Math 240: Matrix Operations and Linear Systems

Ryan Blair

University of Pennsylvania

Tuesday January 18, 2011

Outline

(1) Review of Last Time

(2) Matrix Operations

(3) Systems of Linear Equations

A Quick Review

Definition

A matrix is a rectangular array of numbers or functions
$\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$

Matrix Operations

A Quick Review

Definition

A matrix is a rectangular array of numbers or functions
$\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$

Matrix Operations
(1) Matrix Addition: $\left(a_{i j}\right)_{m \times n}+\left(b_{i j}\right)_{m \times n}=\left(a_{i j}+b_{i j}\right)_{m \times n}$

A Quick Review

Definition

A matrix is a rectangular array of numbers or functions
$\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$
Matrix Operations
(1) Matrix Addition: $\left(a_{i j}\right)_{m \times n}+\left(b_{i j}\right)_{m \times n}=\left(a_{i j}+b_{i j}\right)_{m \times n}$
(2) Scalar Multiplication: $k\left(a_{i j}\right)_{m \times n}=\left(k a_{i j}\right)_{m \times n}$

A Quick Review

Definition

A matrix is a rectangular array of numbers or functions
$\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$
Matrix Operations
(1) Matrix Addition: $\left(a_{i j}\right)_{m \times n}+\left(b_{i j}\right)_{m \times n}=\left(a_{i j}+b_{i j}\right)_{m \times n}$
(2) Scalar Multiplication: $k\left(a_{i j}\right)_{m \times n}=\left(k a_{i j}\right)_{m \times n}$
(3) Matrix multiplication: The ij entry is the dot product of the i-th row of the matrix on the left with the j-th column of the matrix on the right.

Finishing Matrix Operations

Operation: Transpose

Finishing Matrix Operations

Operation: Transpose

Notation: A^{T}

Finishing Matrix Operations

Operation: Transpose

Notation: A^{T}

Defined: Always

Finishing Matrix Operations

Operation: Transpose
Notation: A^{T}

Defined: Always
Performed: Rows of A become columns of A^{T} and columns of A become rows of A^{T}.

Special Matrices

Definition

A matrix is symmetric if $A^{T}=A$

Special Matrices

Definition

A matrix is symmetric if $A^{T}=A$

Definition

A matrix is square if it is of size $n \times n$.

Special Matrices

Definition
 A matrix is symmetric if $A^{T}=A$

Definition

A matrix is square if it is of size $n \times n$.

Definition

A matrix A is diagonal if it is square and the only non-zero entries are of the form $a_{i j}$ for some i.

Special Matrices

Definition

A matrix is symmetric if $A^{T}=A$

Definition

A matrix is square if it is of size $n \times n$.

Definition

A matrix A is diagonal if it is square and the only non-zero entries are of the form $a_{i j}$ for some i.

Definition

The identity matrix of dimension n, denoted I_{n}, is the $n \times n$ diagonal matrix where all the diagonal entries are 1 .

Matrix Properties

Let A and B be $m \times n$ matrices. Let k and p be scalars.
(1) $A+B=B+A$
(2) $A+(B+C)=(A+B)+C$
(3) $k(A+B)=k A+k B$
(9) $(k+p) A=k A+p A$

Let 0 be the $m \times n$ matrix of all zeros
(1) $A+0=A$
(2) $A-A=0$
(3) $k A=0$ implies $k=0$ or $A=0$.

More Matrix Properties

(1) $A(B C)=(A B) C$
(2) $A(B+C)=A B+A C$
(3) $(A+B) C=A C+B C$
(9) $k(A B)=(k A) B=A(k B)$
(5) $I_{m} A=A$
(3) $A I_{n}=A$

Even More Matrix Properties

(1) $\left(A^{T}\right)^{T}=A$
(2) $(k A)^{T}=k A^{T}$
(3) $(A+B)^{T}=A^{T}+B^{T}$
(9) $(A B)^{T}=B^{T} A^{T}$

Systems of Linear Equations

Human beings have needs.

Systems of Linear Equations

Human beings have needs. One of those needs is make every system linear.

Systems of Linear Equations

Human beings have needs. One of those needs is make every system linear.

Linear systems are essential to finding quantatative or approximate solutions to any problem that can be stated mathematically

Solutions to linear systems

Not every linear system has a unique solution.

Definition

A linear system is called consistent if it has a solution, it is called inconsistent if it does not have a solution.

There are three possibilities:
(1) The system has ∞-many solutions.
(2) The system has a unique solution.
(3) The system has no solution.

Solving a linear system

The standard way is to use elementary operations to isolate each variable.

The elementary operations are:
(1) Multiply an equation by a non-zero constant.
(2) Add a non-zero multiple of one equation to another.

Echelon Forms

Definition

A matrix is in row-echelon form if
(1) Any row consisting of all zeros is at the bottom of the matrix.
(2) For all non-zero rows the leading entry must be a one. This is called the pivot.
(3) In consecutive rows the pivot in the lower row appears to the right of the pivot in the higher row.

Definition

A matrix is in reduced row-echelon form if it is in row-echelon form and every pivot is the only non-zero entry in its column.

Row Operations

We will be applying row operations to augmented matrices to find solutions to linear equations. This is called Gaussian or Gauss-Jordan elimination.

Here are the row operations:
(1) Multiply a row by a number.
(2) Switch rows.
(3) Add a multiple of one row to another.

Row Operations

We will be applying row operations to augmented matrices to find solutions to linear equations. This is called Gaussian or Gauss-Jordan elimination.

Here are the row operations:
(1) Multiply a row by a number.
(2) Switch rows.
(3) Add a multiple of one row to another.

Key Fact: If you alter an augmented matrix by row operations you preserve the set of solutions to the linear system.

