbol{a}}) \in \text{Max}(k[t_1, t_2, t_3, t_4]) \\ (\text{WHY}), \text{ and } \mathfrak{m}_{\boldsymbol{a}} \text{ defines a (maximal) ideal of } S \text{ iff } a_4^3 a_1a_2a_3 = 0 \text{ (WHY)}, \text{ etc. .. To b): } \text{ht}(\mathfrak{p}) \leq \text{Kulldim}(S) \text{ (WHY)}, \text{ etc. ..]}$
- 9) (8 pts) In the context of Problem 8) above, let $k = \overline{k}$, and $K := \operatorname{Quot}(R), L := \operatorname{Quot}(S)$.
 - a) L|K is Galois and G(L|K) acts on S, i.e. $\sigma(S) = S$ for all $\sigma \in G(L|K)$.
 - b) Given $\mathfrak{m} \in \operatorname{Max}(R)$, describe the possible decomposition groups $D_{\mathfrak{n}|\mathfrak{m}}$ for $\mathfrak{n} \in X_{\mathfrak{m}}$.

[Hint to b): How many solutions has the equation $a_4^3 - a_1 a_2 a_3 = 0$ for $a_1, a_2, a_3 \in k$ arbitrary?]