12.6 The Fourier-Bessel Series

$x^{2} y^{\prime \prime}+x y^{\prime}+\left(\alpha^{2} x^{2}-v^{2}\right) y=0$
parametric Bessel equation of order v
has general solution on $(0, \infty)$ of
$y=c_{1} J_{v}(\alpha x)+c_{2} Y_{v}(\alpha x)$
$J_{v}(x)$ is called a Bessel function of the first kind of order ν.
$J_{v}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\Gamma(1+v+n)}\left(\frac{x}{2}\right)^{2 n+v}$
$Y_{v}(x)$ is called a Bessel function of the second kind of order v.
For non-integer values of v
$Y_{v}(x)=\frac{\cos (v \pi) J_{v}(x)-J_{-v}(x)}{\sin (v \pi)}$
For integer values (say n)
$Y_{n}(x)=\lim _{v \rightarrow n} Y_{v}(x)$

12.6 The Fourier-Bessel Series

Let $v=n \quad n=0,1,2, \ldots$

[^0]
12.6 The Fourier-Bessel Series

Let $v=n \quad n=0,1,2, \ldots$

12.6 The Fourier-Bessel Series

Let $v=n \quad n=0,1,2, \ldots$
The parametric Bessel differential equation becomes
$x^{2} y^{\prime \prime}+x y^{\prime}+\left(\alpha^{2} x^{2}-n^{2}\right) y=0 \quad$ with general solution on $(0, \infty)$ of

$$
y=c_{1} J_{n}(\alpha x)+c_{2} Y_{n}(\alpha x)
$$

The self-adjoint form of the differential equation is:

$$
\frac{d}{d x}\left[x y^{\prime}\right]+\left(\alpha^{2} x-\frac{n^{2}}{x}\right) y=0 \quad \begin{aligned}
& \text { we can identify } r(x)=x, q(x)=-\frac{n^{2}}{x}, \\
& p(x)=x, \text { and } \lambda=\alpha^{2}
\end{aligned}
$$

This is called a singular Sturm-Liouville problem when we add the following conditions:
$r(a)=0$ and instead of 2 boundary
conditions we only have

$$
A_{2} y(b)+B_{2} y^{\prime}(b)=0
$$

For orthogonality, we need the solutions to be bounded at $x=a$.
$r(0)=0$ and we will only need $A_{2} y(b)+B_{2} y^{\prime}(b)=0$ but $Y_{n}(0)$ is unbounded for all n, so for orthogonality we can only use $J_{n}(\alpha x)$

12.6 The Fourier-Bessel Series

The self-adjoint form of the differential equation is:
$\frac{d}{d x}\left[x y^{\prime}\right]+\left(\begin{array}{ll}\left.\alpha^{2} x-\frac{n^{2}}{x}\right) y=0 & \text { we can identify } r(x)=x, q(x)=-\frac{n^{2}}{x}, \\ p(x)=x, \text { and } \lambda=\alpha^{2}\end{array}\right.$
with general solution
on $(0, \infty)$ of
$y=c_{1} J_{n}(\alpha x)$
this gives a set of orthogonal functions
$\left\{J_{n}\left(\alpha_{1} x\right), J_{n}\left(\alpha_{2} x\right), \ldots J_{n}\left(\alpha_{i} x\right), \ldots\right\} \quad\left(\lambda_{i}=\alpha_{i}^{2} \quad i=1,2, \ldots\right)$
that are orthogonal with respect to the weight function
$p(x)=x$ on the interval $[0, b]$

$$
\int_{0}^{b} x J_{n}\left(\alpha_{i} x\right) J_{n}\left(\alpha_{j} x\right) d x=0, \quad \lambda_{i} \neq \lambda_{j}
$$

> but this is all contingent upon the α_{i} being defined by a boundary condition at $x=b$ of the type $A_{2} J_{n}(\alpha b)+B_{2} J_{n}^{\prime}(\alpha b)=0$
by the chain rule $J_{n}^{\prime}(\alpha x)=J_{n}^{\prime}(\alpha x) \frac{d}{d x}(\alpha x)=\alpha J_{n}^{\prime}(\alpha x)$ so the condition becomes:

$$
A_{2} J_{n}(\alpha b)+B_{2} \alpha J_{n}^{\prime}(\alpha b)=0
$$

12.6 The Fourier-Bessel Series

We are interested in taking a function $f(x)$ and expanding it using Fourier eigenfunction expansion.

So now for $n=0,1,2, \ldots$, we have the Bessel functions of order n that will serve as our set of orthogonal functions used in the eigenfunction expansion of $f(x)$:

Let $n=2$ for instance
$\left\{J_{2}\left(\alpha_{1} x\right), J_{2}\left(\alpha_{2} x\right), \ldots J_{2}\left(\alpha_{i} x\right), \ldots\right\}$ is a set of orthogonal eigenfunctions
that are orthogonal with respect to the weight function
$p(x)=x$ on the interval $[0, b]$
with corresponding eigenvalues $\lambda_{i}=\alpha_{i}^{2} \quad i=1,2, \ldots$
The expansion of $f(x)$ with Bessel functions $\left\{J_{n}\left(\alpha_{i} x\right)\right\} i=1,2, \ldots$ is called a Fourier - Bessel series.
$f(x)=\sum_{i=1}^{\infty} c_{i} J_{n}\left(\alpha_{i} x\right) \quad$ where $c_{i}=\frac{\int_{0}^{b} x J_{n}\left(\alpha_{i} x\right) f(x) d x}{\left\|J_{n}\left(\alpha_{i} x\right)\right\|^{2}}$

12.6 The Fourier-Bessel Series

In order to find the coefficients c_{i}, we need 3 properties of the Bessel J function:

1. $J_{n}(-x)=(-1)^{n} J_{n}(x)$
2. $\frac{d}{d x}\left[x^{n} J_{n}(x)\right]=x^{n} J_{n-1}(x)$
3. $\frac{d}{d x}\left[x^{-n} J_{n}(x)\right]=-x^{-n} J_{n+1}(x)$

Three different versions of the boundary condition at $x=b$ lead to three different types of solutions

1. $J_{n}(\alpha b)=0$
2. $h J_{n}(\alpha b)+\alpha b J_{n}^{\prime}(\alpha b)=0 \quad$ we'll have 3 different results for $\left\|J_{n}\left(\alpha_{i} x\right)\right\|^{2}$
3. $J_{0}^{\prime}(\alpha b)=0$

12.6 The Fourier-Bessel Series

$$
\begin{aligned}
& f(x)=\sum_{i=1}^{\infty} c_{i} J_{n}\left(\alpha_{i} x\right) \\
& c_{i}=\frac{2}{b^{2}\left[J_{n+1}\left(\alpha_{i} b\right)\right]^{2}} \int_{0}^{b} x J_{n}\left(\alpha_{i} x\right) f(x) d x
\end{aligned}
$$

when the α_{i} defined by
the boundary condition $J_{n}(\alpha b)=0$

example :

$$
b=1, n=2, f(x)=x^{2}
$$

\#8 $f(x)=x^{2}, \quad 0<x<1$

$$
J_{2}(\alpha)=0
$$

$$
c_{i}=\frac{2}{\left[J_{3}\left(\alpha_{i}\right)\right]^{2}} \int_{0}^{1} x^{3} J_{2}\left(\alpha_{i} x\right) d x
$$

12.6 The Fourier-Bessel Series

Math 241 - Rimmer

$f(x)=\sum_{i=1}^{\infty} c_{i} J_{n}\left(\alpha_{i} x\right)$
$c_{i}=\frac{2 \alpha_{i}^{2}}{\left(\alpha_{i}^{2} b^{2}-n^{2}+h^{2}\right)\left[J_{n}\left(\alpha_{i} b\right)\right]^{2}} \int_{0}^{b} x J_{n}\left(\alpha_{i} x\right) f(x) d x$
when the α_{i} defined by
the boundary condition
$h J_{n}(\alpha b)+\alpha b J_{n}^{\prime}(\alpha b)=0$
example :
\#6 $f(x)=1, \quad 0<x<2$
$J_{0}(2 \alpha)+\alpha J_{0}^{\prime}(2 \alpha)=0$

12.6 The Fourier-Bessel Series

$$
\begin{aligned}
& f(x)=c_{1}+\sum_{i=2}^{\infty} c_{i} J_{0}\left(\alpha_{i} x\right) \quad c_{1}=\frac{2}{b^{2}} \int_{0}^{b} x f(x) d x \\
& c_{i}=\frac{2}{b^{2}\left[J_{0}\left(\alpha_{i} b\right)\right]^{2}} \int_{0}^{b} x J_{0}\left(\alpha_{i} x\right) f(x) d x
\end{aligned}
$$

when the α_{i} defined by
the boundary condition $J_{0}^{\prime}(\alpha b)=0$

example :

\#4 $f(x)=1, \quad 0<x<2$

$$
J_{0}^{\prime}(2 \alpha)=0
$$

12.6 The Fourier-Bessel Series

Math 241 - Rimmer

$$
\begin{aligned}
& \begin{array}{ll}
\text { example : } & c_{i}=\frac{2}{\left[J_{3}\left(\alpha_{i}\right)\right]^{2}} \int_{0}^{1} x^{3} J_{2}\left(\alpha_{i} x\right) d x \\
\# 8 f(x)=x^{2}, 0<x<1 & \begin{array}{l}
\text { let } t=\alpha_{i} x=0 \Rightarrow t=0 \\
x=1 \Rightarrow t=\alpha_{i}
\end{array} \\
J_{2}(\alpha)=0 & c_{i}=\frac{2}{\left[J_{3}\left(\alpha_{i}\right)\right]^{2}} \int_{0}^{\alpha_{i}} \frac{t^{3}}{\alpha_{i}^{3}} J_{2}(t) \frac{d t}{\alpha_{i}} \\
d t=\alpha_{i} d x \Rightarrow d x=\frac{1}{\alpha_{i}} \\
x=\frac{t}{\alpha_{i}} \Rightarrow x^{3}=\frac{t^{3}}{\alpha_{i}^{3}}
\end{array} \\
& \frac{d}{d x}\left[x^{n} J_{n}(x)\right]=x^{n} J_{n-1}(x) \quad c_{i}=\frac{2}{\alpha_{i}^{4}\left[J_{3}\left(\alpha_{i}\right)\right]^{2}} \int_{0}^{\alpha_{i}} t^{3} J_{2}(t) d t \\
& \Rightarrow \frac{d}{d t}\left[t^{3} J_{3}(t)\right]=t^{3} J_{2}(t) \quad c_{i}=\frac{2}{\alpha_{i}^{4}\left[J_{3}\left(\alpha_{i}\right)\right]^{2}} \int_{0}^{\alpha_{1}} \frac{d}{d t}\left[t^{3} J_{3}(t)\right] d t \\
& c_{i}=\frac{2}{\alpha_{i}^{4}\left[J_{3}\left(\alpha_{i}\right)\right]^{2}}\left[t^{3} J_{3}(t)\right]_{0}^{\alpha_{i}}=\frac{2\left[\alpha_{i}^{3} J_{3}\left(\alpha_{i}\right)\right]}{\alpha_{i}^{4}\left[J_{3}\left(\alpha_{i}\right)\right]^{2}} \\
& c_{i}=\frac{2}{\alpha_{i} J_{3}\left(\alpha_{i}\right)} \quad f(x)=2 \sum_{i=1}^{\infty} \frac{1}{\alpha_{i} J_{3}\left(\alpha_{i}\right)} J_{2}\left(\alpha_{i} x\right)
\end{aligned}
$$

[^0]: http://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html

