Math 240: Linear Differential Equations

Ryan Blair

University of Pennsylvania

Tuesday February 15, 2011

Outline

Today's Goals

Understand the form of solutions to the following types of higher order, linear differential equations
(1) Initial Value Problems
(2) Boundary Value Problems
(3) Homogeneous and Nonhomogeneous Equations.

A Few Famus Differential Equations

(3) Einstein's field equation in general relativity
(2) The Navier-Stokes equations in fluid dynamics
(3) Verhulst equation - biological population growth
(1) The Black-Scholes PDE - models financial markets

Higher Order Initial Value Problems

Definition

For a linear differential equation, an nth-order initial value problem(IVP) is

Solve : $\quad a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)$

Subject to: $y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{1}, \ldots, y^{(n-1)}\left(x_{0}\right)=y_{n-1}$

Existence and Uniqueness

Theorem

Let $a_{n}(x), a_{n-1}(x), \ldots, a_{1}(x), a_{0}(x)$, and $g(x)$ be continuous on and interval I, and let $a_{n}(x) \neq 0$ for every x in this interval. If $x=x_{0}$ is any point in this interval, then a solution $y(x)$ of the initial value problem exists on the interval and is unique.

Existence and Uniqueness

Theorem

Let $a_{n}(x), a_{n-1}(x), \ldots, a_{1}(x), a_{0}(x)$, and $g(x)$ be continuous on and interval I, and let $a_{n}(x) \neq 0$ for every x in this interval. If $x=x_{0}$ is any point in this interval, then a solution $y(x)$ of the initial value problem exists on the interval and is unique.

Example:Does the following IVP have a unique solution? If so, on what intervals?
$y^{\prime \prime \prime}+y^{\prime \prime}-y^{\prime}-y=9$ with $y(2)=0, y^{\prime}(2)=0$ and $y^{\prime \prime}(2)=0$

Boundary Value Problem

Definition

For a linear differential equation, an nth-order boundary value problem(BVP) is

Solve : $\quad a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)$
Subject to n equations that specify the value of y and its derivatives at different points (called boundary conditions).

Boundary Value Problem

Definition

For a linear differential equation, an nth-order boundary value problem(BVP) is

Solve : $\quad a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)$
Subject to n equations that specify the value of y and its derivatives at different points (called boundary conditions).

Question: What are the possible boundary conditions for a second order linear D.E.

One, Many or No Solutions

A BVP may have one, ∞-many, or no solutions.

Example: $x^{\prime \prime}+16 x=0$

Homogeneous and Nonhomogeneous

Definition

An nth-order differential equation of the following form is said to be homogeneous. Otherwise we say the equation is nonhomogeneous.

Solve : $\quad a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0$

Using Linearity to Find More Solutions

Theorem

(The Superposition Principle) Let $y_{1}, y_{2}, \ldots y_{k}$ be solutions to a homogeneous nth-order differential equation on an interval I. Then any linear combination

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\ldots+c_{k} y_{k}(x)
$$

is also a solution, where $c_{1}, c_{2}, \ldots, c_{k}$ are constants.

Linear Independence of Functions

Definition

A set of functions $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ is linearly dependent on an interval l is there exists constants $c_{1}, c_{2}, \ldots, c_{n}$, not all zero, such that

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+\ldots+c_{n} f_{n}(x)=0
$$

for every x in the interval. A set of functions that is not linearly dependent is said to be Linearly Independent.

The Wronskian

Definition

Suppose each of the functions $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ possess at least $n-1$ derivatives. The determinant

$$
W\left(f_{1}, f_{2}, \ldots, f_{n}\right)=\left|\begin{array}{cccc}
f_{1} & f_{2} & \ldots & f_{n} \\
f_{1}^{\prime} & f_{2}^{\prime} & \ldots & f_{n}^{\prime} \\
\vdots & \vdots & & \vdots \\
f_{1}^{(n-1)} & f_{2}^{(n-1)} & \ldots & f_{n}^{(n-1)}
\end{array}\right|
$$

is called the Wronskian of the functions.

Linearly Independent Solutions

Theorem

Let $y_{1}, y_{2}, \ldots, y_{n}$ be n solutions to a homogeneous linear nth-order differential equation on an interval I. The the set of solutions is linearly independent on I if and only if $W\left(y_{1}, y_{2}, \ldots, y_{n}\right) \neq 0$ for every x in the interval. If the solutions $y_{1}, y_{2}, \ldots, y_{n}$ are linearly independent they are said to be a fundamental set of solutions.

Note: There always exists a fundamental set of solutions to an nth-order linear homogeneous differential equation on an interval l.

General Solution

Theorem

Let $y_{1}, y_{2}, \ldots, y_{n}$ be a fundamental set of solutions set of solutions to an nth-order linear homogeneous differential equation on an interval l. Then the general solution of the equation on the interval is

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\ldots+c_{n} y_{n}(x)
$$

where the c_{i} are arbitrary constants.

General Solutions to Nonhomogeneous Linear D.E.s

Theorem

Let y_{p} be any particular solution of the nonhomogeneous linear nth-order differential equation on an interval I. Let $y_{1}, y_{2}, \ldots, y_{n}$ be a fundamental set of solutions to the associated homogeneous differential equation. Then the general solution to the nonhomogeneous equation on the interval is

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\ldots+c_{n} y_{n}(x)+y_{p}
$$

where the c_{i} are arbitrary constants.

Superposition Principle for Nonhomogeneous Equations

Theorem

Suppose $y_{p_{i}}$ denotes a particular solution to the differential equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g_{i}(x)
$$

Where $i=1,2, \ldots, k$. Then $y_{p}=y_{p_{1}}+y_{p_{2}}+\ldots+y_{p_{k}}$ is a particular solution of

$$
\begin{gathered}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots a_{1}(x) \frac{d y}{d x}+a_{0}(x) y= \\
g_{1}(x)+g_{2}(x)+\ldots+g_{k}(x)
\end{gathered}
$$

