Math 240: Inverses

Ryan Blair

University of Pennsylvania
Thursday January 27, 2011

Outline

(1) Review of Last Time
(2) Properties of Determinants
(3) Matrix Inverse
(4) Properties of Inverses
(5) Solving a Linear System Using Inverses

Review of last time

(1) How to find determinants using cofactor expansion.
(2) How to find determinants using row operations.
(3) Properties of determinants.

Definition of Arbitrary Determinant

Definition

Let $A=\left(a_{i j}\right)_{n \times n}$ be an $n \times n$ matrix.
The cofactor expansion of A along the ith row is

$$
\operatorname{det}(A)=a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\ldots+a_{i n} C_{i n}=\sum_{j=1}^{n} a_{i j} C_{i j}
$$

The cofactor expansion of A along the jth column is

$$
\operatorname{det}(A)=a_{1 j} C_{1 j}+a_{2 j} C_{2 j}+\ldots+a_{n j} C_{n j}=\sum_{i=1}^{n} a_{i j} C_{i j}
$$

Using Elementary Row Operations to Find the Determinant

Suppose B is obtained from A by:
(1) multiplying a row by a non-zero scalar c, then $\operatorname{det}(A)=\frac{1}{c} \operatorname{det}(B)$.
(2) switching rows, then $\operatorname{det}(A)=-\operatorname{det}(B)$.
(3) adding a multiple of one row to another row, then $\operatorname{det}(A)=\operatorname{det}(B)$.

Using Elementary Row Operations to Find the Determinant

Suppose B is obtained from A by:
(1) multiplying a row by a non-zero scalar c, then $\operatorname{det}(A)=\frac{1}{c} \operatorname{det}(B)$.
(2) switching rows, then $\operatorname{det}(A)=-\operatorname{det}(B)$.
(3) adding a multiple of one row to another row, then $\operatorname{det}(A)=\operatorname{det}(B)$.

Using this idea we can quickly find determinants by row-reducing to triangular form.

Properties of Determinants

Theorem

If elementary row or column operations lead to one of the following conditions, then the determinant is zero.
(1) an entire row (or column) consists of zeros.
(2) one row (or column) is a multiple of another row (or column).

Properties of Determinants

Theorem

If elementary row or column operations lead to one of the following conditions, then the determinant is zero.
(1) an entire row (or column) consists of zeros.
(2) one row (or column) is a multiple of another row (or column).

Let A and B be $n \times n$ matrices and c be a scalar.
(1) $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
(2) $\operatorname{det}(c A)=c^{n} \operatorname{det}(A)$
(3) $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$

Today's Goals

(1) Be able to find the inverse of a matrix or show it has no inverse.
(2) Know the properties of inverses.
(3) Be able to solve systems of linear equations using matrices.

Matrix Inverse

Definition

An $n \times n$ matrix A is invertible if there exists an $n \times n$ matrix B such that

$$
A B=B A=I_{n} .
$$

In this case, B is the inverse of A.

Matrix Inverse

Definition

An $n \times n$ matrix A is invertible if there exists an $n \times n$ matrix B such that

$$
A B=B A=I_{n} .
$$

In this case, B is the inverse of A.
(1) NOT every matrix is invertible.
(2) A matrix that is not invertible is called singular.
(3) If A is invertible, its inverse is denoted A^{-1}.

Matrix Inverse

Definition

An $n \times n$ matrix A is invertible if there exists an $n \times n$ matrix B such that

$$
A B=B A=I_{n} .
$$

In this case, B is the inverse of A.
(1) NOT every matrix is invertible.
(2) A matrix that is not invertible is called singular.
(3) If A is invertible, its inverse is denoted A^{-1}.

Example: check the the following matrices are inverses of each other.
$\left(\begin{array}{ll}1 & 2 \\ 4 & 7\end{array}\right)\left(\begin{array}{cc}-7 & 2 \\ 4 & -1\end{array}\right)$

A 2×2 Matrix Inverse Formula

If $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is a 2×2 matrix and $\operatorname{det}(A) \neq 0$, then

$$
A^{-1}=\frac{1}{\operatorname{det}(A)}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

A 2×2 Matrix Inverse Formula

If $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is a 2×2 matrix and $\operatorname{det}(A) \neq 0$, then

$$
A^{-1}=\frac{1}{\operatorname{det}(A)}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

Exercise: Prove the above statement

Inverses of Arbitrary $n \times n$ Matrices

How to find the inverse of an arbitrary $n \times n$ matrix A.
(1) Form the augmented $n \times 2 n$ matrix $\left[A \mid I_{n}\right]$.
(2) Find the reduced row echelon form of $\left[A \mid I_{n}\right]$.
(3) If $\operatorname{rank}(A)<n$ then A is not invertible.
(9) If $\operatorname{rank}(A)=n$, then the RREF form of the augmented matrix is $\left[I_{n} \mid A^{-1}\right]$.

Inverses of Arbitrary $n \times n$ Matrices

How to find the inverse of an arbitrary $n \times n$ matrix A.
(1) Form the augmented $n \times 2 n$ matrix $\left[A \mid I_{n}\right]$.
(2) Find the reduced row echelon form of $\left[A \mid I_{n}\right]$.
(3) If $\operatorname{rank}(A)<n$ then A is not invertible.
(9) If $\operatorname{rank}(A)=n$, then the RREF form of the augmented matrix is $\left[I_{n} \mid A^{-1}\right]$.
Find the inverse of $\left(\begin{array}{ccc}-1 & 3 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & 2\end{array}\right)$

Properties of Inverses

(1) $\left(A^{-1}\right)^{-1}=A$
(2) $(c A)^{-1}=\frac{1}{c} A^{-1}$
(3) $(A B)^{-1}=B^{-1} A^{-1}$
(9) $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$
(5) $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$
(0) A is invertible if and only if $\operatorname{det}(A) \neq 0$

Solving a Linear System Using Inverses

Let A be invertible and $A x=B$ be a linear system, then the solution to the linear system is given by

$$
x=A^{-1} B
$$

Solving a Linear System Using Inverses

Let A be invertible and $A x=B$ be a linear system, then the solution to the linear system is given by

$$
x=A^{-1} B
$$

Example: Solve the following linear system using inverses.

$$
\begin{gathered}
x+z=-4 \\
x+y+z=0 \\
5 x-y=6
\end{gathered}
$$

