

12.6 The Fourier-Bessel Series	Math 241 - Rimmer
We are interested in taking a function $f(x)$ and expanding	
it using Fourier eigenfunction expansion.	
So now for $n = 0, 1, 2,,$ we have the Bessel functions of order n	
that will serve as our set of orthogonal functions used in the	
eigenfunction expansion of $f(x)$:	
Let $n = 2$ for instance $\{J_2(\alpha_1 x), J_2(\alpha_2 x), \dots J_2(\alpha_i x), \dots\}$ is a set of orthogonal eigenfunctions that are orthogonal with respect to the weight function p(x) = x on the interval $[0,b]$	
with corresponding eigenvalues $\lambda_i = \alpha_i^2$ $i = 1, 2,$	
The expansion of $f(x)$ with Bessel functions $\{J_n(\alpha_i x)\}\ i=1,2,$	
is called a Fourier – Bessel series .	
$f(x) = \sum_{i=1}^{\infty} c_i J_n(\alpha_i x) \qquad \text{where } c_i = \frac{\int_0^x x J_n(\alpha_i x) f(x) dx}{\left\ J_n(\alpha_i x)\right\ ^2}$	

12.6 The Fourier-Bessel Series

In order to find the coefficients c_i , we need 3 properties of the Bessel *J* function:

1.
$$J_{n}(-x) = (-1)^{n} J_{n}(x)$$

2. $\frac{d}{dx} [x^{n} J_{n}(x)] = x^{n} J_{n-1}(x)$
3. $\frac{d}{dx} [x^{-n} J_{n}(x)] = -x^{-n} J_{n+1}(x)$

$$\frac{dx}{dx} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Three different versions of the boundary condition at x = b lead to three different types of solutions

1.
$$J_n(\alpha b) = 0$$

2. $hJ_n(\alpha b) + \alpha bJ'_n(\alpha b) = 0$ we'll have 3 different results for $||J_n(\alpha, x)||^2$
3. $J'_0(\alpha b) = 0$

Math 241 - Rimmer

12.6 The Fourier-Bessel Series

$$f(x) = \sum_{i=1}^{\infty} c_i J_n(\alpha_i x)$$

$$c_i = \frac{2}{b^2 \left[J_{n+1}(\alpha_i b) \right]^2} \int_0^b x J_n(\alpha_i x) f(x) dx$$
when the α_i defined by
the boundary condition $J_n(\alpha b) = 0$

$$\frac{example:}{\#8 \ f(x) = x^2, \ 0 < x < 1} \qquad b = 1, n = 2, f(x) = x^2$$

$$J_2(\alpha) = 0 \qquad c_i = \frac{2}{\left[J_3(\alpha_i) \right]^2} \int_0^1 x^3 J_2(\alpha_i x) dx$$

12.6 The Fourier-Bessel Series

$$f(x) = \sum_{i=1}^{\infty} c_i J_n(\alpha_i x)$$

$$c_i = \frac{2\alpha_i^2}{(\alpha_i^2 b^2 - n^2 + h^2) [J_n(\alpha_i b)]^2} \int_0^b x J_n(\alpha_i x) f(x) dx$$
when the α_i defined by
the boundary condition
 $h J_n(\alpha b) + \alpha b J'_n(\alpha b) = 0$
example:
#6 $f(x) = 1, \ 0 < x < 2$
 $J_0(2\alpha) + \alpha J'_0(2\alpha) = 0$

12.6 The Fourier-Bessel Series

$$f(x) = c_1 + \sum_{i=2}^{\infty} c_i J_0(\alpha_i x) \qquad c_1 = \frac{2}{b^2} \int_0^b x f(x) dx$$

$$c_i = \frac{2}{b^2 \left[J_0(\alpha_i b) \right]^2} \int_0^b x J_0(\alpha_i x) f(x) dx$$
when the α_i defined by
the boundary condition $J'_0(\alpha b) = 0$

$$\frac{example:}{\#4 \ f(x) = 1, \ 0 < x < 2}$$

$$J'_0(2\alpha) = 0$$

12.6 The Fourier-Bessel Series

$$\underbrace{\text{example:}}_{\#8\ f(x) = x^2, \ 0 < x < 1} c_i = \frac{2}{\left[J_3(\alpha_i)\right]^2} \int_0^1 x^3 J_2(\alpha_i x) dx \qquad x = 0 \Rightarrow t = 0 \\ let\ t = \alpha_i x x = 1 \Rightarrow t = \alpha_i \\ let\ t = \alpha_i dx \Rightarrow dx = \frac{1}{\alpha_i} dt \\ J_2(\alpha) = 0 \qquad c_i = \frac{2}{\left[J_3(\alpha_i)\right]^2} \int_0^{\alpha_i} \frac{t^3}{\alpha_i^3} J_2(t) \frac{dt}{\alpha_i} \qquad x = \frac{t}{\alpha_i} \Rightarrow x^3 = \frac{t^3}{\alpha_i^3} dt \\ \frac{d}{dx} \left[x^n J_n(x)\right] = x^n J_{n-1}(x) \qquad c_i = \frac{2}{\alpha_i^4 \left[J_3(\alpha_i)\right]^2} \int_0^{\alpha_i} dt^3 J_2(t) dt \\ \Rightarrow \frac{d}{dt} \left[t^3 J_3(t)\right] = t^3 J_2(t) \qquad c_i = \frac{2}{\alpha_i^4 \left[J_3(\alpha_i)\right]^2} \int_0^{\alpha_i} \frac{d}{dt} \left[t^3 J_3(t)\right] dt \\ c_i = \frac{2}{\alpha_i^4 \left[J_3(\alpha_i)\right]^2} \left[t^3 J_3(t)\right]_0^{\alpha_i} = \frac{2\left[\alpha_i^3 J_3(\alpha_i)\right]}{\alpha_i^4 \left[J_3(\alpha_i)\right]^2} \left[c_i = \frac{2}{\alpha_i^3 J_3(\alpha_i)}\right] \\ \left[c_i = \frac{2}{\alpha_i J_3(\alpha_i)}\right] \qquad f(x) = 2\sum_{i=1}^{\infty} \frac{1}{\alpha_i J_3(\alpha_i)} J_2(\alpha_i x)$$