Due: Friday, May 10, 2024, at 12 (noon)
Math 6030 / Final Exam (two pages)

Academic Integrity Statement:

My signature below certifies that I have complied with the University of Pennsylvania's Code of Academic Integrity in completing this Math 6030 exam. [That means, among other things, that you are allowed to: (a) get hints from your colleagues, but do not work out solutions together; (b) ask any member the Math Dept about hints to the exam problems, but you must first mention to her/him that it goes about problems on a take home exam; (c) consult resources (books, Internet, etc.), but you must design your own proofs, and not copy word-by-word from other sources.]

Name (printed): \qquad Signature: \qquad Date \qquad
Note: There are 9 (nine) problems on this exam.
Points: Separate for each problem (extra and/or partial credit possible).
Grading: $\quad \mathrm{D}<60 \leqslant \mathrm{C}-, \mathrm{C}, \mathrm{C}+<75 \leqslant \mathrm{~B}-, \mathrm{B}, \mathrm{B}+<90 \leqslant \mathrm{~A}-, \mathrm{A}, \mathrm{A}+$
Procedures: Write your name (printed) and sign the above Academic Integrity Statement.
Indicate clearly the number of each problem you work out. Your submission should show the necessary work/ideas, but be concise.

- Recall: A complete proof must contain all the necessary explanations/steps, and in order to disprove an assertion you must give a counterexample showing that the assertion is not true.

1) (12 pts) Prove/disprove/answer the following (justify your answer!):
a) Enumerate up to isomorphism the semisimple rings R with 1_{R} of cardinalities $6,9,12,16$.
b) Find a Galois extension $K \mid \mathbb{Q}$ of degree 13 s.t. the trace $\operatorname{Tr}_{K \mid \mathbb{Q}}: K \rightarrow \mathbb{Q}$ is not surjective.
c) Give a non-maximal prime ideal $\mathfrak{p} \subset \mathbb{Z}[t]$ which is not principal.
2) (12 pts) Let k be a field and $S=k\left[x_{1}, x_{2}\right]=k\left[t_{1}, t_{2}\right] / \mathfrak{a}$, where $\mathfrak{a}=\left(t_{1}^{2} t_{2}-t_{1}+t_{2}\right)$ and $x_{i}:=t_{i}(\bmod \mathfrak{a}), i=1,2$. Setting $R:=k[t], S_{1}=k\left[x_{1}\right]$, prove/disprove/answer the following:
a) S is an integral domain.
b) $R \rightarrow S_{1}, t \mapsto x_{1}$ is an isomorphism, and $S \subset \operatorname{Quot}\left(S_{1}\right)=k\left(x_{1}\right)$.
c) Describe the integral closure \widetilde{S} of S in $\operatorname{Quot}\left(S_{1}\right)=k\left(x_{1}\right)$.
[Hint to b): $x_{1}^{2} x_{2}-x_{1}+x_{2}=0 \Rightarrow x_{2}=\frac{x_{1}}{x_{1}^{2}+1} \in S \subset k\left(x_{1}\right)$ (WHY), etc. To c): Show that $S=\left[x_{1}, \frac{1}{x_{1}^{2}+1}\right]$, hence integrally closed (WHY), etc....]
3) (10 pts) In the context from Problem 2) above, define $\varphi: R \rightarrow S, t \mapsto x_{2}$. Prove/disprove/answer:
a) First, φ is injective. Second, $S \mid R$ is an integral ring extension under φ.
c) For $k=\bar{k}$, compute the fibers of $\varphi^{*}: \operatorname{Spec}(S) \rightarrow \operatorname{Spec}(R)$ and of $\imath^{*}: \operatorname{Spec}(\widetilde{S}) \rightarrow \operatorname{Spec}(S)$.
4) (14 pts) Let $R \subset \mathbb{Q}$ be a subring strictly containing \mathbb{Z}, S be a commutative ring with $1_{S} \neq 0_{R}$, and N be a free S-module. Prove/disprove:
a) $Q:=(R,+) /(\mathbb{Z},+)$ is an injective module in the category of \mathbb{Z}-modules.
b) $N_{Q}:=\operatorname{Hom}_{\mathbb{Z}}(N, Q)$ is an injective S-module under $r \cdot \varphi(x):=\varphi(r x) \forall r \in S, x \in N$.
[Hint: $M^{D}:=\operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q} / \mathbb{Z})$ is an injective S-module for every free S-module M (WHY). Further, every $R \subset \mathbb{Q}$ is a fraction ring $R=\mathbb{Z}_{\Sigma}$ with $\Sigma \subset \mathbb{N}$, generated by primes, and $\Sigma \cup \Sigma^{\prime}=\mathfrak{P r i m e s} \Rightarrow \mathbb{Z}_{\Sigma}+\mathbb{Z}_{\Sigma^{\prime}}=\mathbb{Q}, \mathbb{Z}_{\Sigma} \cap \mathbb{Z}_{\Sigma^{\prime}}=\mathbb{Z}_{\Sigma \cap \Sigma^{\prime}}$ (WHY), etc. $\left.\ldots\right]$
5) (12 pts) Which of the following is a PID/UFD/Noetherian/Artinian/valuation ring?
a) $R=F\left[t_{1}, \ldots, t_{d}\right]_{\mathfrak{p}}$, where F is a field and $\mathfrak{p}=\left(t_{1}, \ldots, t_{r}\right)$ for some $r \leqslant d$.
b) $R=\mathbb{Z}\left[t_{1}, t_{2}\right] /\left(t_{1}^{2} t_{2}^{3}-3, t_{1}^{2}-t_{2}^{4}\right)$.
[Hint to b): R is finitely generated over $\mathbb{Z}(W H Y)$, not a domain (WHY), and $\operatorname{Krulldim}(R)>0$ (WHY), etc. ...]
6) (12 pts) Let R be a commutative ring with $1_{R}, R[[t]]$ be the power series ring, $S=R\left[x_{1}, \ldots, x_{n}\right]$ be a finitely generated commutative R-algebra. Prove/disprove:
a) The nil radical $\mathcal{N}(R[[t]])$ is nilpotent iff the nil radical $\mathcal{N}(R)$ is nilpotent.
b) If S is Noetherian then R is Noetherian. Same question provided $S \mid R$ is ring extension.
[Hint to b): There are "many" domains R and $x \in R$ s.t. $S=R\left[x_{1}\right]=\operatorname{Quot}(R)$, where $x_{1}=\frac{1}{x}$ (WHY)...]
7) (14 pts) Let R be a Dedekind ring, $K=\operatorname{Quot}(R)$. Prove/disprove:
a) There is a proper integral ring extension $S \mid R$ with $S \subset K(t)$.
b) One has $\operatorname{Max}(R[t]) \cap R \neq \operatorname{Max}(R)$.
8) (10 pts) For a field k, let $R=k\left[t_{1}, t_{2}, t_{3}\right]$, $\mathfrak{a}=\left(t_{4}^{3}-t_{1} t_{2} t_{3}\right) \subset R\left[t_{4}\right]$ and consider the factor ring $S=R\left[t_{4}\right] /\left(t_{4}^{3}-t_{1} t_{2} t_{3}\right)=k\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$, where $x_{i}=t_{i}(\bmod \mathfrak{a})$. Prove/disprove/answer:
a) If $k=\mathbb{R}$, then every $\mathfrak{n} \in \operatorname{Max}(S)$ is of the form $\mathfrak{n}=\left(x_{i}-a_{i}\right)_{1 \leqslant i \leqslant 4}$ with $a_{i} \in \mathbb{R}$.
b) There are fields k for which some prime ideals $\mathfrak{p} \in \operatorname{Spec}(S)$ have height $\operatorname{ht}(\mathfrak{p})=4$.
[Hint to a): For $\boldsymbol{a}=\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \in \bar{k}$ let $\varphi_{\boldsymbol{a}}: k\left[t_{1}, t_{2}, 4_{3}, t_{4}\right] \rightarrow \bar{k},\left(t_{1}, t_{2}, 4_{3}, t_{4}\right) \mapsto \boldsymbol{a}$. Then $\mathfrak{m}_{\boldsymbol{a}}=\operatorname{Ker}\left(\varphi_{\boldsymbol{a}}\right) \in \operatorname{Max}\left(k\left[t_{1}, t_{2}, t_{3}, t_{4}\right]\right)$ (WHY), and \mathfrak{m}_{a} defines a (maximal) ideal of S iff $a_{4}^{3}-a_{1} a_{2} a_{3}=0$ (WHY), etc. . To b): ht(p) $\leqslant \operatorname{Kulldim}(S)$ (WHY), etc...]
9) (8 pts) In the context of Problem 8) above, let $k=\bar{k}$, and $K:=\operatorname{Quot}(R), L:=\operatorname{Quot}(S)$.
a) $L \mid K$ is Galois and $G(L \mid K)$ acts on S, i.e. $\sigma(S)=S$ for all $\sigma \in G(L \mid K)$.
b) Given $\mathfrak{m} \in \operatorname{Max}(R)$, describe the possible decomposition groups $D_{\mathfrak{n} \mid \mathfrak{m}}$ for $\mathfrak{n} \in X_{\mathfrak{m}}$.
[Hint to b): How many solutions has the equation $a_{4}^{3}-a_{1} a_{2} a_{3}=0$ for $a_{1}, a_{2}, a_{3} \in k$ arbitrary?]
