Math 240: Linear Differential Equations

Ryan Blair

University of Pennsylvania

Tuesday February 15, 2011

Ryan Blair (U Penn)

Math 240: Linear Differential Equations

Tuesday February 15, 2011

クへで 1 / 15

Outline

- 2 Today's Goals
- General Solutions
- A Results For Nonhomogeneous Equations
- Solving D.E.s Using Auxiliary Equations

< □ > < ---->

Review for Last Time

- Higher order linear differential equations.
- Superposition principal for higher order linear homogeneous differential equations.
- Testing for linear independence of functions.

* E > * E >

• The following is a general nth-order linear D.E.

$$a_n(x)rac{d^n y}{dx^n} + a_{n-1}(x)rac{d^{n-1} y}{dx^{n-1}} + ...a_1(x)rac{dy}{dx} + a_0(x)y = g(x)$$

Tuesday February 15, 2011

イロト イポト イヨト イヨト

: シへへ 4 / 15

E

• The following is a general nth-order linear D.E.

$$a_n(x)rac{d^n y}{dx^n} + a_{n-1}(x)rac{d^{n-1} y}{dx^{n-1}} + ...a_1(x)rac{dy}{dx} + a_0(x)y = g(x)$$

For a linear homogeneous D.E., linear combinations of solutions are again solutions.

3 × 4 3 ×

• The following is a general nth-order linear D.E.

$$a_n(x)rac{d^n y}{dx^n} + a_{n-1}(x)rac{d^{n-1} y}{dx^{n-1}} + ...a_1(x)rac{dy}{dx} + a_0(x)y = g(x)$$

- For a linear homogeneous D.E., linear combinations of solutions are again solutions.
- A collection of functions is linearly independent if and only if the Wronskian is non-zero

Today's Goals

- Construct general solutions to homogeneous and nonhomogeneous linear D.E.s
- Use auxiliary equations to solve constant coefficient linear homogeneous D.E.s

イロト イポト イヨト イヨト 二日

Linearly Independent Solutions

Theorem

Let $y_1, y_2, ..., y_n$ be n solutions to a homogeneous linear nth-order differential equation on an interval I. The the set of solutions is **linearly independent** on I if and only if $W(y_1, y_2, ..., y_n) \neq 0$ for every x in the interval.

ヨト イヨト ニヨ

Linearly Independent Solutions

Theorem

Let $y_1, y_2, ..., y_n$ be n solutions to a homogeneous linear nth-order differential equation on an interval I. The the set of solutions is **linearly independent** on I if and only if $W(y_1, y_2, ..., y_n) \neq 0$ for every x in the interval.

If the solutions $y_1, y_2, ..., y_n$ are linearly independent they are said to be a **fundamental set of solutions**.

イヨト イヨト 三日

Linearly Independent Solutions

Theorem

Let $y_1, y_2, ..., y_n$ be n solutions to a homogeneous linear nth-order differential equation on an interval I. The the set of solutions is **linearly independent** on I if and only if $W(y_1, y_2, ..., y_n) \neq 0$ for every x in the interval.

If the solutions $y_1, y_2, ..., y_n$ are linearly independent they are said to be a **fundamental set of solutions**.

Note: There always exists a fundamental set of solutions to an nth-order linear homogeneous differential equation on an interval *I*.

 < □</td>
 < □</td>
 < □</td>
 □

 Tuesday February 15, 2011

Theorem

Let $y_1, y_2, ..., y_n$ be a fundamental set of solutions set of solutions to an nth-order linear homogeneous differential equation on an interval 1. Then the general solution of the equation on the interval is

$$y = c_1 y_1(x) + c_2 y_2(x) + ... + c_n y_n(x)$$

where the c_i are arbitrary constants.

General Solutions to Nonhomogeneous Linear D.E.s

Theorem

Let y_p be any particular solution of the nonhomogeneous linear nth-order differential equation on an interval I. Let $y_1, y_2, ..., y_n$ be a fundamental set of solutions to the associated homogeneous differential equation. Then the general solution to the nonhomogeneous equation on the interval is

$$y = c_1 y_1(x) + c_2 y_2(x) + ... + c_n y_n(x) + y_p$$

where the c_i are arbitrary constants.

프 문 문 프 문

Superposition Principle for Nonhomogeneous Equations

Theorem

Suppose y_{p_i} denotes a particular solution to the differential equation

$$a_{n}(x)\frac{d^{n}y}{dx^{n}} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots a_{1}(x)\frac{dy}{dx} + a_{0}(x)y = g_{i}(x)$$

Where $i = 1, 2, \dots, k$. Then $y_{p} = y_{p_{1}} + y_{p_{2}} + \dots + y_{p_{k}}$ is a particular solution of

$$a_n(x)rac{d^n y}{dx^n} + a_{n-1}(x)rac{d^{n-1} y}{dx^{n-1}} + \dots a_1(x)rac{dy}{dx} + a_0(x)y =$$

 $g_1(x) + g_2(x) + \dots + g_k(x)$

Our goal is to solve constant coefficient linear homogeneous differential equations.

Our goal is to solve constant coefficient linear homogeneous differential equations.

What if we guess $y = e^{mx}$ as a solution to y'' + y' - 6y = 0?

- ▲ 臣 ▶ ▲ 臣 ▶ → 臣 → ∽ ۹ (~

Our goal is to solve constant coefficient linear homogeneous differential equations.

What if we guess $y = e^{mx}$ as a solution to y'' + y' - 6y = 0?

What if we guess $y = e^{mx}$ as a solution to ay'' + by' + cy = 0?

< □ > < □ > < □ > = □ ○ < ○

Our goal is to solve constant coefficient linear homogeneous differential equations.

What if we guess $y = e^{mx}$ as a solution to y'' + y' - 6y = 0?

What if we guess $y = e^{mx}$ as a solution to ay'' + by' + cy = 0?

In this case, we get $e^{mx}(am^2 + bm + c) = 0$. There are three possibilities for the roots of a quadratic equation.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - シック

Case 1: Distinct Roots

If $am^2 + bm + c$ has distinct roots m_1 and m_2 , then the general solution to ay'' + by' + cy = 0 is

$$y = c_1 e^{m_1 x} + c_2 e^{m_2 x}$$

Case 2: Repeated Roots

If $am^2 + bm + c$ has a repeated root m_1 , then the general solution to ay'' + by' + cy = 0 is

$$y = c_1 e^{m_1 x} + c_2 x e^{m_1 x}$$

4 = + 4 = + 4 = + 4 = +

Case 3: Complex Roots

If $am^2 + bm + c$ has complex roots $m_1 = \alpha + i\beta$ and $m_2 = \alpha - i\beta$, then the general solution to ay'' + by' + cy = 0 is

$$y = c_1 e^{\alpha x} cos(\beta x) + i c_2 e^{\alpha x} sin(\beta x)$$

Auxiliary Equations

Given a linear homogeneous **constant-coefficient** differential equation

$$a_n rac{d^n y}{dx^n} + a_{n-1} rac{d^{n-1} y}{dx^{n-1}} + ... a_1 rac{dy}{dx} + a_0 y = 0,$$

the Auxiliary Equation is

$$a_n m^n + a_{n-1} m^{n-1} + \dots a_1 m + a_0 = 0.$$

ヨトィヨト

Auxiliary Equations

Given a linear homogeneous **constant-coefficient** differential equation

$$a_n rac{d^n y}{dx^n} + a_{n-1} rac{d^{n-1} y}{dx^{n-1}} + ... a_1 rac{dy}{dx} + a_0 y = 0,$$

the Auxiliary Equation is

$$a_n m^n + a_{n-1} m^{n-1} + \dots a_1 m + a_0 = 0.$$

The Auxiliary Equation determines the general solution.

General Solution from the Auxiliary Equation

- If m is a root of the auxiliary equation of multiplicity k then
 - e^{mx} , xe^{mx} , x^2e^{mx} , ..., $x^{k-1}e^{mx}$ are linearly independent solutions.
- If (α + iβ) and (α + iβ) are a roots of the auxiliary equation of multiplicity k then
 e^{αx}cos(βx), xe^{αx}cos(βx), ..., x^{k-1}e^{αx}cos(βx) and
 e^{αx}sin(βx), xe^{αx}sin(βx), ..., x^{k-1}e^{αx}sin(βx) are linearly independent solutions.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろので