
CONSTRUCTION OF Eo-SEMIGROUPS

OF B(H) FROM CP -FLOWS

Robert T. Powers

Abstract. This paper constructs new examples of spatial Eo-semigroup of B(H)
using CP -flows. A CP -flow is a strongly continuous one parameter semigroup of

completely positive contractions of B(H) = B(K) ⊗ L2(0,∞) which are intertwined

by translation. Using Bhat’s dilation result each unital CP -flow over K dilates to
an Eo-semigroup of B(H1) where H1 can be considered to contain K ⊗ L2(0,∞).

Every spatial Eo-semigroup is cocycle conjugate to one dilated from a CP -flow.
Each CP -flow is determined by its associated boundary weight which determines the

generalized boundary representation. Using the machinery for determining whether

two CP -flows dilate to cocycle conjugate Eo-semigroups new examples of spatial
Eo-semigroups of B(H) are constructed.

I. Introduction to Eo-semigroups.

In 1936 Wigner proved if A → αt(A) is a group of ∗-automorphism of B(H)
then αt(A) = U(t)∗AU(t) with U(t) = e−itH and H is a self adjoint operator. To
get to Eo-semigroups of B(H) replace group by semigroup and automorphism by
endomorphism.

Definition 1.1. We say α is an Eo-semigroup of a B(H) if the following conditions
are satisfied.

(i) αt is a ∗-endomorphism of B(H) for each t ≥ 0.
(ii) αo is the identity endomorphism and αt ◦ αs = αt+s for all s, t ≥ 0.
(iii) For each ρ ∈ B(H)∗ (the predual of B(H)) and A ∈ M the function

ρ(αt(A)) is a continuous function of t.
(iv) αt(I) = I for each t ≥ 0(αt preserves the unit).

The appropriate notions of when two Eo-semigroups are similar are conjugacy
and cocycle conjugacy (which comes from Alain Connes definition of outer conju-
gacy).

Definition 1.2. Suppose α and β are Eo-semigroups B(H1) and B(H2). We say
α and β are conjugate denoted α ≈ β if there is ∗-isomorphism φ of B(H1) onto
B(H2) so that φ ◦ αt = βt ◦ φ for all t ≥ 0. We say α and β are cocycle conjugate
denoted αt ∼ βt if α′ and β are conjugate where α and α′ differ by a unitary
cocycle (i.e., there is a strongly continuous one parameter family of unitaries U(t)
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on B(H1) for t ≥ 0 satisfying the cocycle condition U(t)αt(U(s)) = U(t+ s) for all
t, s ≥ 0 so that α′

t(A) = U(t)αt(A)U(t)−1 for all A ∈ B(H1) and t ≥ 0).

We note that the notion of cocycle conjugacy is invariant under bounded per-
turbations. Suppose αt = etδ where δ = ∗-derivation and H = H∗ is a bounded
operator. Let

δ1(A) = δ(A) + i(HA−AH)

for A ∈ B(H). Then βt = exp(tδ1) is an Eo-semigroup which is cocycle conjugate
to α (see [P3] theorem 2.8).

Next consider the case when there is an invariant projection. Suppose αt is an
Eo-semigroup and E is an invariant projection. Let β be the restriction of αt to
EB(H)E so

βt(EAE) = αt(EAE) = Eαt(EAE)E

for A ∈ B(H) and t ≥ 0. We see that βt is an Eo-semigroup of B(K) where
K = EH. One notes that if α is a semigroup of proper endomorphism then the
invariant projection E must be of infinite dimension so there is an isometry W of
H onto K. Let U(t) = W ∗αt(W ). One checks U is a unitary cocycle and

WU(t)αt(W
∗AW )U(t)∗W ∗ = Eαt(EAE)E = βt(A)

Hence, α and β are cocycle conjugate.
Next we note cocycle conjugacy is invariant under tensoring with a group of

automorphisms. Suppose σ is a Eo-semigroup which is actually a group so σt(A) =
S(t)AS(t)∗ for A ∈ B(K) and t > 0 where S(t) is a one parameter unitary group.
Suppose α is an Eo-semigroup of B(H) and we tensor α and σ. Let β act on the
tensor product B(H) ⊗ B(K) by the formula

βt(A⊗ B) = αt(A) ⊗ σt(B)

for A ∈ B(H), B ∈ B(K) and t ≥ 0. One can show (see [P4] theorem 2.10) that α
and β are cocycle conjugate.

We summarize these results in the following theorem.

Theorem 1.3. The cocycle conjugacy class of an Eo-semigroup is invariant under

(i) Bounded perturbations, i.e. replacing the generator δ by δ+ iAd(H) with
H = H∗ ∈ B(H).

(ii) Cutting down with an invariant projection.
(iii) Tensoring with a automorphism group.

Next we discuss spatial Eo-semigroups of B(H). An Eo-semigroup αt is spatial
if there is semigroup of isometries U(t) which intertwine so U(t)A = αt(A)U(t) for
A ∈ B(H) and t > 0. The property of being spatial is a cocycle conjugacy invariant.
Suppose α is a spatial Eo-semigroup and U(t) is an intertwining semigroup of
isometries. Suppose β is cocycle conjugate to α. We show β is spatial. We can
assume α and β act on the same Hilbert space and βt(A) = S(t)αt(A)S(t)∗ for
A ∈ B(H) and t > 0 where S(t) is a unitary cocycle for α. Let V (t) = S(t)U(t) for
t > 0. Recall that U(t)A = αt(A)U(t) for t > 0 and A ∈ B(H). So we have

V (t)V (s) = S(t)U(t)S(s)U(s) = S(t)αt(S(s))U(t)U(s) = S(t+ s)U(t+ s)
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So V (t) is a one parameter semigroup of isometries. Now V intertwines β since for
A ∈ B(H) and t > 0 we have

V (t)A = S(t)U(t)A = S(t)αt(A)U(t)

= S(t)αt(A)S(t)∗S(t)U(t) = βt(A)V (t)

Hence, β is spatial. Note the mapping above gives an isomorphism of the inter-
twining semigroups for α with those that intertwine β.

You can construct spatial Eo-semigroups using the CAR algebra or the CCR
algebra. Derek Robinson and I [PR] showed these constructions give the same Eo-
semigroups. Now there is a better way to show this. Every spatial Eo-semigroup is
cocycle conjugate to an Eo-semigroup in standard form. A spatial Eo-semigroup of
B(H) is in standard form if there is an invariant pure state ωo which is absorbing,
meaning if ω is any normal state of B(H) then ‖ωo − αt ◦ ω‖ → 0 as t → ∞. The
state ωo corresponds to the vacuum state in the CAR and CCR constructions. To
see this suppose α is a spatial Eo-semigroup of B(H) and U(t) is an intertwining
semigroup of isometries. Let −d be the generator of U(t). In some cases we have
H = K⊗ L2(0,∞) and d is just differentiation. Choose fo ∈ D(d) a unit vector and
let

−iHf = (fo, f)dfo − (dfo, f)fo + (dfo, fo)f

for f ∈ H. Note H is a bounded hermitian operator. Let δ be the generator of α
and define

δ1(A) = δ(A) + i(HA−AH)

for A ∈ D(δ).One finds βt = exp(tδ1) is an Eo-semigroup which is cocycle conjugate
to α and V (t) = exp(−t(d − iH)) for t ≥ 0 is a one parameter semigroup of
isometries that intertwine βt. Note (d− iH)fo = 0 so V (t)fo = fo for all t > 0. Let
ωo(A) = (fo, Afo) for A ∈ B(H). We show ωo is βt invariant. We have

ωo(βt(A)) = (fo, βt(A)fo) = (fo, βt(A)V (t)fo)

= (fo, V (t)Afo) = (V (t)∗fo, Afo) = ωo(A)

for all A ∈ B(H) and t > 0. Let eo be the rank one projection onto fo and let
et = βt(eo). Since (fo, etfo) = 1 we have et ≥ eo for all t > 0. Since βt is a
semigroup of ∗-endomorphisms we have

et+s = βt(βs(eo)) ≥ βt(eo) = et

for s, t ≥ 0. So et is an increasing family of projections. Let

E = lim
t→∞

et

Then E is βt invariant. Now let γ be the restriction of βt to EB(H)E and as we
have seen γ is cocycle conjugate with β. One sees that γ is a spatial Eo-semigroup
in standard form since it has an invariant pure normal state ωo and if eo is support
projection for ωo then γt(eo) → I as t→ ∞.
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One of the important questions regarding spatial Eo-semigroups discussed by
A. Alevras in [Al2] is if two spatial Eo-semigroups are in standard form then does
cocycle conjugacy imply conjugacy? Alevras shows this question is equivalent to a
question about equivalence of intertwining semigroups.

In [P3] we defined the boundary representation. Suppose α is a spatial Eo-
semigroup and δ is the generator of α so αt = etδ and suppose U(t) = e−td inter-
twines α so U(t)A = αt(A)U(t) for A ∈ B(H) and t ≥ 0. Differentiating this at
t = 0 we find that if A ∈ D(δ) then AD(d) ⊂ D(d) and AD(d∗) ⊂ D(d∗) so A maps
D(d∗) mod D(d) into itself. By the Wold decomposition it is well known that for
every semigroup of isometries U(t) there is a decomposition of the Hilbert space H

as the sum of two orthogonal subspaces Ho and H1 and U(t) is unitary on Ho and
U(t) is a pure shift on H1. We can write H1 = K ⊗ L2(0,∞) and U(t) is just right
translation by t. The generator of U(t) on H1 is −d where d = d/dx with boundary
condition F (0) = 0 and d∗ is −d/dx with no boundary condition at x = 0. So if
H1 = K ⊗ L2(0,∞) we have K = D(d∗) mod D(d). The boundary representation π
is a ∗-representation of D(δ) on K.

In [P1] we first defined the index to be the multiplicity of π. The problem with
this is that it seems to depend on the intertwining semigroup U(t). Arveson defined
the index of an Eo-semigroup to be the dimension of the space of intertwining semi-
groups minus one. Arveson’s definition of index is a cocycle conjugacy invariant.
In [A2] Arveson proved the addition formula

Index αt ⊗ βt = Index αt + Index βt

that was hinted at in [P1]. Later G. Price and I proved in [PP] that the index equals
the multiplicity of the normal part of the boundary representation. Later in [Al1]
A. Alevras proved the boundary representations constructed from two different
intertwining semigroups are unitarily equivalent.

There is a type classification of Eo-semigroups similar to that for factors. An
Eo-semigroup is completely spatial or of type I if there are enough intertwining
semigroups to reconstruct the Eo-semigroup. Arveson defined and completely clas-
sified the completely spatial Eo-semigroups. These Eo-semigroups are determined
up to cocycle conjugacy by the index.

In [P4] we constructed an example of a spatial Eo-semigroup which is not com-
pletely spatial. Recently Tsirelson [T2] has constructed a one parameter family of
non isomorphic product systems of type II and by Arveson’s theory of product sys-
tems this implies the existence of a one parameter family of non cocycle conjugate
spatial Eo-semigroups of B(H) which are not completely spatial. Eo-semigroups
which are spatial but not completely spatial are said to be of type II.

There are non spatial Eo-semigroups. In [P2] we constructed an example of
a non spatial Eo-semigroup and later Tsirelson [T1] constructed a one parameter
family of non isomorphic product systems of type III in the context of Arveson’s
theory of continuous tensor products of Hilbert spaces and from Arveson’s represen-
tation theorem this implies the existence of a one parameter family of non cocycle
conjugate non spatial Eo-semigroups. Non spatial Eo-semigroups are said to be of
type III. In this paper we will restrict our attention to the spatial Eo-semigroups.
We summarize the type classification of Eo-semigroups in the following definition.
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Definition 1.4. An Eo-semigroup of B(H) is of type I if it is completely spatial,
type II if it is spatial but not completely spatial and type III if it is not spatial.
The Eo-semigroups of type I and II can be further subdivided into those of type In

and type IIn where n = ∞, 0, 1, 2, . . . and n is the index.

Under tensoring we have that if {αt} is an Eo-semigroup of type An and {βt}
is an Eo-semigroup of type Bm where A and B are I,II or III then αt ⊗ βt is an
Eo-semigroup of type Cn+m where C is the maximum of A and B and for type III
the index is superfluous.

II. Bhat’s dilation of CP -semigroups to Eo-semigroups.

An extremely useful and well known result in the theory of C∗-algebras is the
Gelfand Segal construction of a cyclic ∗-representation of a C∗-algebra associated
with a state of the C∗-algebra. In the study of Eo-semigroups there is a result in
the same spirit which says that every semigroup of unital completely positive maps
of B(K) can be dilated to an Eo-semigroup of B(H) where H can be thought of as
a larger Hilbert space containing K. We begin with a review of the properties of
completely positive maps.

A linear map φ from a C∗-algebra A into B(H) is completely positive if

n
∑

i,j=1

(fi, φ(A∗

iAj)fj) ≥ 0

for Ai ∈ A, fi ∈ H for i = 1, 2, · · · , n and n = 1, 2, · · · . Stinespring’s central result
[St]is that if A has a unit and φ is a completely positive map from A into B(H) then
there is a ∗-representation π of A on B(K) and an operator V from H to K so that
φ(A) = V ∗π(A)V for A ∈ A. And π is determined by φ up to unitary equivalence
if the linear span of {π(A)V f} for A ∈ A and f ∈ K is dense in H. Arveson has
shown [A7] that if φ is a σ-weakly continuous completely positive map from B(H)
to B(K) then φ is of the form

φ(A) =

r
∑

i=1

CiAC
∗

i

for A ∈ B(H) where r is a positive integer or +∞ and Ci is a bounded operator
from H to K and the Ci are linearly independent over `2(N) which means if zi ∈ C

is square summable and

C =

r
∑

i=1

ziCi

then C = 0 if and only if zi = 0 for all i ∈ [1, r+ 1). Note the above sum converges
in norm! Stinesprings’ well known result is that if φ and η are completely positive
maps of A into B(H) and φ−η is completely positive then if π is the ∗-representation
of A induced by φ then there is a unique positive operator C ∈ π(A)′ so that

η(A) = V ∗π(A)CV.
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Often we speak of one functional or map dominating another. We would like
to introduce a word for the functional or map that is dominated. The word is
subordinate. If A is an object which is positive with respect to some order structure
we say B is a subordinate of A if B is the same kind of thing A is and B is positive
and B is less than A. For example if we are speaking of the positive integers the
subordinates of 4 are 4,3,2,1. If A is a positive operator then the subordinates of A
are operators B with A ≥ B ≥ 0. Suppose E is a projection. Are the subordinates of
a projection E projections under E or the operators under E? The answer depends
on the context.

In terms of subordinates Stinespring’s theorem becomes the following. Suppose
φ is a completely positive map from a C∗-algebra A into B(H) and π is the induced
∗-representation of A. Then the subordinates of φ are order isomorphic to the sub-
ordinates of I in π(A)′. We say a subordinate is pure if the space of its subordinates
is one dimensional.

Suppose φ is a completely positive map from B(H) to B(K) of the form

φ(A) =

r
∑

i=1

CiAC
∗

i

with the Ci linearly independent over `2(N). Then η is a pure subordinate of φ if
and only if η is of the form η(A) = CAC∗ with

C =

r
∑

i=1

ziCi and

r
∑

i=1

|zi|2 ≤ 1

Note the pure subordinates of φ are isomorphic to the unit ball in a Hilbert space
of dimension r. We call r the rank of φ.

A CP -semigroup of B(H) is a strongly continuous one parameter semigroup of
completely positive maps of B(H) into itself. We now state Bhat’s theorem [Bh]
for B(H).

Theorem 2.1. Suppose α is a unital CP -semigroup of B(H) then there is an
Eo-semigroup αd of B(K) and an isometry W from H to K so that

αt(A) = W ∗αd
t (WAW ∗)W

and αt(WW ∗) ≥ WW ∗ for t > 0 and if the projection E = WW ∗ is minimal which
means the span of the vectors

αd
t1

(EA1E)αd
t2

(EA2E) · · ·αd
tn

(EAnE)Ef

for f ∈ K, Ai ∈ B(H), ti ≥ 0 for i = 1, 2, · · · and n = 1, 2, · · · are dense in H then
αd is determined up to conjugacy.

We use the Arveson definition of minimal which is easier to state and equivalent
to Bhat’s. Arveson has worked out how to calculate the index of a minimal dilation
of a unital CP -semigroup α of B(H). You look at the subordinates of α of the form

Ωt(A) = S(t)AS(t)∗
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where S(t) is a strongly continuous semigroup of contractions of H. Arveson tells
us the index of αd is the dimension of the space of semigroups S(t) minus one.

Suppose α is an Eo-semigroup of B(H). What are the subordinates of α? The
answer can be described using positive local cocycles. A cocycle is a σ-weakly
continuous one parameter family of operator C(t) satisfying the cocycle relation

C(t+ s) = C(t)αt(C(s))

for all s, t ≥ 0. The cocycle C(t) is local if C(t) ∈ αt(B(H))′ for all t > 0. The local
cocycles are a cocycle conjugacy invariant.

If α is a CP -semigroup of B(H) then the subordinates of α are CP -semigroups β
of B(H) so that αt − βt is completely positive for each t ≥ 0. In [P6,P7] we showed
the following.

Theorem 2.2. Suppose α is a unital CP -semigroup of B(H) and αd is the minimal
dilation of α to an Eo-semigroup of B(K) and W is an isometry from H to K so
that WW ∗ is a minimal projection for αd and

αt(A) = W ∗αd
t (WAW ∗)W

for A ∈ B(H) and t ≥ 0. Then there is an order isomorphism from the subordinates
of α to the subordinates of αd given as follows. Suppose γ is a subordinate of αd and
C(t) = γt(I) for t ≥ 0 is the local cocycle associated with γ then the subordinate
β of α under this isomorphism is given by

βt(A) = W ∗αt(WAW ∗)C(t)W

for A ∈ B(H) and t ≥ 0.

As an application we compute the subordinates of an Eo-semigroup of type In.
Arveson and I independently proved (see [A8] and [P5]) that if αt is a unital CP -
semigroup of B(H) with H of finite dimension then the Bhat induced minimal
dilation αd is completely spatial. Define Θt to act on an (n× n)-matrix by multi-
plying the off diagonal entries by e−t and Θt leaves the diagonal entries invariant.
One computes Θ induces the completely spatial Eo-semigroup of index n (type In).
We compute the subordinates of Θ. Let Q be the (n×n)-matrix with all ones off the
diagonal and zeros down the diagonal. Note −Q is associated with the generator of
Θ. The set of subordinates of the type In Eo-semigroup is order isomorphic to the
space of conditionally positive matrices C with C ≤ Q. (A matrix C is conditionally
positive if (x,Cx) ≥ 0 for all vectors x ∈ Cn with x1 + x2 + · · ·+ xn = 0.)

Next we discuss cocycle conjugacy. We use the well known trick of A. Connes
[Co].

Definition 2.3. Suppose α and β are CP -semigroups of B(H) and B(K). Then γ
is a corner from α to β if Θ given by

Θt(

[

A B
C D

]

) =

[

αt(A) γt(B)
γ∗t (C) βt(D)

]
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for A ∈ B(H), D ∈ B(K), B a linear operator from K to H and C a linear operator
from H to K is a CP -semigroup of B(H ⊕ K).

Applying Connes’ trick to Eo-semigroups one can show that two Eo-semigroups
α and β are cocycle conjugate if and only if there is a corner γ from α to β so that Θ
above is an Eo-semigroup of B(H⊕K). In order to determine when Eo-semigroups
dilated from CP -semigroups are cocycle conjugate we need a more general result
(see Theorem 3.13 of [P6,P7]) which we state below.

Theorem 2.4. Suppose α and β are unital CP -semigroups of B(H) and B(K) and
αd and βd are the minimal dilations of α and β to Eo-semigroups. Then αd and βd

are cocycle conjugate if and only if there is a corner γ from α to β so that if

Θt(

[

A B
C D

]

) =

[

αt(A) γt(B)
γ∗t (C) βt(D)

]

and

Θ′

t(

[

A B
C D

]

) =

[

α′

t(A) γt(B)
γ∗t (C) β′

t(D)

]

for t ≥ 0 and A,B,C and D operators between the appropriate Hilbert spaces and
Θ′ is a subordinate of Θ(Θ ≥ Θ′ ≥ 0) then Θ′ = Θ so α′ = α and β′ = β.

III. CP -Flows.

In this section we define CP -flows. We believe these are the simplest objects
which can be dilated to produce all spatial Eo-semigroups.

Definition 3.1. Suppose K is a separable Hilbert space and H = K⊗L2(0,∞) and
U(t) is right translations of H by t ≥ 0. Specifically, we may realize H as the space
of K-valued Lebesgue measurable functions with inner product

(f, g) =

∫

∞

0

(f(x), g(x)) dx

for f, g ∈ H. The action of U(t) on an element f ∈ H is given by (U(t)f)(x) =
f(x− t) for x ∈ [t,∞) and (U(t)f)(x) = 0 for x ∈ [0, t). A semigroup α is a CP -
flow over K if α is a CP -semigroup of B(H) which is intertwined by the translation
semigroup U(t), i.e., U(t)A = αt(A)U(t) for all A ∈ B(H) and t ≥ 0.

Every spatial Eo-semigroup can be induced from a CP -flow because every spatial
Eo-semigroup is cocycle conjugate to an Eo-semigroup which is also a CP -flow.

We introduce notation for describing CP -flows. Let H = K⊗L2(0,∞) and U(t)
be translation by t. Consider the projections

E(t) = I − U(t)U(t)∗ and E(a, b) = U(a)U(a)∗ − U(b)U(b)∗

for t ∈ [0,∞) and 0 ≤ a < b < ∞. Let d = d/dx be the differential operator of
differentiation with the boundary condition f(0) = 0. Precisely, the domain D(d)
is all f ∈ H of the form

f(x) =

∫ x

0

g(t) dt
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with g ∈ H. The hermitian adjoint d∗ is −d/dx with no boundary condition at
x = 0. Precisely, the domain D(d∗) consists of the linear span of D(d) and the
functions g(x) = e−xk with k ∈ K.

Suppose α is a CP -flow over K and A ∈ B(H) then for t > 0 one finds

αt(A) = U(t)AU(t)∗ +E(t)αt(A)E(t) = U(t)AU(t)∗ + B

for all t ≥ 0. Then B commutes with E(s) for all s so B is of the form

(Bf)(x) = b(x)f(x)

for x ∈ (0, t) where b(x) ∈ B(K) depends σ-strongly on A for x ∈ (0, t).Again we de-
fine the boundary representation, πo. Let δ be the generator of α then for A ∈ D(δ)
we have AD(d) ⊂ D(d) and AD(d∗) ⊂ D(d∗) so A acts on D(d∗) mod D(d) = K.
We call this mapping from D(δ) into B(K) the boundary representation πo. If one
thinks of a CP -flow as the operator shifting to the right in B(K ⊗ L2(0,∞)) then
πo determines what flows in from the origin. The boundary representation need
not be σ-weakly continuous. Also the boundary representation does not always
completely determine the CP -flow. If π is a σ-weakly continuous completely pos-
itive contraction of B(K ⊗ L2(0,∞)) into B(K) then there is a minimal CP -flow
with that boundary representation and if that flow is unital then the Eo-semigroup
induced by the flow is completely spatial (type In) where n is the rank of π.

We now define the generalized boundary representation. The resolvent Rα for α
is given by

Rα(A) =

∫

∞

0

e−tαt(A) dt

Next we introduce some notation. If φ is a σ-weakly continuous mapping from
B(H) to B(K) we define φ̂ as the predual map from B(K)∗ to B(H)∗ so we have

ρ(φ(A)) = (φ̂ρ)(A) for all A ∈ B(H) and ρ ∈ B(K)∗. We define the mapping Γ as

Γ(A) =

∫

∞

0

e−tU(t)AU(t)∗dt

for A ∈ B(H). Note Rα − Γ is completely positive which we denote by writing
Rα − Γ ≥ 0. Note Γ is the resolvent of a CP -flow with boundary representation
πo = 0.

We need one more bit of notation. We define Λ : B(K) → B(H) for A ∈ B(K)
where Λ(A) is given by

(Λ(A)f)(x) = e−xAf(x)

for x ≥ 0 and f ∈ H. We define Λ = Λ(I). Note Γ(I) = I − Λ.
Now we present our main formula

R̂α(ρ) = Γ̂(ω(Λ̂ρ) + ρ)

for ρ ∈ B(H)∗ and the mapping η → ω(η) defined to be the boundary weight map.
We call ω(η) the boundary weight associated with η. In the unital case we have for
ρ ∈ B(K)∗

R̂α(ρ)(I) = ω(Λ̂(ρ))(I − Λ) + ρ(I − Λ) = ρ(I)
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so
ω(Λ̂(ρ))(I − Λ) = ρ(Λ) = (Λ̂ρ)(I)

The mapping ρ → ω(ρ) is a completely positive map from B(K)∗ into weights

on B(H) so that µ(ρ) given by µ(ρ)(A) = ω(ρ)((I − Λ)
1

2A(I − Λ)
1

2 ) for A ∈
∪t>0U(t)B(H)U(t)∗ is normal (i.e. µ(ρ) ∈ B(H)∗) and µ(ρ)(I) ≤ ρ(I) for ρ posi-
tive.

Every CP -flow is given by a boundary weight map ρ → ω(ρ). What are the
properties? As we have mentioned the map is completely positive. There is a
further complicated positivity condition. The condition says if you construct an
approximation to the boundary representation πt, then πt is completely positive.

Let us describe the connection between boundary weight and boundary repre-
sentation. We can construct a boundary weight map so that the boundary repre-
sentation is a given σ-weakly continuous completely positive contraction of B(H)
into B(K). Suppose π is a σ-weakly continuous completely positive contraction of
B(H) into B(K). Let

ω = π̂ + π̂Λ̂π̂ + π̂Λ̂π̂Λ̂π̂ + π̂Λ̂π̂Λ̂π̂Λ̂π̂ + · · ·

This converges as a weight (i.e. ω(ρ)(I − Λ) converges for all ρ) and this is the
boundary weight of a CP -flow. We call this the minimal CP -flow derived from π.
Formally ω = π̂(I − Λ̂π̂)−1 and solving for π we have

π̂ = ω(I + Λ̂ω)−1

If a boundary weight associated with a CP -flow is bounded then the boundary
representation is well defined as stated in the next theorem (see theorem 4.27 of
[P6,P7]).

Theorem 3.2. Suppose α is a CP -flow over K and ρ → ω(ρ) is the boundary
weight map. Suppose ‖ω(ρ)‖ < ∞ for ρ ∈ B(K)∗ so ω(ρ) ∈ B(H)∗ for all ρεB(K)∗.

Then the map ρ→ ρ+ Λ̂ω(ρ) is invertible (i.e., (I + Λ̂ω)−1 exists) and π̂ given by

π̂ = ω(I + Λ̂ω)−1

is a completely positive contraction from B(K)∗ to B(H)∗. There is a unique CP -
flow derived from π and its boundary weight map is given by

ω = π̂ + π̂Λ̂π̂ + π̂Λ̂π̂Λ̂π̂ + π̂Λ̂π̂Λ̂π̂Λ̂π̂ + · · ·

So when ω(ρ) is bounded for all ρ ∈ B(K)∗ we have

ω = π̂(I − Λ̂π̂)−1 and π̂ = ω(I + Λ̂ω)−1

Now we introduce a bit of notation. Suppose ω is a boundary weight. We denote
by ωt(ρ) the functional ωt(ρ)(A) = ω(ρ)(E(t,∞)AE(t,∞)). Note ωt(ρ) ∈ B(H)∗,
i.e. ωt(ρ) is a bounded σ-weakly continuous functional. Our main result is the
following theorem (see theorem 4.23 and 4.27 of [P6,P7]).
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Theorem 3.3. Suppose ρ→ ω(ρ) is the boundary weight map of a CP -flow over
K. Then for each t > 0 we have ρ→ ωt(ρ) is the boundary weight map of a CP -flow
over K. Suppose ρ→ ω(ρ) is a completely positive mapping of B(K)∗ into weights
on B(H) satisfying ω(ρ)(I − Λ) ≤ ρ(I) for ρ positive. Suppose

π̂t = ωt(I + Λ̂ωt)
−1

is a completely positive contraction of B(K)∗ into B(H)∗ for each t > 0. Then
ρ→ ω(ρ) is boundary weight map of a CP -flow over K.

If ρ→ ω(ρ) is a mapping of B(K)∗ into weights on B(H) so that π̂t defined above

is completely positive for each t > 0 we say this map is q-positive. The family π#
t of

completely positive σ-weakly continuous contractions of B(H) into B(K) is called
the generalized boundary representation.

We remark that in checking that the π#
t are completely positive it is only nec-

essary to check for small t. If the mapping π#
t is completely positive then π#

s is
completely positive for all s ≥ t. Next we give the order relation for generalized
boundary representations.

Theorem 3.4. If α and β are CP -flows over K then β is a subordinate of α(α ≥ β)

if and only if π#
t ≥ φ#

t for all t > 0 where π#
t and φ#

t are the generalized boundary

representations of α and β. Also we have if π#
t ≥ φ#

t then π#
s ≥ φ#

s for all s ≥ t so
one only has to check for a sequence {tn} tending to zero.

Theorem 3.5. Suppose α is a CP -flow over K and π# is the generalized boundary
representation of α. Then π#

s (A) → π#
o (A) as s → 0+ in the σ-strong topology

on U(t)B(H)U(t)∗ for each t > 0 where π#
o is a σ-weakly continuous completely

positive contraction of B(H) into B(K). The index of α is the rank of π#
o .

Note π#
o is not the boundary representation, rather it is the normal part of the

boundary representation. So the result of G. Price and myself (see [PP]) generalizes
to CP -flows.

The inverse of (I + Λ̂ω) is in general hard to compute. We make a simplifying
assumption. We introduce the Schur product of matrices. Sometimes this product is
call the Hadamard product or the Kronecker product. The Schur product C = A◦B
of two matrices A and B denoted by the dot between A and B is obtained by
multiplying the entries of A and B so cij = aijbij where aij, bij and cij are the
coefficients of A, B and C, respectively. Note the Schur product is commutative
so X ◦ A = A ◦X for matrices A and X. Note the map A → X ◦ A is completely
positive if and only if X is positive. We define Schur diagonal maps which is a
generalization of the Schur product.

Definition 3.6. The map ρ→ ω(ρ) from B(K)∗ to weights on ∪t>0U(t)B(H)U(t)∗

is said to be Schur diagonal with respect to an orthonormal basis {fi : i = 1, 2, · · · }
of K if ρij(A) = (fi, Afj) for A ∈ B(K) and eif = (fi, f)fi then

ω(ρij)(A) = ω(ρij)((ei ⊗ I)A(ej ⊗ I))

for all A ∈ ∪t>0U(t)B(H)U(t)∗ for all i, j = 1, 2, · · · . In this case the matrix
elements of the mapping ρ→ ω(ρ) are the weights

ωij(A) = ω(ρij)(eij ⊗ A)
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for A ∈ ∪t>0U(t)B(L2(0,∞))U(t)∗ where {eij} are the set of matrix units defined
by eijf = (fj , f)fi for all f ∈ K and i, j = 1, 2, · · · .

It is an easy exercise to show that if the mapping ρ→ ω(ρ) is completely positive
then to show the mapping is Schur diagonal we need only check the diagonal entries.
The next theorem tells us when a Schur diagonal boundary weight map is q-positive.
The proof of the next theorem can be found in [P7].

Theorem 3.7. Suppose K is finite dimensional and ρ→ ω(ρ) is a linear mapping
of B(K)∗ into weights ω(ρ) on ∪t>0U(t)B(H)U(t)∗ which is Schur diagonal with
respect to an orthonormal basis {fi : i = 1,2,· · · · , n} and ρij(A) = (fi, Afj) for
each i and j and for A ∈ B(K). For t > 0 and ρ ∈ B(K)∗ let

ωt(ρ)(A) = ω(ρ)(E(t,∞)AE(t,∞))

for all A ∈ B(H). Then the mapping ρ→ ω(ρ) defines a CP -flow if and only if for
each t > 0 the matrix with entries given by

ηij =
ωt(ρij)

1 + ωt(ρij)(Λ)

for i, j = 1, 2, · · · , n is the matrix of a completely positive contraction of B(K)∗
into B(H)∗.

For the remainder of this section we will restrict ourselves to the case when K is
one dimensional. In this case every boundary weight of a CP -flow is of the form
ω(A) = µ((I − Λ)−

1

2A(I − Λ)−
1

2 ) for A ∈ ∪t>0U(t)B(H)U(t)∗ with µ a positive
element of B(H)∗ with µ(I) ≤ 1. If ω1 and ω2 are boundary weights giving rise to
CP -semigroups αt and βt we say ω1 q-dominates ω2 written ω1 ≥q ω2 if αt − βt

is completely positive for each t ≥ 0. In the case when K is one dimensional the
generalized boundary representation is given by

π#
t (A) =

ωt(A)

1 + ωt(Λ)

for all t > 0 and A ∈ B(H) where ωt(A) = ω((I − E(t))A(I − E(t)). Then from
theorem 3.4 and 3.7 it follows that ω1 ≥q ω2 if and only if

ω1t

1 + ω1t(Λ)
≥ ω2t

1 + ω2t(Λ)

for each t > 0. If the above inequality is satisfied it follows that ω1t(Λ) ≥ ω2t(Λ)
and, therefore,

ω1t

1 + ω1t(Λ)
≥ ω2t

1 + ω2t(Λ)
≥ ω2t

1 + ω1t(Λ)

and, hence, ω1t ≥ ω2t for all t > 0 and this is equivalent to ω1 ≥ ω2. Hence,
ω1 ≥q ω2 implies ω1 ≥ ω2.

A weight ω is q-pure if ω ≥q ρ ≥q 0 implies ρ is a multiple of ω. From now on
we will use a subscript t or s on a functional for that functional cut off to the left
of t so ωt(A) = ω((I − E(t))A(I− E(t))) for A ∈ B(H) and t > 0.
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Theorem 3.8. Suppose ω and η are boundary weights and ω ≥q η ≥ 0. Then
ω ≥ η. Furthermore, if ω(I) = ∞ then η(I) is infinite or zero.

Proof. Suppose ω and η are boundary weights and ω ≥q η. We have seen that
ω ≥ η. Next suppose ω(I) = ∞. Since ω(I − Λ) ≤ 1 we have ωt(Λ) → ∞ as
t→ 0 + . Since ω ≥q η we have

ηt

1 + ηt(Λ)
≤ ωt

1 + ωt(Λ)

for all t > 0 and, hence, for 0 < t ≤ s we have

η(I − E(s)) = ηt(I − E(s)) ≤ 1 + ηt(Λ)

1 + ωt(Λ)
ω(I − E(s))

Now suppose η(I) < ∞. Since η(Λ) ≤ η(I) < ∞ and since ω(Λ) = ∞ the above
ratio tends to zero as t → 0+ and we have η(I − E(s)) = 0 for all s > 0 but this
implies η = 0 so either η(I) = 0 or η(I) = ∞.

Theorem 3.9. Suppose ω is a boundary weight and ρ ∈ B(H)∗ is positive (so
0 ≤ ρ(I) < ∞) and ω ≥ ρ and η = λ(1 + ρ(Λ))−1(ω − ρ) with 0 ≤ λ ≤ 1. Then
ω ≥q η. Conversely suppose ω and η are boundary weights and ω ≥q η ≥ 0 and
η 6= 0. Then there is a positive ρ ∈ B(H)∗ (so ρ(I) < ∞) and a real number
λ ∈ (0, 1] so that ω ≥ ρ and η = λ(1 + ρ(Λ))−1(ω − ρ). Furthermore, if ω(I) = ∞
then ρ and λ are unique.

Proof. Assume the first sentence in the statement of the theorem is satisfied with
0 < λ ≤ 1. Note ρ(Λ) − ρt(Λ) = ρ(E(t)ΛE(t)) ≥ 0 for t ≥ 0. We have for t > 0

ηt

1 + ηt(Λ)
=

ωt − ρt

λ−1(1 + ρ(Λ)) + ωt(Λ) − ρt(Λ)

≤ ωt − ρt

1 + ρ(Λ) + ωt(Λ) − ρt(Λ)
≤ ωt

1 + ωt(Λ)

Hence, ω ≥q η. If λ = 0 then ω ≥q η so we have proved the implication in one
direction.

Next assume ω and η are boundary weights and ω ≥q η ≥q 0 and 0 < t < s. Let
h(t) = (1 + ηt(Λ))/(1 + ωt(Λ)) for t > 0. Since ω ≥q η we have

ηt(Λ) − ηs(Λ)

1 + ηt(Λ)
=
ηt((E(s)−E(t))Λ)

1 + ηt(Λ)

≤ ωt((E(s)− E(t))Λ)

1 + ωt(Λ)
=
ωt(Λ) − ωs(Λ)

1 + ωt(Λ)

Multiplying by the common denominator and rearranging we have

(1 + ηt(Λ))(1 + ωs(Λ)) ≤ (1 + ηs(Λ))(1 + ωt(Λ))

and dividing by (1 + ωs(Λ))(1 + ωt(Λ)) we find h(t) ≤ h(s). Hence, h is increasing
and the limit as t→ 0+ exists. We denote this limit by κ so h(t) → κ as t→ 0 + .
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Since ω ≥q η we have h(t)ωt ≥ ηt for all t > 0 and, hence, κω ≥ η. We see that if
κ = 0 then η = 0 and since η 6= 0 we have κ > 0. Let ρ = ω − κ−1η. Since κω ≥ η
we have ρ is positive. Note ω ≥ ρ and η = κ(ω − ρ). Since h(t) decreases to κ as
t→ 0+ we have h(t) ≥ κ for all t > 0 and, hence,

1 + κ(ωt(Λ) − ρt(Λ))

1 + ωt(Λ)
≥ κ

for t > 0. Hence, ρt(Λ) ≤ κ−1 − 1 for t > 0 and so ρ(Λ) ≤ κ−1 − 1. Since ω ≥ ρ
and ω(I − Λ) ≤ 1 we have ρ(I) = ρ(I − Λ) + ρ(Λ) ≤ κ−1 so ρ(I) < ∞ and ρ is
normal. Since κ ≤ (1 + ρ(Λ))−1 we have κ = λ(1 + ρ(Λ))−1 with λ ∈ (0, 1] and
η = λ(1 + ρ(Λ))−1(ω − ρ).

Finally, suppose ω(I) = ∞. Suppose λ and λ′ are in (0, 1] and ρ and ρ′ are positive
elements of B(H)∗ and η = λ(1 + ρ(Λ))−1(ω − ρ) and η = λ′(1 + ρ′(Λ))−1(ω − ρ′).
Then we have

(λ(1 + ρ(Λ))−1 − λ′(1 + ρ′(Λ))−1)ω = λ(1 + ρ(Λ))−1ρ− λ′(1 + ρ′(Λ))−1ρ′

Since ω is unbounded and ρ and ρ′ are bounded the coefficient of ω is zero so
λ(1 + ρ(Λ))−1 = λ′(1 + ρ′(Λ))−1. Then the right hand side must be zero so ρ = ρ′.
From what we have just shown this implies λ = λ′. �

Theorem 3.10. Suppose ω is a boundary weight. Then ω is of the form

ω(A) =
∑

k∈I

(fk, (I − Λ)−
1

2A(I − Λ)−
1

2 fk)

for A ∈ ∪t>0U(t)∗B(H)U(t) where fk ∈ H = L2(0,∞) for each k ∈ I and the fk

are mutually orthogonal and the sum of the ‖fk‖2 for k ∈ I is not greater than
one. The boundary weight ω is q-pure if and only if the index set I contains one
element or each vector g of the form

g =
∑

k∈I

zkfk with 0 <
∑

k∈I

|zk|2 ≤ 1

is not in the domain of (I − Λ)−
1

2 which is the range of (I − Λ)
1

2 .

Proof. Suppose ω is a boundary weight. For each t > 0 let

νt(A) = ωt((I − Λ)
1

2A(I − Λ)
1

2 )

for each A ∈ B(H). From the properties of a weight if follows that νt ∈ B(H)∗ is
positive and νt converges in norm to a positive element νo ∈ B(H)∗ as t→ 0+ and
‖νo‖ = νo(I) ≤ 1. It is well know that each positive νo ∈ B(H)∗ with νo(I) ≤ 1 can
be expressed in the form

νo(A) =
∑

k∈I

(fk, Afk)

where the fk have the properties stated in the theorem. It now follows that ω has
the form stated in the theorem.
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If the index set I has only one term the conclusion of the theorem follows imme-
diately. Suppose then that I has more than one element. Suppose ω is not q-pure.
Then from the previous theorem there is a positive normal functional η with ω ≥ η.
And for each positive normal functional η there is a pure positive normal functional
ρ with η ≥ ρ. Then we have ω ≥ ρ. Now ρ is of the form ρ(A) = (fo, Afo) for all
A ∈ B(H) with fo ∈ H. Then we have

νo(A) = ω((I − Λ)
1

2A(I − Λ)
1

2 ) ≥ ρ((I − Λ)
1

2A(I − Λ)
1

2 )

for all positive A ∈ ∪t>0U(t)∗B(H)U(t) and this extends to all positive A ∈ B(H).
Setting Af = (h, f)h for all f ∈ H where h ∈ H is an arbitrary vector we have

∑

k∈I

|(fk, h)|2 ≥ |(g, h)|2

where g = (I −Λ)
1

2 fo. Let zk = (fk, g)/‖fk‖ for k ∈ I. Setting h = fk in the above
inequality we see |zk|2 ≤ ‖fk‖2 so the sum of |zk|2 over k ∈ I is not greater than
one. Let

go = g −
∑

k∈I

zkfk

Note go is orthogonal to the fk. Setting h = go in the inequality above we find
(g, go) = 0. Since (g, go) = (go, go) we have go = 0. Hence,

g =
∑

k∈I

zkfk

and since g = (I − Λ)
1

2 fo we have g is in the domain of (I − Λ)−
1

2 .
Conversely, suppose there is a vector g of the form given in the statement of the

theorem and g is in the domain of (I−Λ)−
1

2 so g = (I−Λ)
1

2 fo. Let ρ(A) = (fo, Afo).
Let νo be defined from ω as above. Now we have νo(A) ≥ (g, Ag) for all positive
A ∈ B(H). Hence,

ω((I − Λ)
1

2A(I − Λ)
1

2 ) = νo(A) ≥ (g, Ag) = ρ((I − Λ)
1

2A(I − Λ)
1

2 )

for all positive A ∈ ∪t>0U(t)∗B(H)U(t). For A ∈ ∪t>0U(t)∗B(H)U(t) we can

replace A with (I − Λ)−
1

2A(I − Λ)−
1

2 and we find ω(A) ≥ ρ(A) for all positive
A ∈ ∪t>0U(t)∗B(H)U(t). Hence, by the previous theorem ω is not q-pure. �

Next we will derive a computable condition for determining whether two pure
weights give rise to cocycle conjugate Eo-semigroups (see theorems 3.22 and 3.23).
Before we begin we make a comment on matrices of linear functionals. Suppose H is
a separable Hilbert space and n is a positive integer. We denote by Mn(B(H)) the
algebra of (n× n)-matrices with entries in B(H). Suppose Ω = [ωij ] is an (n× n)
matrix of functionals ωij ∈ B(H)∗) for i, j = 1, · · · , n. We say Ω is positive if

Ω(A) =

n
∑

i,j=1

ωij(Aij) ≥ 0
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for A = [Aij] a positive element in Mn(B(H)). One can check that a matrix Ω is
positive if and only if

n
∑

i,j=1

ωij(A
∗

iAj) ≥ 0

for Ai ∈ B(H) for i = 1, · · · , n. This is seen as follows. Since every positive (n× n)
matrix T with entries in B(H) is of the form T = X∗X = X∗E1X + · · ·+X∗EnX
with Ei the matrix with all zero entries except for the diagonal (i, i) entry (Ei)ii = I
it follows that T is the sum of at most n positive matrices of the form [Aij ] = [A∗

iAj].
Note that if Ω ∈ Mn(B(H)∗) is positive if an only if there are a countable set of
vectors Fk = (f1k, · · · , fnk) ∈ ⊕n

i=1H) for k ∈ I so that

ωij(A) =
∑

k∈I

(fik, Afjk)

for i, j = 1, · · · , n and A ∈ B(H) and

∑

k∈I

‖Fk‖2 =
∑

k∈I

n
∑

i=1

‖fik‖2 <∞.

Note that Ω ∈ Mn(B(H)∗) is positive if and only if the mapping A → [ωij(Aij)]
from Mn(B(H)) to Mn(C) is completely positive.

Next suppose H = K ⊗ L2(0,∞) and Ω is an (n × n) matrix of weights on
∪t>0U(t)B(H)U(t)∗. We say Ω is a positive boundary weight if there is a positive
Ξ = [ξij ] ∈Mn(B(H)∗) so that

ωij(A) = ξij((I − Λ)−
1

2A(I − Λ)−
1

2 )

for all A ∈ ∪t>0U(t)B(H)U(t)∗ and i, j = 1, · · · , n.
We begin with the definition.

Definition 3.11. Suppose ω and η are positive boundary weights. We say a linear
map γ is a corner from ω to η if the matrix

[

ω γ
γ∗ η

]

is positive boundary weight. We say γ is maximal whenever ω′ is a boundary weight
so that

[

ω γ
γ∗ η

]

≥
[

ω′ γ
γ∗ η

]

≥ 0

then ω′ = ω. We say γ is hyper maximal if ω′ and η′ are boundary weights so that

[

ω γ
γ∗ η

]

≥
[

ω′ γ
γ∗ η′

]

≥ 0

then ω′ = ω and η′ = η.
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Again, suppose ω and η are boundary weights. We say γ is a q-corner from ω to
η if the matrix

[

ωt

1+ωt(Λ)
γt

1+γt(Λ)
γ∗

t

1+γ∗

t
(Λ)

ηt

1+ηt(Λ)

]

on B(H⊕H) is positive for all t > 0. We say ω and η are disjoint if the only corner
between ω and η is the zero weight. We say ω and η are connected if they are not
disjoint. We say a q-corner γ from ω to η is maximal whenever ω′ is boundary
weight so that

[

ωt

1+ωt(Λ)
γt

1+γt(Λ)
γ∗

t

1+γ∗

t
(Λ)

ηt

1+ηt(Λ)

]

≥
[

ω′

t

1+ω′

t
(Λ)

γt

1+γt(Λ)
γ∗

t

1+γ∗

t
(Λ)

ηt

1+ηt(Λ)

]

≥ 0

for all t > 0 then ω′ = ω. We say a q-corner γ from ω to η is hyper maximal if ω′

and η′ are boundary weights so that

[

ωt

1+ωt(Λ)
γt

1+γt(Λ)
γ∗

t

1+γ∗

t
(Λ)

ηt

1+ηt(Λ)

]

≥
[

ω′

t

1+ω′

t
(Λ)

γt

1+γt(Λ)

γ∗

t

1+γ∗

t
(Λ)

η′

t

1+η′

t
(Λ)

]

≥ 0

for all t > 0 then ω′ = ω and η′ = η.

Note that γ is a q-corner from ω to ρ then γ∗ is a q-corner from ρ to ω so saying
ω and ρ are connected is the same as saying ρ and ω are connected. Note that if
γ is a hyper maximal q-corner from ω to ρ if and only if γ is a maximal q-corner
and γ∗ is a maximal q-corner from ρ to ω. The next lemma gives a description of
ordinary corners (not q-corners) between positive functional ω and ρ in B(H)∗.

Lemma 3.12. Suppose ω1 and ω2 are positive elements of B(H)∗ and Ω1 and Ω2

are density matrices giving ω1 and ω2 so that

ω1(A) = tr(AΩ1) and ω2(A) = tr(AΩ2)

for A ∈ B(H) where tr is the trace normalized so that the trace of a rank one
projection is one. Let M1 be the closure of the range of Ω1 and let M2 be the
closure of the range of Ω1. Then γ is a corner between ω1 and ω2 if and only if γ is
of the form

γ(A) = tr(AΩ
1

2

2XΩ
1

2

1 )

for A ∈ B(H) with X an operator from M1 to M2 and ‖X‖ ≤ 1. A corner γ from
ω1 to ω2 is maximal if and only if X is an isometry of M1 into M2. A corner is
hyper maximal if and only if X is a unitary from M1 to M2 so both X and X∗ are
isometries. It follows that there is a maximal corner from ω1 to ω2 if and only if
the rank of ω2 is greater than the rank of ω1 and there is a hyper maximal corner
from ω1 to ω2 if and only if the ranks of ω1 and ω2 are equal.

Proof. Assume the notation of the theorem. One sees γ is a corner from ω1 to ω2

if and only if γ(A) = tr(AΨ) and the matrix

Ω =

[

Ω1 Ψ∗

Ψ Ω2

]
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is positive. Suppose Ψ = Ω
1

2

2XΩ
1

2

1 . Suppose F = {f, g} ∈ H ⊕ H. Then

(F,ΩF ) = (f,Ω1f) + (f,Ψ∗g) + (g,Ψf) + (g,Ω2g)

= (Ω
1

2

1 f,Ω
1

2

1 f) + (Ω
1

2

1 f,X
∗Ω

1

2

2 g) + (Ω
1

2

2 g,XΩ
1

2

1 f) + (Ω
1

2

2 g,Ω
1

2

2 g)

≥ ‖Ω
1

2

1 f‖2 + ‖Ω
1

2

1 g‖2 − 2‖Ω
1

2

1 f‖ ‖Ω
1

2

1 g‖

= (‖Ω
1

2

1 f‖ − ‖Ω
1

2

1 g‖)2 ≥ 0.

Hence, Ω is positive. Conversely suppose Ω given in terms of Ω1, Ω2 and Ψ is
positive. Let F = {f, cg} with c a complex number. Since Ω is positive we have

(F,ΩF ) = (f,Ω1f) + 2Re(c(f,Ψ∗g)) + |c|2(g,Ω2g) ≥ 0

Since c is arbitrary we have |(f,Ψ∗g)|2 ≤ (f,Ω1f)(g,Ω2g). Let 〈·, ·〉 be the bilinear

form on (Range Ω
1

2

1 )× (Range Ω
1

2

2 ) of the form

〈Ω
1

2

1 f,Ω
1

2

2 g〉 = (f,Ψg)

From the estimate above we have 〈Ω
1

2

2 f,Ω
1

2

2 g〉 ≤ ‖Ω
1

2

1 f‖ ‖Ω
1

2

2 g‖. Since the bilinear
form 〈·, ·〉 is norm continuous it has a unique norm continuous extension to Cartesian

product of the closures of the ranges of Ω
1

2

1 and Ω
1

2

2 . And by the Riesz representation
theorem there is a unique linear operator X∗ with ‖X∗‖ ≤ 1 from M2 to M1 so

that 〈Ω
1

2

1 f,Ω
1

2

2 g〉 = (Ω
1

2

1 f,XΩ
1

2

2 g) = (f,Ψ∗g). Then we have

(f,Ψ∗g) = 〈Ω
1

2

1 f,Ω
1

2

2 g〉 = (Ω
1

2

1 f,X
∗Ω

1

2

2 g) = (f,Ω
1

2

1X
∗Ω

1

2

2 g)

for all f, g ∈ H and, hence, Ψ∗ = Ω
1

2

1 X
∗Ω

1

2

2 and then Ψ = Ω
1

2

2XΩ
1

2

1 .
Suppose γ is a maximal corner from ω1 to ω2. Since γ is a corner we have

γ(A) = tr(AΩ
1

2

2XΩ
1

2

1 ) for A ∈ B(H) where X is a bounded operator from M1 to

M2 with norm not greater than one. Let ω′

1(A) = tr(AΩ
1

2

1X
∗XΩ

1

2

1 ) for A ∈ B(H).
One checks that

0 ≤
[

ω′

1 γ
γ∗ ω2

]

≤
[

ω1 γ
γ∗ ω2

]

so ω′ = ω since γ is maximal. Since ω′ = ω we have Ω
1

2

1 X
∗XΩ

1

2

1 = Ω1 = Ω
1

2

1 IΩ
1

2

1

and X is an isometry.

Now suppose X is an isometry from M1 to M2 and γ(A) = tr(AΩ
1

2

2XΩ
1

2

1 ) for
A ∈ B(H) and

0 ≤
[

ω′

1 γ
γ∗ ω′

2

]

≤
[

ω1 γ
γ∗ ω2

]

Then there are operators T1 and T2 with 0 ≤ Ti ≤ Pi with Pi the range projection

for Ω
1

2

i so that ω′

i(A) = tr(AΩ
1

2

i TiΩ
1

2

i ) for A ∈ B(H) and i = 1, 2. It follows that

[

Ω
1

2

1 T1Ω
1

2

1 Ω
1

2

1 X
∗Ω

1

2

2

Ω
1

2

2XΩ
1

2

1 Ω
1

2

2 T2Ω
1

2

2

]

≥ 0.
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Hence, we have

|(f,Ω
1

2

2XΩ
1

2

1 g)|2 ≤ (f,Ω
1

2

2 T2Ω
1

2

2 f)(g,Ω
1

2

1 T1Ω
1

2

1 g)

for all f, g ∈ H. Since X is an isometry from the M1 to M2 it follows that for g ∈ H

sup{|(f,Ω
1

2

2XΩ
1

2

1 g)|2; f ∈ H, (f,Ω2f) ≤ 1} = (g,Ω1g)

From the inequality above for |(f,Ω
1

2

2XΩ
1

2

1 g)|2 and the fact that T2 ≤ P2 we have
for g ∈ H

sup{|(f,Ω
1

2

2XΩ
1

2

1 g)|2; f ∈ H, (f,Ω2f) ≤ 1} ≤ (g,Ω
1

2

1 T1Ω
1

2

1 g).

Hence, we have (g,Ω1g) ≤ (g,Ω
1

2

1 T1Ω
1

2

1 g) and since T1 ≤ P1 we have T1 = P1 and,
hence, ω′

1 = ω1. Hence, γ is maximal and we have shown that γ is maximal if and
only if X is an isometry.

One sees γ is hyper maximal if and only if γ is a maximal corner from ω1 to ω2

and γ∗ is a maximal corner joining ω2 and ω1. Hence, we see γ is hyper maximal if
and only if X and X∗ are both isometries which is the same as saying X is unitary.

Note that if rank ω1 ≤ rank ω2 then there is an isometry X from M1 to M2 and
the resulting corner is maximal. Conversely, if γ is a maximal corner from ω1 to ω2

then the corresponding X is an isometry and, hence, rank ω1 ≤ rank ω2. Similarly,
there is a hyper maximal corner from ω1 to ω2 if and only if rank ω1 = rank ω2. �

We will derive a computable condition for determining whether boundary weights
are connected. First we prove a useful lemma.

Lemma 3.13. Suppose ω and η are positive boundary weights and γ 6= 0 is a
q-corner from ω to η. Then

h(t) =
(1 + ωt(Λ))

1

2 (1 + ηt(Λ))
1

2

|1 + γt(Λ)|
is an non increasing function of t which is bounded above and, therefore, it has a
finite limit κ ≥ 1 as t→ 0+ and κγ is a corner from ω to η. Also, the function

h1(t) =
(1 + ωt(Λ))

1

2 (1 + ηt(Λ))
1

2

1 + γt(Λ)

converges to a limit as t→ 0 + . (Note h(t) = |h1(t)| for t > 0).
Conversely, if κ ≥ 1 and κγ is a corner from ω to η and

(1 + ωt(Λ))
1

2 (1 + ηt(Λ))
1

2

|1 + γt(Λ)| ≤ κ

for all t > 0 then γ is a q-corner from ω to ρ. If ω and η are unbounded then the
corner κγ from ω to η is trivially maximal in that λκγ is not a corner from ω to η
for λ > 1.

Proof. Assume the notation of the lemma and γ is a q-corner from ω to η. Then
from definition 3.11 we have the matrix

Ξt =

[

ωt

1+ωt(Λ)
γt

1+γt(Λ)
γ∗

t

1+γ∗

t
(Λ)

ηt

1+ηt(Λ)

]
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is positive for all t > 0. Let y = 1 + γt(Λ) and z = y/|y|. It then follows the matrix

Ωt =

[

z(1 + ωt(Λ))
1

2 0

0 (1 + ηt(Λ))
1

2

]

Ξt

[

z(1 + ωt(Λ))
1

2 0

0 (1 + ηt(Λ))
1

2

]

=

[

ωt h(t)γt

h(t)γ∗t ηt

]

is positive for all t > 0 with

h(t) =
(1 + ωt(Λ))

1

2 (1 + ηt(Λ))
1

2

|1 + γt(Λ)|

Since the matrix Ωt is positive we have for A,B ∈ (I−Λ)
1
2 B(H)(I−Λ)

1
2 and t > 0

|h(t)γt(A
∗B)|2 ≤ ωt(A

∗A)ηt(B
∗B).

Since we can arrange for γ(A∗B) 6= 0 it follows that h(t) is bounded as t→ 0 + .
Next we will show h(t) is a non increasing function of t. Assume 0 < t < s. Note

that
ωt(Λ) − ωs(Λ) = ωt(X(s)) where X(s) = E(s)ΛE(s)

and similar relations hold for η and γ. Since the matrix Ωt is positive we have

[

ωt(Xs) h(t)γt(Xs)
h(t)γ∗t (Xs) ηt(Xs)

]

=

[

ωt(Λ) − ωs(Λ) h(t)(γt(Λ) − γs(Λ))
h(t)(γ∗t (Λ) − γ∗s (Λ)) ηt(Λ) − ηs(Λ)

]

is positive. Hence, the determinant is non negative so we have

(ωt(Λ) − ωs(Λ))(ηt(Λ) − ηs(Λ)) ≥ h(t)2|γt(Λ) − γs(Λ)|2

and recalling the definition of h(t) we have

|1 + γt(Λ)|2(ωt(Λ)−ωs(Λ))(ηt(Λ) − ηs(Λ))

≥ |γt(Λ) − γs(Λ)|2(1 + ωt(Λ))(1 + ηt(Λ)).

To simplify this inequality we let

f(x) = 1 + ωx(Λ), g(x) = 1 + ηx(Λ), k(x) = 1 + γx(Λ)

for x > 0. Note f and g are non increasing functions of x. In terms of these functions
the above inequality becomes

|k(t)|2(1 − f(s)/f(t))(1− g(s)/g(t)) ≥ |k(t) − k(s)|2.

Now for a, b ∈ [0, 1] we have a− 2
√
ab+ b = (

√
a−

√
b)2 ≥ 0 which yields

(1 −
√
ab)2 = 1 − 2

√
ab+ ab ≥ 1 − a− b+ ab = (1 − a)(1 − b).
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Using this inequality with a = f(s)/f(t) and b = g(s)/g(t) in the above inequality
we find

(3.1) (1 − (f(s)g(s))
1

2 (f(t)g(t))−
1

2 )|k(t)| ≥ |k(t) − k(s)|.

Since |k(t) − k(s)| ≥ |k(t)| − |k(s)| we have

−(f(s)g(s))
1

2 (f(t)g(t))−
1

2 )|k(t)| ≥ −|k(s)|.

Since k(t) and k(s) can not be zero this inequality is equivalent to the inequality

h(t) =
f(t)

1

2 g(t)
1

2

|k(t)| ≥ f(s)
1

2 g(s)
1

2

|k(s)| = h(s)

for 0 < t ≤ s. Hence, h is non increasing function of t. Since h is non increasing
and h(t) is uniformly bounded it follows that h(t) approaches a limit κ as t→ 0.

Now we show the function h1 in the statement of the lemma has a limit as
t → 0 + . Since the absolute value of h1 has a limit and that limit is not zero to
show h1 has a limit it is enough to show the reciprocal has a limit as t → 0 + .

Let w(t) = (f(t)g(t))
1

2 for t > 0. In terms of the functions k and w we have
h1(t)

−1 = k(t)/w(t) for t > 0. Since h(t) is non increasing |h1(t)|−1 is non decreasing
in t. In terms of w(t) inequality (3.1) becomes

(1 − w(s)/w(t))|k(t)| ≥ |k(t) − k(s)|

for 0 < t < s. Squaring both sides, canceling terms and dividing by w(s)w(t) yield
the inequality

−2|k(t)|2
w(t)2

+
w(s)|k(t)|2
w(t)3

≥ −2Re(k(t)k(s))

w(s)w(t)
+

|k(s)|2
w(s)w(t)

for 0 < t < s. And this inequality is equivalent to the inequality

(1 − w(s)/w(t))(
|k(s)|2
w(s)2

− |k(t)|2
w(t)2

) ≥
∣

∣

∣

∣

k(t)

w(t)
− k(s)

w(s)

∣

∣

∣

∣

for 0 < t < s. Since |k(t)|/w(t) is non decreasing and approaches a finite limit as
t → 0+ this inequality shows k(t)/w(t) has a limit as t → 0 + . Hence, h1(t) =
w(t)/k(t) has a limit as t→ 0 + .

Note for 0 < t < s we have ωs(A) = ωt((I − E(s))A(I − E(s)) for all A ∈
∪t>0U(t)B(H)U(t)∗. Since Ωt is positive, it follows that

[

ωs h(t)γs

h(t)γ∗s ηs

]

is positive for all 0 < t < s. Then taking the limit as t→ 0+ we find the matrix

[

ωs κγs

κγ∗s ηs

]
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is positive for all s > 0 and hence the matrix of weights

[

ω κγ
κγ∗ η

]

yields a positive weight η on B(H ⊕ H).
Conversely, suppose κ ≥ 1 and κγ is a corner from ω to η and

(1 + ωt(Λ))
1

2 (1 + ηt(Λ))
1

2

|1 + γt(Λ)| ≤ κ

for all t > 0. A straight forward computation shows γ is a q-corner from ω to ρ.
Finally, we show κγ is a trivially maximal corner from ω to η if ω and η are

unbounded. Suppose λ > 1 and λκγ is a corner from ω to η. From the inequality
for κ and the fact that ωt(Λ), ηt(Λ) and, therefore, |γt(Λ)| tend to infinity as t→ 0+
we have

lim
t→0+

ωt(Λ)ηt(Λ)

|γt(Λ)|2 ≤ κ2.

Since λκγ is a corner we have λ2κ2|γt(Λ)|2 ≤ ωt(Λ)ηt(Λ) for all t > 0 and, therefore,

lim
t→0+

ωt(Λ)ηt(Λ)

|γt(Λ)|2 ≥ λ2κ2 > κ2.

This contradicts the previous limit inequality so κγ is a trivially maximal corner
from ω to η. �

Theorem 3.14. Suppose ω and η are non zero boundary weights. Then ω and η
are connected if and only if ω and η can be expressed in the form

ω(A) =
∑

k∈I

(fk, (I − Λ)−
1

2A(I − Λ)−
1

2 fk)

and
η(A) =

∑

k∈I

(gk, (I − Λ)−
1

2A(I − Λ)−
1

2 gk)

for A ∈ ∪t>0U(t)B(H)U(t)∗ with fk and gk in H and gk = zfk + hk where z 6= 0

with hk in the domain of (I−Λ)−
1

2 for each k ∈ I with I a countable index set and

∑

k∈I

‖(I − Λ)−
1

2hk‖2 <∞.

Proof. Before we begin the proof we remark that in the sums for ω and η we sum
over the same index set I. Even though we sum over the same index set the sums
for ω and η can have different numbers of non zero terms since some of the f ′s or
g′s can be zero.

Assume the setup and notation of the theorem. Assume gk = zfk + hk with
z 6= 0 and hk in the domain of (I −Λ)−

1

2 for each k ∈ I and the sum involving the
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hk given above converges. Since the weight η is unchanged if we multiply the gk by
a complex number of modulus one we can assume without loss of generality that
z > 0. Since the sum involving the hk above converges and 0 ≤ Λ ≤ I we have

(3.2) r =
∑

k∈I

‖Λ 1

2 (I − Λ)−
1

2hk‖2 <∞.

Let

λ =
2z

1 + z2 + r
and γ(A) =

∑

k∈I

(fk, (I − Λ)−
1

2A(I − Λ)−
1

2 gk)

for A ∈ ∪t>0U(t)B(H)U(t)∗. We will show that λγ is a q-corner from ω to η. From
the form of ω, η and γ it is clear that

[

ωt γt

γ∗t ηt

]

≥ 0

for all t > 0. Since the Schur product X → A ◦X is completely positive if and only
if the matrix A is positive. It follows that

[

ωt

1+ωt(Λ)
λγt

1+λγt(Λ)
λγ∗

t

1+λγ∗

t
(Λ)

ηt

1+ηt(Λ)

]

is positive for each t > 0 if the matrix

[

1
1+ωt(Λ)

λ
1+λγt(Λ)

λ
1+λγ∗

t
(Λ)

1
1+ηt(Λ)

]

is positive for each t > 0. Since the diagonal entries are clearly positive all we need
to establish the positivity of this matrix is to show the determinant is positive.
Computing the determinant, multiplying by denominators and collecting terms
one finds that the determinant of the above matrix is non negative if and only if

λ2(1 + ωt(Λ) + ηt(Λ) + ωt(Λ)ηt(Λ) − |γt(Λ)|2) ≤ 1 + 2λRe(γt(Λ)).

To give this inequality a name so we can refer to it we will call this inequality the
determinant inequality. We will need some notation. Let

ν(A) =
∑

k∈I

(fk, (I − Λ)−
1

2A(I − Λ)−
1

2hk)

and
ρ(A) =

∑

k∈I

(hk, (I − Λ)−
1

2A(I − Λ)−
1

2hk)

for A ∈ ∪t>0U(t)B(H)U(t)∗. Then we have

η = z2ω + zν + zν∗ + ρ and γ = zω + ν.
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Assume t > 0 and let a = ωt(Λ), b = Re(νt(Λ)), y = Im(νt(Λ)) and c = ρt(Λ).
Then the determinant inequality becomes

(3.3) λ2(1 + a+ z2a+ 2zb+ c+ ac− b2 − y2) ≤ 1 + 2λ(za+ b)

Recalling the definition (3.2) of r we see r = limt→0+ ρt(Λ) so y ≥ c. The we have

λ =
2z

1 + z2 + r
≤ 2z

1 + z2 + c

Examining inequality (3.3) one sees that the interval of real numbers λ satisfying the
inequality is a closed interval containing zero. Hence, if inequality (3.3) is satisfied
for λ = 2z(1+z2 +c)−1 it will be satisfied for a smaller λ = 2z(1+z2 +r)−1. Hence,
to show inequality (3.3) is satisfied it is enough to show that inequality (3.3) holds
with λ = 2z(1 + z2 + c)−1. With this value of λ one easily checks that

(3.4) λ2(1 + z2 + c) = 2λz

Multiplying both sides by a we have

(3.5) λ2(a+ z2a+ ac) = 2λza

Since (λ(z − b) − 1)2 ≥ 0 we have

(3.6) 0 ≤ λ2(z2 − 2zb+ b2) − 2λz + 2λb+ 1

Finally, we have

(3.7) 0 ≤ λ2y2

Adding equalities and inequalities (3.4) through (3.7) we arrive at inequality (3.3).
Hence, the determinant inequality is satisfied and λγ is a non zero q-corner from ω
to η. Hence, w and η are connected.

Next assume ω and η are connected. Then there is a non zero q-corner γ from ω
to η. Then from lemma 3.13 we have the function h(t) given in lemma 3.13 is non
increasing and has limit κ ≥ 1 as t → 0+ and κγ is a corner from ω to η so the
matrix

Ωo =

[

ω κγ
κγ∗ η

]

is positive. Since Ωo is a positive boundary weight on B(H ⊕ H) it can expressed
in the form

Ωo(A) =
∑

k∈I

(Fk, ((I − Λ) ⊕ (I − Λ))−
1

2A((I − Λ) ⊕ (I − Λ))−
1

2Fk)

for A ∈ B(H ⊕ H) where
∑

k∈I

‖Fk‖2 <∞.
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Now each vector Fk can be expressed in the form Fk = {fk, gk} for each k ∈ I so
we have

ω(A) =
∑

k∈I

(fk, (I − Λ)−
1

2A(I − Λ)−
1

2 fk)

and
η(A) =

∑

k∈I

(gk, (I − Λ)−
1

2A(I − Λ)−
1

2 gk)

and
κγ(A) =

∑

k∈I

(fk, (I − Λ)−
1

2A(I − Λ)−
1

2 gk)

for A ∈ ∪t>0U(t)B(H)U(t)∗ with fk and gk in H for k ∈ I.
Now consider the family of matrices

Mt =

[

1 + ωt(Λ) κ+ κγt(Λ)
κ+ κγ∗t (Λ) 1 + ηt(Λ)

]

Note that if 0 < t < s then Mt −Ms =

[

ωt(Λ) − ωs(Λ) κγt(Λ) − κγs(Λ)
κγ∗t (Λ) − κγ∗s (Λ) ηt(Λ) − ηs(Λ)

]

=

[

ωt(X) κγt(X)
κγ∗t (X) ηt(X)

]

where X = E(s)ΛE(s). Since κγ is a corner and X is positive it follows that
Mt ≥ Ms for 0 < t < s so Mt is non increasing in t. Since h(t) ≤ κ for all t > 0 we
have

(1 + ωt(Λ))(1 + ηt(Λ)) ≤ |κ+ κγt(Λ)|2

In terms of the Mt this inequality tells us the determinant of Mt is not positive. We
will show there is a unit vector v so that (v,Mtv) ≤ 0 for all t > 0. Let λ(t) be the
minimum eigenvalue of Mt and vt be a unit vector in C2 so that (vt,Mtvt) = λ(t)
for t > 0. Since Mt is not positive we have λ(t) ≤ 0 for all t > 0. Since the set of unit
vectors in C2 is compact in the norm topology there is at least one accumulation
point of vt as t → 0 + . Let v be such an accumulation point so for each ε > 0
there is a t ∈ (0, ε) with ‖v − vt‖ < ε. We show (v,Mtv) ≤ 0 for all t > 0. Suppose
t > 0 and ε > 0. Let ε1 = min(ε, 1

2 ε/‖Mt‖). Then there is an s ∈ (0, ε1) with
‖v − vs‖ < ε1. We have

(v,Mtv) − (vs,Mtvs) = ((v − vs),Mtv) + (vs,Mt(v − vs))

≤ 2‖v − vs‖ ‖Mt‖ < 2ε1‖Mt‖ ≤ ε.

Since Mt is non increasing and 0 < s < t we have

(vs,Mtvs) − (vs,Msvs) ≤ 0.

And we have
(vs,Msvs) = λ(s) ≤ 0.

Combining the previous four relations we find (v,Mtv) < ε and since ε is arbitrary
we have (v,Mtv) ≤ 0 for all t.
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We will show there is a constant q and complex number z 6= 0 so that

(3.8) |z|2ωt(Λ) + ηt(Λ) − 2κRe(zγt(Λ)) ≤ q

We will need to consider four cases depending on whether ωt(Λ) and ηt(Λ) are
bounded as t→ 0 + . Let us consider the first case when both ωt(Λ) and ηt(Λ) are
bounded as t→ 0 + . In this case Mt has a limit Mo as t→ 0 + . We can let z = 1
and we can let q simply be the limit of the left hand side as t→ 0 + .

Next we consider the case when ηt(Λ) is bounded and ωt(Λ) is unbounded as
t → 0 + . Now since h(t) is non increasing and approaches a limit κ as t → 0+ we
have

h(t)2 =
(1 + ωt(Λ))(1 + ηt(Λ))

|1 + γt(Λ)|2 ≤ κ2

for all t > 0. Since κγt is a corner from ωt to ηt we have |κγt(Λ)|2 ≤ ωt(Λ)ηt(Λ).
Then we have

(1 + ωt(Λ))(1 + ηt(Λ)) ≤ κ2|1 + γt(Λ)|2 ≤ κ2(1 + κ−1
√

ωt(Λ)ηt(Λ))2

for t > 0. Then it follows that

1 + ωt(Λ) + ηt(Λ) ≤ κ2 + 2κ
√

ωt(Λ)ηt(Λ)

for t > 0. Solving for κ we find

κ ≥
√

1 + ωt(Λ) + ηt(Λ) + ωt(Λ)ηt(Λ) −
√

ωt(Λ)ηt(Λ)

≥
√

ωt(Λ) + ωt(Λ)ηt(Λ) −
√

ωt(Λ)ηt(Λ)

=
√

ωt(Λ)(
√

1 + ηt(Λ) −
√

ηt(Λ))

≥
√

ωt(Λ)(
√

1 + ηo(Λ) −
√

ηo(Λ))

for all t > 0 where ηo(Λ) is the limit of ηt(Λ) as t → 0 + . Since ωt(Λ) → ∞ as
t → 0+ it follows that κ can not be bounded which is a contradiction. Hence, if
ωt(Λ) is unbounded and ηt(Λ) is bounded as t → 0+ it follows that ω and η are
disjoint. Interchanging the roles of ω and η we see that if ωt(Λ) is bounded and
ηt(Λ) is unbounded as t→ 0+ then ω and η are disjoint. So if ω and η are connected
then ωt(Λ) and ηt(Λ) must be both bounded or both unbounded as t→ 0 + .

Finally, we consider the case when both ωt(Λ) and ηt(Λ) are unbounded as
t → 0 + . In this case the vector v so that (v,Mtv) ≤ 0 for all t > 0 can not be a
multiple of (1, 0) or (0, 1) because in the first case we have (v,Mtv) = 1 + ωt(Λ) in
the second case (v,Mtv) = 1+ ηt(Λ) and neither of these are less than zero. So the
vector v must be a multiple of a vector of the form w = (z,−1) with z 6= 0. Then
we have (w,Mtw) ≤ 0 which yields the inequality

(3.8’) |z|2ωt(Λ) + ηt(Λ) − 2κRe(zγt(Λ)) ≤ 2κRe(z) − 1 − |z|2 = q

for all t > 0. Since Ωo is positive we have

|z|2ωt(I−Λ) − 2κRe(zγt(I − Λ)) + ηt(I − Λ)

≤ (1 + |z|2)(ωt(I − Λ) + ηt(I − Λ))

≤ (1 + |z|2)(ω(I − Λ) + η(I − Λ))
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for t > 0 and since ω and η are boundary weights ωt(I − Λ) and ηt(I − Λ) are
bounded as t → 0+ so the right hand side of the above inequality is bounded for
all t > 0. Combining the two inequalities above we have

|z|2ωt(I) − 2κRe(zγt(I)) + ηt(I)

≤ (1 + |z|2)(ω(1 − Λ) + η(I − Λ)) + q = Ko

where the last equality is just the definition of Ko. Now we have

ωt(I) =
∑

k∈I

(fk, (I − Λ)−
1

2 (I −E(t))(I − Λ)−
1

2 fk)

and

ηt(I) =
∑

k∈I

(gk, (I − Λ)−
1

2 (I − E(t))(I − Λ)−
1

2 gk)

and

κγt(I) =
∑

k∈I

(fk, (I − Λ)−
1

2 (I −E(t))(I − Λ)−
1

2 gk)

Then we find

|z|2ωt(I − Λ) − 2κRe(zγt(I − Λ)) + ηt(I − Λ)

=
∑

k∈I

((zfk − gk), (I − Λ)−
1

2 (I −E(t))(I − Λ)−
1

2 (fk − zgk)) ≤ Ko

for t > 0. Let hk = gk − zfk for k ∈ I. Then gk = zfk + hk for k ∈ I and

∑

k∈I

(hk, (I − Λ)−
1

2 (I − E(t))(I − Λ)−
1

2hk) ≤ Ko

for all t > 0. Hence, we have

∑

k∈I

‖(I − Λ)−
1

2 (I − E(t))hk‖2 ≤ Ko

Then for each k ∈ I we have ‖(I − Λ)−
1

2 (I − E(t))hk‖ is bounded as t → 0 from

which it follows that hk is in the domain of (I−Λ)−
1

2 and ‖(I−Λ)−
1

2 (I−E(t))hk‖ →
‖(I − Λ)−

1

2hk‖ as t→ 0 + . Then from the above inequality we have

∑

k∈I

‖(I − Λ)−
1

2hk‖2 ≤ Ko

This completes the proof of the theorem. �

We have the following corollary.
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Corollary 3.15. Suppose ω and η are boundary weights. If ω and η are connected
then either ωt(Λ) and ηt(Λ) are both bounded or both unbounded as t → 0 +
. Furthermore, if ωt(Λ) and ηt(Λ) are both bounded as t → 0+ then they are
connected.

Proof. The first statement of the corollary was proved in the course of proving
theorem 3.14. Now suppose ωt(Λ) and ηt(Λ) are bounded as t → 0 + . Then if ω
and η are defined in terms of vectors fk and gk as in the statement of theorem 3.14

one sees that the fk and gk are in the domain of (I − Λ)−
1

2 and

∑

k∈I

‖(I − Λ)−
1

2 fk‖2 <∞ and
∑

k∈I

‖(I − Λ)−
1

2 gk‖2 < ∞

so for any z 6= 0 if we let hk = gk − zfk we have

∑

k∈I

‖(I − Λ)−
1

2hk‖2 <∞

and by theorem 3.14 it follows that ω and η are connected. �

Lemma 3.16. Suppose ω and η are boundary weights. Then ω and η are connected
if and only if there is a λ > 0 and a positive element ρ of B(H)∗ (so ρ(I) < ∞) so
that η = λω + γ + γ∗ + ρ and the matrix

Ω =

[

λω γ
γ∗ ρ

]

is a positive boundary weight on B(H ⊕ H).

Proof. Suppose ω and ρ are connected boundary weights. Then from theorem 3.14
it follows that ω and η can be expressed in the form

ω(A) =
∑

k∈I

(fk, (I − Λ)−
1

2A(I − Λ)−
1

2 fk)

and
η(A) =

∑

k∈I

(gk, (I − Λ)−
1

2A(I − Λ)−
1

2 gk)

for A ∈ ∪t>0U(t)B(H)U(t)∗ with fk and gk in H and gk = zfk + hk where z 6= 0

with hk in the domain of (I − Λ)−
1

2 for each k ∈ I and

∑

k∈I

‖(I − Λ)−
1

2hk‖2 <∞.

Let λ = |z|2 and

γ(A) = z
∑

k∈I

(gk, (I − Λ)−
1

2A(I − Λ)−
1

2hk)
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and
ρ(A) =

∑

k∈I

(hk, (I − Λ)−
1

2A(I − Λ)−
1

2hk)

for A ∈ ∪t>0U(t)B(H)U(t)∗. Then η = λω + γ + γ∗ + ρ and since η(I) < ∞ we
have η is a positive element of B(H)∗ and clearly the matrix Ω is positive.

Conversely, suppose ω and η are boundary weights and λ > 0 and η = λω +
γ + γ∗ + ρ where ρ is a positive element of B(H)∗ and the matrix Ω given above is
positive. Since Ω is a boundary weight on B(H ⊕ H) we have it can be expressed
in the form

Ω(A) =
∑

k∈I

(Fk, (I − Λ)−
1

2A(I − Λ)−
1

2Fk)

where
∑

k∈I

‖Fk‖2 <∞

for A ∈ ∪t>0U(t)⊕U(t)B(H⊕H)U(t)∗⊕U(t)∗. Now each vector Fk can be expressed
in the form Fk = {f ′

k, hk} for each k ∈ I so we have

λω(A) =
∑

k∈I

(f ′

k, (I − Λ)−
1

2A(I − Λ)−
1

2 f ′

k)

and
ρ(A) =

∑

k∈I

(hk, (I − Λ)−
1

2A(I − Λ)−
1

2hk)

and
γ(A) =

∑

k∈I

(f ′

k, (I − Λ)−
1

2A(I − Λ)−
1

2hk)

for A ∈ ∪t>0U(t)B(H)U(t)∗ with gk and hk in H for k ∈ I. Since ρ(I) < ∞ it

follows that hk is in the domain of (I − Λ)−
1

2 and

∑

k∈I

‖(I − Λ)−
1

2hk‖2 <∞.

Now let fk = λ−
1

2 f ′

k and z = λ
1

2 and gk = zfk + hk for k ∈ I. Then ω and η can
be written in terms of the f ′s and g′s as stated in the lemma. �

Theorem 3.17. Suppose ω, ρ and η are boundary weights and ω and ρ are con-
nected and ρ and η are connected. Then ω and η are connected.

Proof. Assume the hypothesis of the theorem. Since ω and ρ are connected it
follows from the proof of theorem 3.13 that there is a functional γ so the boundary
weight Ω1 and the matrix Mt for t > 0

Ω1 =

[

ω γ
γ∗ ρ

]

Mt =

[

ωt(Λ) γt(Λ)
γ∗t (Λ) ρt(Λ)

]

are positive and there is a vector v = (z1,−1) with z1 6= 0 so that (v,Mtv) is
bounded as t→ 0 + . (Note γ is κγ of the argument of theorem 3.14.) Since ρ and
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η are connected there is by the same argument a functional ν so that the boundary
weight Ω2 and the matrix Nt for t > 0

Ω2 =

[

ρ ν
ν∗ η

]

Nt =

[

ρt(Λ) νt(Λ)
ν∗t (Λ) ηt(Λ)

]

are positive and there is a vector u = (z2,−1) with z2 6= 0 so that (u,Ntu) is
bounded as t → 0 + . Next we show there is functional µ so that the boundary
weight Ω3 and the matrix Qt

Ω3 =





ω γ µ
γ∗ ρ ν
µ∗ ν∗ η



 Qt =





ωt(Λ) γt(Λ) µt(Λ)
γ∗t (Λ) ρt(Λ) νt(Λ)
µ∗

t (Λ) ν∗t (Λ) ηt(Λ)





is positive for t > 0. One sees that Ω3 is positive as a boundary weight if one
replaces the functional ξij in the ith row and jth column by the bounded functional
ξ′ij defined by

ξ′ij(A) = ξij((I − Λ)
1

2A(I − Λ)
1

2 )

for A ∈ B(H). So the problem of finding a functional µ is the same as finding a
functional µ in the case where the functionals ω, ρ and η are bounded. Suppose
then that

Ω′

1 =

[

ω′ γ′

γ′∗ ρ′

]

Ω′

2 =

[

ρ′ ν′

ν′∗ η′

]

are positive functionals on B(H⊕H). From the Gelfand Segal construction we have
there are normal cyclic ∗-representations π1, π2 and π3 of B(H) on H1, H2 and H3

so that

ω′(A) = (f1, π1(A)f1), ρ′(A) = (f2, π2(A)f2) and η′(A) = (f3, π3(A)f3)

for all A ∈ B(H). One checks that there are linear operators C1 from H2 to H1 and
C2 from H3 to H2 so that

γ′(A∗B) = (π1(A)f1, C1π2(B)f2) and ν′(A∗B) = (π2(A)f2, C2π3(B)f3)

for all A,B ∈ B(H). One checks C1 intertwines π1 and π2 and C2 intertwines π2

and π3. Furthermore, one has ‖C1‖ ≤ 1 and ‖C2‖ ≤ 1. Let C3 = C1C2 and let
µ′(A) = (f3, C1C2π1(A)f1). One sees that C3 intertwines π1 and π3. We show the
matrix

Ω′

3 =





ω′ γ′ µ′

γ′∗ ρ′ ν′

µ′∗ ν′∗ η′





is positive. As we have seen,Ω′

3 is positive if and only

S =ω′(A∗A) + γ′(A∗B) + µ′(A∗C)

+ γ′∗(B∗A) + ρ′(B∗B) + ν′(B∗C)

+ µ′∗(C∗A) + ν′∗(C∗B) + η′(C∗C) ≥ 0
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for all A,B and C ∈ B(H). Evaluating S in terms of the π′s and C ′s we find
S = (F,GF ) where

F = f ⊕ g ⊕ h = π1(A)f1 ⊕ π2(B)f2 ⊕ π3(C)f3

and G is the matrix

G =





I C1 C1C2

C∗

1 I C2

C∗

2C
∗

1 C∗

2 I



 .

Then

(F,GF ) =(f, f) + (g, g) + (h, h)

+ 2Re(f, C1g) + 2Re(f, C1C2h) + 2Re(g, C2h)

Minimizing with respect to h we find the minimum occurs for h = −C∗

2 (C∗

1f + g)
so

(F,GF ) ≥‖f‖2 + ‖g‖2 + 2Re(f, C1g) − ‖C∗

2 (C∗

1f + g)‖2

=‖f‖2 − ‖C∗

1f‖2 + ‖C∗

1f + g‖2 − ‖C∗

2 (C∗

1f + g)‖2 ≥ 0

where the last inequality follows from the facts that ‖C1‖ ≤ 1 and ‖C2‖ ≤ 1. Then
the weight Ω3 whose entries ξij are related to the entries of Ω′

3 by the relation

ξij(A) = ξ′ij((I − Λ)−
1

2A(I − Λ)−
1

2 ) for A ∈ ∪t>0U(t)B(H)U(t)∗ is a positive
boundary weight on B(H⊕H⊕H) and i, j = 1, 2, 3 and Qt defined above is positive
for t > 0.

Let x = (z1,−1, 0) and y = (0, z2,−1). As we have seen above (x,Qtx) and
(y,Qty) are bounded as t→ 0+ so there are positive constants K1 and K2 so that
(x,Qtx) ≤ K2

1 and (y,Qty) ≤ K2
2 for all t > 0. Since (w,Qtw) is a positive quadratic

form ‖w‖t = (w,Qtw)
1

2 is a norm for each t > 0. Let w = z2x + y = (z1z2, 0,−1).
Now we have

(w,Qtw) = ‖w‖2
t = ‖z2x+ y‖2

t ≤ (|z2| ‖x‖t + ‖y‖t)
2 ≤ (|z2|K1 +K2)

2

for all t > 0. Hence, (w,Qtw) is bounded as t → 0+ and repeating the argument
of theorem 3.14 we have that ω and η can be expressed in the form

ω(A) =
∑

k∈I

(fk, (I − Λ)−
1

2A(I − Λ)−
1

2 fk)

and
η(A) =

∑

k∈I

(gk, (I − Λ)−
1

2A(I − Λ)−
1

2 gk)

for A ∈ ∪t>0U(t)B(H)U(t)∗ with fk and gk in H and gk = z1z2fk + hk where

z1z2 6= 0 with hk in the domain of (I − Λ)−
1

2 for each k ∈ I and

∑

k∈I

‖(I − Λ)−
1

2hk‖2 <∞

Hence, ω and η are connected. �
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Theorem 3.18. Suppose ω and η are positive boundary weights and either ω or
η is unbounded and γ 6= 0 is a q-corner from ω to η. Let

h(t) =
(1 + ωt(Λ))

1

2 (1 + ηt(Λ))
1

2

|1 + γt(Λ)|

for t > 0 and let κ be the limit of h(t) as t→ 0+ which we know exists from lemma
3.13. Then there is a number r ≥ 0 and a complex number z 6= 0 so that the weight

Ωo =

[

ω/a γ/b
γ∗/b η/c

]

is q-positive if and only if a > 0, c > 0 and b ∈ C satisfies

a|z|2 + c+ r ≤ 2κRe(zb).

Since γ is a q-corner from ω to η the numbers r and z satisfy

|z|2 + 1 + r ≤ 2κRe(z).

Proof. Assume the hypothesis and notation of the lemma. Since ω and η are
connected it follows from corollary 3.15 that both ω and η are unbounded. From
the proof of theorem 3.14 it follows that there is a complex number z 6= 0 so that
if Mt is family of matrices

Mt =

[

1 + ωt(Λ) κ+ κγt(Λ)
κ+ κγ∗t (Λ) 1 + ηt(Λ)

]

and v = (z,−1) then (v,Mtv) ≤ 0 for all t > 0.
Let Ωo be the weight given in the statement of the lemma. If Ωo is q-positive

then a and c are positive and if a or c is not positive Ωo can not be q-positive. Then
we will assume that a > 0 and c > 0. From lemma 3.13 we have κγ is a trivially

maximal corner from ω to η. Then κa−
1

2 c−
1

2 |b|γ/b is a trivially maximal corner
from ω/a to η/c. Then from lemma 3.13 we have Ωo is q-positive if and only if

(1 + ωt(Λ)/a)
1

2 (1 + ηt(Λ)/c)
1

2

|1 + γt(Λ)/b| ≤ κ|b|√
ac

for all t > 0 and this is equivalent to the inequality

(a+ ωt(Λ))
1

2 (c+ ηt(Λ))
1

2

|κb+ κγt(Λ)| ≤ 1

for t > 0. This inequality is equivalent to the statement that the determinant of Nt

is not positive where

Nt =

[

a+ ωt(Λ) κb+ κγt(Λ)
κb+ κγ∗t (Λ) c+ ηt(Λ)

]

.
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Note Nt is non increasing in t so by the argument of theorem 3.14 we find that
inequality (3.8) is equivalent to the existence of a unit vector w so that (w,Ntw) ≤
0 for all t > 0. Note if a = b = c = 1 then Nt = Mt and there is a vector
v = (|z|2 +1)−

1

2 (z,−1) so that (v,Mtv) ≤ 0 for all t. We note that if there is a unit
vector w so that (w,Ntw) ≤ 0 for all t > 0 then w is a multiple of v and, therefore,
(v,Ntv) ≤ 0 for all t > 0. To see this note

λI +Nt =

[

λ+ a κb
κb λ+ c

]

+

[

ωt(Λ) κγt(Λ)
κγ∗t (Λ) ηt(Λ)

]

.

Let

λ = max(0,
1

2
(
√

(a− c)2 + 4κ2|b|2 − a− c).

With this choice for λ we insure the matrix on the left in the expression for λI+Nt

is positive. Since the matrix on the right in the expression for λI+Nt is positive we
have λI +Nt is positive for all t > 0. Suppose w is a unit vector and (w,Ntw) ≤ 0
for all t > 0 so (w, (λI +Nt)w) ≤ λ for all t > 0. Note

λI +Nt −Mt = Q =

[

λ+ a− 1 κ(b− 1)
κ(b− 1) λ+ c− 1

]

.

Then (v, (λI +Nt)v) = (v,Mtv) + (v,Qv) ≤ (v,Qv) = K where the last equality is
just the definition of K which is given by

K =
|z|2(λ+ a− 1) − 2κRe(z(b− 1) + λ+ c− 1

|z|2 + 1

Now suppose w is not a multiple of v. Then w and v span C
2 and so any unit vector

in u ∈ C2 can be expressed in the form u = xv+yw with x and y complex numbers
satisfying |x|2 + |y|2 ≤ (1 − |(v, w)|)−1. Then we have

(u, (λI +Nt)u) = |x|2(v, (λI +Nt)v) + |y|2(w, (λI +Nt)w)

+ 2Re(xy(v, (λI +Nt)w)

≤ K|x|2 + λ|y|2 + 2|x| |y|K 1

2λ
1

2

≤ 2 max(K,λ)(|x|2 + |y|2)
≤ 2 max(K,λ)(1− |(v, w)|)−1

for all t > 0. Hence, we have shown that ‖(λI +Nt)
1

2 ‖ is uniformly bounded. But
this is impossible since ωt(Λ) and ηt(Λ) tend to infinity as t → 0 + . Hence, w is a
multiple of v so there is a unit vector w so that (w,Ntw) ≤ 0 for all t > 0 if and
only if (v,Ntv) ≤ 0 for all t. Since (v,Ntv) ≤ 0 if and only if (|z|2 + 1)(v,Ntv) ≤ 0
we have the weight Ωo is q-positive if and only if

a|z|2 + c− 2κRe(zb) + q(t) ≤ 0

for all t > 0 where

q(t) = |z|2ωt(Λ) + ηt(Λ) − 2κRe(zγt(Λ))
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for all t > 0. Since we are given that Ωo is q-positive when a, b and c are all equal
to one we have

|z|2 + 1 − 2κRe(z) + q(t) ≤ 0

for all t > 0. Note q is a non increasing function of t which is bounded above so
q(t) converges to a limit r as t→ 0+ and r ≥ 0. Hence, we see that Ωo is q-positive
if and only if the inequality stated in the lemma is satisfied. �

Suppose ω and η are positive boundary weights. We say γ is a trivially maximal
q-corner between ω and η if λγ is not a q-corner for any λ > 1. Another possible
definition of trivially maximal is to say γ is a trivially maximal q-corner from ω to
η if the q-inequality

0 ≤q

[

λω γ
γ∗ η

]

≤q

[

ω γ
γ∗ η

]

implies λ = 1. The next corollary shows these two notions of being trivially maximal
are the same. In fact, the notion of being trivially maximal is the same as being
trivially hyper maximal.

Corollary 3.19. Suppose ω and η are positive unbounded boundary weights and
γ is a q-corner from ω to η. Let

κ = lim
t→0+

(1 + ωt(Λ))
1

2 (1 + ηt(Λ))
1

2

|1 + γt(Λ)|

which exists from lemma 3.13 and let Mt be the family of matrices

Mt =

[

1 + ωt(Λ) κ+ κγt(Λ)
κ+ κγ∗t (Λ) 1 + ηt(Λ)

]

for t > 0. Then the following statements are equivalent.

(i) λγ is not a q-corner from ω to η for any λ > 1.
(ii) The following q-inequality

0 ≤q

[

λω γ
γ∗ η

]

≤q

[

ω γ
γ∗ η

]

implies λ = 1.
(iii) The following q-inequality

0 ≤q

[

ω γ
γ∗ λη

]

≤q

[

ω γ
γ∗ η

]

implies λ = 1.
(iv) The following q-inequality

0 ≤q

[

λ1ω γ
γ∗ λ2η

]

≤q

[

ω γ
γ∗ η

]

implies λ1 = λ2 = 1.
(v) There is a vector v = (z,−1) ∈ C2 so that (v,Mtv) ≤ 0 for t > 0 and

(v,Mtv) → 0 as t→ 0.
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Proof. Assume the hypothesis and notation of the corollary. Since ω, η and γ
satisfy the hypothesis of theorem 3.17 let r and z be the numbers associated with
these weight by theorem 3.17. Given the proof of theorem 3.18 it is a routine
exercise to show that each of the statements (i) through (v) above is equivalent to
the statement

|z|2 + 1 + r = 2κRe(z)

(i.e. the inequality of theorem 3.17 is an equality). �

Theorem 3.20. Suppose ω and η are positive boundary weights. Then γ is a
maximal q-corner from ω to η if and only if γ is trivially maximal in that λγ is not
a q-corner from ω to η for λ > 1 and if

κ = lim
t→0+

(1 + ωt(Λ))
1

2 (1 + ηt(Λ))
1

2

|1 + γt(Λ)|

(where the limit exist from the proof of lemma 3.13) then κγ a corner from ω to η
with the property that if ρ ∈ B(H)∗ is positive (so ρ(I) <∞) and

[

ω κγ
κγ∗ η

]

≥
[

ω − ρ κγ
κγ∗ η

]

≥ 0

then ρ = 0.

Proof. Assume ω and η are positive boundary weights and γ is a q-corner from ω
to η. It follows from the previous corollary that if γ is a maximal q-corner from ω
to η then γ is trivially maximal and if γ is not trivially maximal the γ can not be a
maximal q-corner from ω to η. With this said we only have to prove the theorem in
the case where γ is trivially maximal, which we now assume. Let κ be the constant
given in the statement of the theorem. Suppose ω′ is a boundary weight so that

0 ≤q

[

ω′ γ
γ∗ η

]

≤q

[

ω γ
γ∗ η

]

It follows that ω′ ≤q ω so it follows from theorem 3.9 that there is a bounded
boundary weight ρ with ω ≥ ρ ≥ 0 and a λ ∈ [0, 1] so that ω′ = λ(1+ρ(Λ))−1(ω−ρ).
Since λω ≥q ω

′ by theorem 3.9 we have

0 ≤q

[

λω γ
γ∗ η

]

≤q

[

ω γ
γ∗ η

]

.

Since γ is trivially maximal we have λ = 1 and ω′ = (1 + ρ(Λ))−1(ω − ρ).
Now suppose κγ does not have the property given at the end of the statement

of the theorem so there is a non zero bounded boundary weight ρ with ω ≥ ρ ≥ 0
so that κγ is a corner from ω − ρ to η. Let ω′ = (1 + ρ(Λ))−1(ω − ρ). We claim
γ is a q-corner from ω′ to η and, therefore, γ is not q-maximal. Now from lemma
3.13 γ is a q-corner from ω′ to η if and only if there is a constant κ′ so that κ′γ is
a corner from ω′ to η and

(3.9)
(1 + ω′

t(Λ))
1

2 (1 + ηt(Λ))
1

2

|1 + γt(Λ)| ≤ κ′
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for all t > 0. We claim κ′ = (1 + ρ(Λ))−
1

2κ. First we note that since κγ is a corner
from ω− ρ to η then κ′γ is a corner from ω′ to η. Next we have to show inequality
(3.9) holds for all t > 0. Replacing primed expression in terms of the unprimed
expression and squaring both sides inequality (3.9) is equivalent to the inequality

(1 + ρ(Λ) − ρt(Λ) + ωt(Λ))(1 + ηt(Λ)) ≤ |κ+ κγt(Λ)|2

for all t > 0. Recalling the arguments of theorem 3.18 we see this inequality is
equivalent to the existence of a unit vector w ∈ C2 so that (w,Ntw) ≤ 0 for all t
where

Nt =

[

1 + ρ(Λ) − ρt(Λ) + ωt(Λ) κ+ κγt(Λ)
κ+ κγ∗t (Λ) 1 + ηt(Λ)

]

Since γ is a q-corner from ω to η there is a unit vector v ∈ C2 so there is a vector
v ∈ C2 so that (v,Mtv) ≤ 0 for all t where

Mt =

[

1 + ωt(Λ) κ+ κγt(Λ)
κ+ κγ∗t (Λ) 1 + ηt(Λ)

]

.

Since Nt and Mt are non increasing and ‖Nt −Mt‖ → 0 as t→ 0+ we have

(v,Ntv) ≤ lim
s→0+

(v,Nsv) = lim
s→0+

(v,Msv) ≤ 0

for all t > 0. Hence, γ is a q-corner from ω′ to η so γ is not q-maximal.
Next suppose γ is a trivially q-maximal corner from ω to η but γ is not q-

maximal. Then there is a positive boundary weight ω′ so that ω′ ≤q ω and γ is a
q-corner from ω′ to η. Then as we have seen above there is a bounded boundary
weight ρ (i.e. ρ(I) < ∞) so that ω ≥ ρ ≥ 0 and ω′ = (1 + ρ(Λ))−1(ω − ρ). Since γ
is a q-corner from ω′ to η it follows from lemma 3.13 that there is a constant κ′ so
that inequality (3.9) holds and the limit of the expression on the left as t → 0+ is
κ′. Using the facts that ωt(Λ), ηt(Λ) and |γt(Λ)| tend to infinity and ρt(Λ) tends to
ρ(Λ) as t→ 0+ we can easily calculate the limit κ′ in terms of the limit κ given in

the statement of the theorem and we find κ′ = (1 + ρ(Λ))
1

2κ. Since κ′γ is a corner
from ω′ to η we have κγ is a corner from ω − ρ to η. Hence, κγ does not have the
property given at the end of the statement of the theorem. �

Corollary 3.21. Suppose ω and η are positive boundary weights. Then γ is a
hyper maximal q-corner from ω to η if and only if γ is trivially maximal in that λγ
is not a q-corner from ω to η for λ > 1 and if

κ = lim
t→0+

(1 + ωt(Λ))
1

2 (1 + ηt(Λ))
1

2

|1 + γt(Λ)|
(where the limit exist from the proof of lemma 3.13) then κγ a corner from ω to η
with the property that if ρ, ν ∈ B(H)∗ are positive (so ρ(I) < ∞ and ν(I) < ∞)
and

[

ω κγ
κγ∗ η

]

≥
[

ω − ρ κγ
κγ∗ η − ν

]

≥ 0

then ρ = ν = 0.

Proof. Since γ is hyper maximal if and only if γ and γ∗ are maximal the proof
follows directly from the previous theorem. �
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Theorem 3.22. Suppose ω is q-pure positive boundary weight and ρ is a positive
bounded boundary weight so that η = ω + ρ is normalized so that η(I − Λ) = 1.
Suppose η′ is a positive boundary weight and η′(I − Λ) = 1. Then η and η′ induce
cocycle conjugate Eo-semigroups if and only if η′ is of the form η′ = ω′+ρ′ where ω′

is a q-pure positive boundary weight and ρ′ is a bounded positive boundary weight
and ω and ω′ are connected and ρ and ρ′ are of the same rank.

Proof. Assume ω and ρ satisfy the statement of the theorem and the Eo-semigroup
induced by η = ω+ρ is cocycle conjugate to the Eo-semigroup induced by a positive
boundary weight η′. Since the subordinates of η and η′ are a cocycle conjugacy
invariant of the induced Eo-semigroups it follows that there is an order isomorphism
from the subordinates of η to the subordinates of η′. Since (1 + ρ(Λ))−1ω is a q-
pure subordinate of η it follows that η′ must have a q-pure subordinate µ. We
assume µ is a trivially maximal subordinate of η′. Then from theorem 3.9 we have
there exists a bounded positive boundary weight ρ′ so that η′ ≥ ρ′ ≥ 0 and µ =
(1 + ρ′(Λ))−1(η′ − ρ′). Then we have η′ = (1 + ρ′(Λ))µ+ ρ′. Let ω′ = (1 + ρ′(Λ))µ
and we have η′ = ω′ + ρ′ where ω′ is a q-pure positive boundary weight and ρ′

is a bounded positive boundary weight. Since η and η′ induce cocycle conjugate
Eo-semigroups it follows that η and η′ are connected. From lemma 3.16 it follows
that η and ω are connected as are η′ and ω′. Then from theorem 3.17 it follows that
ω and ω′ are connected. Since there is an order isomorphism from the boundary
weights µ with η ≥q µ ≥ 0 to the boundary weights µ′ with η′ ≥q µ′ ≥ 0 and
these sets are determined by the sets of functionals ν and ν ′ with ρ ≥ ν ≥ 0 and
ρ′ ≥ ν′ ≥ 0 it follows that these convex sets must be of the same dimension. Since
the dimensions of these convex sets are solely determined by the ranks of ρ and ρ′

it follows that the ranks of ρ and ρ′ are equal.

Conversely, suppose η = ω+ρ and η′ = ω′ +ρ′ are normalized boundary weights
and ω and ω′ are q-pure positive boundary weights which are connected and ρ and
ρ′ are bounded positive boundary weights of the same rank. We show there is a
hyper maximal q-corner γ from η to η′. Since ω and ω′ are connected there is a
q-corner ψ from ω to ω′. Scaling ψ we may assume ψ is trivially maximal. Since ω
and ω′ are q-pure it follows from corollary 3.19 and theorem 3.20 that ψ is hyper
maximal. Since ρ and ρ′ are of the same rank it follows from lemma 3.13 there is
a hyper maximal corner ν from ρ to ρ′. Let

κ = lim
t→0+

(1 + ωt(Λ))
1

2 (1 + ω′

t(Λ))
1

2

|1 + ψt(Λ)|

which exists by lemma 3.13. Since ψ is hyper maximal it follows from theorem 3.20
that κψ is a maximal corner from ω to ω′. Let Mt be the family of matrices

Mt =

[

1 + ωt(Λ) κ+ κψt(Λ)
κ+ κψ∗

t (Λ) 1 + ω′

t(Λ)

]

.

Since ψ is maximal it follows from corollary 3.19 there is a vector v = (z,−1) ∈ C2

so that (v,Mtv) ≤ 0 for t > 0 and (v,Mtv) → 0 as t→ 0+ . Let γ = b−1(ψ+κ−1ν)
where b > 0 is a non zero constant we will determine later. Since κψ is a corner
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from ω to ω′ and ν is a corner from ρ to ρ′ it follows that bκγ = κψ+ ν is a corner
from η = ω+ρ to η′ = ω′+ρ′. As we saw in the proof of theorem 3.14 the inequality

(1 + ηt(Λ))
1

2 (1 + η′t(Λ))
1

2

|1 + γt(Λ)| ≤ κb

for t > 0 is equivalent to the existence of a non zero vector w so that (w,Ntw) ≤ 0
for all t where

Nt =

[

1 + ωt(Λ) + ρt(Λ) κb+ κψt(Λ) + νt(Λ)
κb+ κψ∗

t (Λ) + ν∗t (Λ) 1 + ω′

t(Λ) + ρ′t(Λ)

]

.

Recall that v = (z,−1) has the property that (v,Mtv) → 0 as t→ 0+ . We have
for t > 0 that

(v,Ntv) = (v,Mtv) + a(t) − 2Re(zκ(b− 1))

where
a(t) = |z|2ρt(Λ) + ρ′t(Λ) − 2Re(zνt(Λ)).

Since ν is a corner from ρ to ρ′ it follows that a(t) ≥ 0 for t > 0. Since ρ and ρ′

are bounded it follows that a(t) has a finite limit ao as t → 0 + . Then we have
(v,Ntv) → ao − 2Re(zκ(b − 1)). Since the real part of z is positive (see theorem
3.18) we can make this limit zero be setting b = 1+ao/(2Re(κz)). With this choice
for b we have from corollary 3.19 that γ is a trivially maximal q-corner from η to
η′. The constant κ′ associated with the corner γ is

κ′ = lim
t→0+

(1 + ηt(Λ))
1

2 (1 + η′t(Λ))
1

2

|1 + γt(Λ)| = κb

Now suppose µ and µ′ are bounded boundary weights so that

[

η κ′γ
κ′γ∗ η′

]

≥
[

η − µ κ′γ
κ′γ∗ η′ − µ′

]

≥ 0.

Then we have
[

ω + ρ κψ + ν
κψ∗ + ν∗ ω′ + ρ′

]

≥
[

ω − ρ− µ κψ + ν
κψ∗ + ν∗ ω′ + ρ′ − µ′

]

≥ 0.

Suppose µ 6= 0. Then there is a pure positive functional ζ 6= 0 of the form ζ(A) =
(h,Ah) for A ∈ B(H) with h ∈ H and µ ≥ ζ ≥ 0. Then we have

[

ω κψ
κψ∗ ω′

]

+

[

ρ ν
ν∗ ω′

]

≥
[

ζ 0
0 0

]

≥ 0

Let Ω, Φ and Ξ be the three positive boundary weights on B(H ⊕ H) appearing
above in the order given. As we saw in the proof of theorem 3.14 there is a countable
index set I and vectors Fi = {f1i, f2i} ∈ H ⊕ H for i ∈ I so that

Ω(A) =
∑

i∈I

(Fi, (I − Λ)−
1

2A(I − Λ)−
1

2Fi)
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for A ∈ ∪t>0U(t)⊕U(t)B(H⊕H)U(t)∗⊕U(t)∗. Similarly there is a countable index
set J and vectors Gj = {g1j, g2j} ∈ H ⊕ H so that

Φ(A) =
∑

j∈J

(Gj , (I − Λ)−
1

2A(I − Λ)−
1

2Gj)

for A ∈ ∪t>0U(t)B(H ⊕ H)U(t)∗. Since Φ is bounded the Gj are in the domain of

(I − Λ)−
1

2 for each j ∈ J. Recalling the argument of theorem 3.10 we see there are
complex numbers zi and yj for i ∈ I and j ∈ J so the sum of the squares of the
absolute values of the z′s and y′s is bounded and

(3.10) {(I − Λ)
1

2h, 0} =
∑

i∈I

ziFi +
∑

j∈J

yiGi.

Since ω and ω′ are q-pure it follows from theorem 3.10 that the vectors

∑

i∈I

zif1i and
∑

i∈I

zif2i

can only be in the domain of (I − Λ)−
1

2 if they are zero. Since in equation (3.10)

all the other terms are in the domain of (I − Λ)−
1

2 it follows that all sum over the
index set I is zero. Then we have

{(I − Λ)
1

2h, 0} =
∑

j∈J

yiGi.

But this is equivalent to the statement that

[

ρ ν
ν∗ ω′

]

≥
[

ζ 0
0 0

]

≥ 0

But since ν is hyper maximal this implies ζ = 0. Hence µ = 0. A similar argument
shows µ′ = 0 and, therefore, the q-corner γ satisfies the hypothesis of theorem
2.21 and so γ is a hyper maximal q-corner from η to η′. Hence, η and η′ induce
Eo-semigroups that are cocycle conjugate. �

The next theorem gives a fairly computable condition that two positive normal-
ized boundary weights induce cocycle conjugate Eo-semigroups.

Theorem 3.23. Suppose ω and η are positive normalized boundary weights asso-
ciated with positive trace one operators Ω and H by the formulae

ω(A) = tr((I − Λ)−
1

2A(I − Λ)−
1

2 Ω)

and
η(A) = tr((I − Λ)−

1

2A(I − Λ)−
1

2H)

for all A ∈ ∪t>0U(t)B(H)U(t)∗. Then the Eo-semigroups induced by ω and η are
cocycle conjugate if and only if there is a unitary operator X from the range of Ω to
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the range of H and a complex number z with Re(z) > 0 so that (I−Λ)−
1

2 (zXΩ
1

2 −
H

1

2 ) is Hilbert Schmidt which means there is a constant K so that

tr((zXΩ
1

2 −H
1

2 )∗E(t,∞)(I − Λ)−1(zXΩ
1

2 −H
1

2 )) ≤ K

for all t > 0.

Proof. Suppose ω and η are as stated in the theorem and Ω andH are the associated
density matrices. In the case when one of the weights ω or η is bounded the
condition of the theorem is just the statement that ω and η induce cocycle conjugate
Eo-semigroups if and only if they have the same rank. Since in the bounded case
the induced Eo-semigroup is completely spatial and the index is just the rank of
the inducing functional it follows from Arveson’s result that completely spatial Eo-
semigroups are cocycle conjugate if and only if they have the same index. Also the
proof of theorem 3.22 shows this result in the bounded case. With this said we will
assume ω and η are unbounded.

Let us suppose that there is a complex number z and a unitary operator X with
the properties given in the statement of the theorem. Let

κγ(A) = tr((I − Λ)−
1

2A(I − Λ)−
1

2H
1

2XΩ
1

2 )

for all A ∈ ∪t>0U(t)B(H)U(t)∗ where κ is a positive constant we will determine
shortly. Note κγ is a corner from ω to η. As we have seen in the proof of theorem
3.14 we have γ is a q-corner from ω to η if there is a non zero vector v = (v1, v2) ∈ C2

with v1v2 6= 0 and (v,Mtv) ≤ 0 for t > 0 where

Mt =

[

1 + ωt(Λ) κ+ κγt(Λ)
κ+ κγ∗t (Λ) 1 + ηt(Λ)

]

.

Clearly, we choose v = (z,−1) which gives the result,

(v,Mtv) =|z|2 + 1 − 2κRe(z)

+ tr(Λ(I − Λ)−1E(t,∞)(zXΩ
1

2 −H
1

2 )∗(zXΩ
1

2 −H
1

2 )).

Since (I −Λ)−
1

2 (zXΩ
1

2 −H
1

2 ) is Hilbert Schmidt the expression on the right hand
side is bounded as t→ 0+. Since Re(z) > 0 we can by adjust κ so that (v,Mtv) ≤ 0
for all t > 0 and, furthermore, (v,Mtv) → 0 as t→ 0 + . We assume κ has been so
chosen. Then by theorem 3.19 we have that γ is trivially maximal. From the proof
of lemma 3.12 with the modifications of working with (I − Λ)−

1

2 and boundary
weights we see that κγ is a hyper maximal corner from ω to η in that if ω′ and η′

are positive boundary weights so that

[

ω κγ
κγ∗ η

]

≥
[

ω′ κγ
κγ∗ η′

]

≥ 0,

then ω′ = ω and η′ = η. It then follows that γ satisfies the condition of theorem
2.20 so γ is a hyper maximal q-corner from ω to η. Hence, ω and η induce cocycle
conjugate Eo-semigroups.



CP-FLOWS 41

Conversely, suppose ω and η induce cocycle conjugate Eo-semigroups. Then
there is a hyper maximal q-corner γ from ω to η. Let κ be the limit

κ = lim
t→0+

(1 + ωt(Λ))
1

2 (1 + ηt(Λ))
1

2

|1 + γt(Λ)|

Since κγ is a corner from ω to η we have from the proof of lemma 3.12 adapted to
boundary weights that there is a operator X from the range of Ω

1

2 to the range of

H
1

2 and ‖X‖ ≤ 1 so that

κγ(A) = tr((I − Λ)−
1

2A(I − Λ)−
1

2H
1

2XΩ
1

2 )

for A ∈ ∪t>0U(t)B(H)U(t)∗. Since γ is a q-corner there is a complex number z with
Re(z) > 0 so that if v = (z,−1) then (v,Mtv) ≤ 0 for all t > 0 and (v,Mtv) → 0
as t→ 0+ where Mt is the matrix given above. Then we have

(v,Mtv) =|z|2 + 1 − 2κRe(z)

+ tr(Λ(I − Λ)−1E(t,∞)(zXΩ
1

2 −H
1

2 )∗(zXΩ
1

2 −H
1

2 )).

+ |z|2tr(Λ(I − Λ)−1E(t,∞)Ω
1

2 (I −X∗X)Ω
1

2 ).

Since (v,Mtv) ≤ 0 it follows that Λ
1

2 (I − Λ)−
1

2 (zXΩ
1

2 −H
1

2 ) is Hilbert Schmidt.
We have

(I−Λ)−
1

2 (zXΩ
1

2 −H 1

2 ) = Λ
1

2 (Λ
1

2 (I−Λ)−
1

2 (zXΩ
1

2 −H 1

2 ))+(I−Λ)
1

2 (zXΩ
1

2 −H 1

2 )

so (I − Λ)−
1

2 (zXΩ
1

2 −H
1

2 ) is the linear combination of Hilbert Schmidt operators
and, therefore, it is Hilbert Schmidt.

Next we show X∗X is the range projection for Ω
1

2 . Let ρ be the boundary weight
given by

ρ(A) = tr((I − Λ)−
1

2A(I − Λ)−
1

2 Ω
1

2 (I −X∗X)Ω
1

2 )

for A ∈ ∪t>0U(t)B(H)U(t)∗. From the expression for (v,Mtv) ≤ 0 above it follows
that ρt(Λ) is bounded so ρ is a bounded weight. From the proof of lemma 3.12 we
see that

[

ω κγ
κγ∗ η

]

≥
[

ω − ρ κγ
κγ∗ η

]

≥ 0.

Since γ is hyper maximal we have ρ = 0 by theorem 3.21. Hence, it follows that
Ω

1

2 (I−X∗X)Ω
1

2 = 0 and X is an isometry. Exchanging the roles of ω and η and γ

and γ∗ we see by the argument we have just completed that H
1

2 (I −XX∗)H
1

2 = 0
so X is unitary. �

We define the bounded rank of a positive boundary weight.

Definition 3.24. If ω is a positive boundary weight then the bounded rank of ω
is the least upper bound of the rank of ρ where ρ is a positive element of B(H)∗
(so ρ(I) < ∞) with ω ≥ ρ.
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We conjecture that two positive normalized boundary weights induced cocy-
cle conjugate Eo-semigroups if and only if they are connected and have the same
bounded rank.

In summary we can say that although the case where K is one dimensional is not
completely understood it appears we already have the tools in hand to settle this
case in the near future. To demonstrate the power of the techniques we have for
computing whether the induced Eo-semigroups are cocycle conjugate we consider
the following problem. Suppose α is an Eo-semigroup. We can form new Eo-

semigroups by scaling. Let α(λ) be given in terms of α by α
(λ)
t = αλt. The question

has been posed whether α and α(λ) are cocycle conjugate. We show how we can
construct an Eo-semigroup so that α and α(λ) are cocycle conjugate if and only if
λ = 2n for some integer n. Let ho(x) = x − 1 for x ∈ (1, 2]. Now we define the
function h1 on the whole positive real line by defining h1(x) = 0 for x > 2 and for
xε(2−n, 21−n] we define h1(x) = 2n/2ho(2

nx). One sees that

∫

∞

0

(1 − e−x)|h1(x)|2 dx ≤
∞
∑

n=0

(1 − e−21−n

)

∫ 2

1

|ho(x)|2 dx ≤ 4/3

It follows that the above integral is finite and by multiplying h1 by a suitable con-
stant we can arrange it so the above integral equals one. Let h be the function ob-
tained by multiplying by this constant. Let ω be the weight given by ω(A) = (h,Ah)
for A ∈ ∪t>0U(t)B(H)U(t)∗. Let α be the Eo-semigroup induced by this weight. If
α(λ) is the scaled Eo-semigroup one calculates the weight associated with the scaled
Eo-semigroup is given by ωλ(A) = s−1

λ (hλ, Ahλ) for A ∈ ∪t>0U(t)B(H)U(t)∗ where
hλ(x) = h(x/λ) and

sλ =

∫

∞

0

(1 − e−x)|hλ(x)|2 dx

From theorem 3.14 we see that ω and ωλ are connected if and only if hλ − zh ∈
L2(0,∞) for some complex number z and it is easily seen that this is the case if
and only if λ = 2n for n an integer. It follows theorem 3.22 that α and α(λ) are
cocycle conjugate if and only if λ = 2n for some integer n.

IV. Higher Dimensions.

We end with a discussion of the case CP -flows over K where the dimension of
K is greater than one. Going from one dimension to two is already a big step.
We have nothing like a complete theory even for the case where K is of dimension
two. We begin with a simple problem. Suppose ω is a q-pure positive normalized
unbounded boundary weight for dim(K) = 1 and A is an hermitian matrix with non
zero entries. Suppose Ω is a matrix with entries {ω/aij} for i, j = 1, · · · , n. When
is Ω q-positive? The answer is that Ω is q-positive if and only if the diagonal entries
{aii : i = 1, · · · , n} of A are strictly positive and A is conditionally negative. A
matrix A is conditionally positive if A is hermitian and (x,Ax) ≥ 0 for all vectors
x ∈ Cn so that x1 + x2 + · · ·+ xn = 0.

Next suppose A with coefficients {aij} and B with coefficients {bij} have positive
entries on the diagonal and are conditionally negative. We form the matrix of
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weights ΩA with entries ω/aij and ΩB with entries ω/bij for i, j = 1, · · · , n which
are q-positive. Then we find ΩA ≥q ΩB if and only if B ≥ A.

Let us consider the simple case where ω is a q-pure normalized weight on
L2(0,∞). The unital q-positive 2 × 2 matrices with ω the diagonal entries are
of the form

Ω =

[

ω ω/(1 + x2 + iy)
ω/(1 + x2 − iy) ω

]

or Ωo =

[

ω 0
0 ω

]

with x, y arbitrary real numbers. What are the equivalence classes? If x = 0 then
Ω is equivalent to [ω] the weight ω on L2(0,∞). To show this we need a hyper
maximal q-corner which is the (1, 2) and (1, 3) entries in the matrix below.

Ω1 =





ω ω/(1 − iy/2) ω/(1 + iy/2)
ω/(1 + iy/2) ω ω/(1 + iy)
ω/(1 − iy/2) ω/(1 − iy) ω



 .

To check that the corner above is a hyper maximal q-corner one must show that the
matrix below is conditionally negative if and only if a = 0 and bij = 0 for i, j = 1, 2
where a ≥ 0 and the matrix B = {bij} is non negative.





1 (1 − iy/2) (1 + iy/2)
(1 + iy/2) 1 (1 + iy)
(1 − iy/2) (1 − iy) 1



 +





a 0 0
0 b11 b12
0 b21 b22





We leave this as an exercise. This then shows that the Eo-semigroup induced by
[w] and Ω with x = 0 are cocycle conjugate.

What about when x 6= 0. We show that the two weights

Ω =

[

ω ω/(1 + x2 + iy)
ω/(1 + x2 − iy) ω

]

and Ω2 =

[

ω ω/2
ω/2 ω

]

induce cocycle conjugate Eo-semigroups. We display the hyper maximal q-corner
below where we write the matrix of denominators.







1 1 + x2 + iy 1 + (1 − x)2 + iy 1 + x2 + iy
1 + x2 − iy 1 2 1

1 + (1 − x)2 − iy 2 1 2
1 + x2 − iy 1 2 1






.

One checks that corner above is a hyper maximal q-corner by showing that the
matrix above when added to the matrix below is conditionally negative if and only
aij = 0 and bij = 0 for i, j = 1, 2 where A = {aij} and B = {bij} are non negative
matrices.







a11 a12 0 0
a21 a22 0 0
0 0 b11 b12
0 0 b21 b22
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Again we leave this as an exercise. This once checked then shows that the weights
Ω1 and Ω2 yield cocycle conjugate Eo-semigroups. Then we find the cocycle classes
of the unital matrix of weights with ω on the diagonal fall into three classes. The
first is when x = 0 and y is arbitrary which is equivalent to [ω], the second is
when x 6= 0 and otherwise arbitrary and y is arbitrary which is equivalent to
x = 1, y = 0 and the third is given by Ωo where the of diagonal entries are zero or
the denominators of the off diagonal entries are infinite.

The main point of this section is that there are ways of constructing and de-
termining the cocycle conjugacy classes in the case where K has dimension greater
than one. At this point we must admit that the best way to proceed is unclear, but
what is clear is that this is a fruitful way to construct spatial Eo-semigroups.

The author wishes to thank Professors Geoffrey Price and Alexis Alevras for
many helpful comments concerning this material.
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