Math 240: Linear Differential Equations

Ryan Blair

University of Pennsylvania

Tuesday February 15, 2011

Outline

(1) Review
(2) Today's Goals
(3) General Solutions

4 Results For Nonhomogeneous Equations
(1) Solving D.E.s Using Auxiliary Equations

Review for Last Time

(1) Higher order linear differential equations.
(2) Superposition principal for higher order linear homogeneous differential equations.
(3) Testing for linear independence of functions.
(1) The following is a general nth-order linear D.E.

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

(1) The following is a general nth-order linear D.E.

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

(2) For a linear homogeneous D.E., linear combinations of solutions are again solutions.
(1) The following is a general nth-order linear D.E.

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

(2) For a linear homogeneous D.E., linear combinations of solutions are again solutions.
(3) A collection of functions is linearly independent if and only if the Wronskian is non-zero

Today's Goals

(1) Construct general solutions to homogeneous and nonhomogeneous linear D.E.s
(2) Use auxiliary equations to solve constant coefficient linear homogeneous D.E.s

Linearly Independent Solutions

Theorem

Let $y_{1}, y_{2}, \ldots, y_{n}$ be n solutions to a homogeneous linear nth-order differential equation on an interval I. The the set of solutions is linearly independent on I if and only if $W\left(y_{1}, y_{2}, \ldots, y_{n}\right) \neq 0$ for every x in the interval.

Linearly Independent Solutions

Theorem

Let $y_{1}, y_{2}, \ldots, y_{n}$ be n solutions to a homogeneous linear nth-order differential equation on an interval I. The the set of solutions is linearly independent on I if and only if $W\left(y_{1}, y_{2}, \ldots, y_{n}\right) \neq 0$ for every x in the interval.

If the solutions $y_{1}, y_{2}, \ldots, y_{n}$ are linearly independent they are said to be a fundamental set of solutions.

Linearly Independent Solutions

Abstract

Theorem Let $y_{1}, y_{2}, \ldots, y_{n}$ be n solutions to a homogeneous linear nth-order differential equation on an interval I. The the set of solutions is linearly independent on I if and only if $W\left(y_{1}, y_{2}, \ldots, y_{n}\right) \neq 0$ for every x in the interval.

If the solutions $y_{1}, y_{2}, \ldots, y_{n}$ are linearly independent they are said to be a fundamental set of solutions. Note: There always exists a fundamental set of solutions to an nth-order linear homogeneous differential equation on an interval l.

General Solution

Theorem

Let $y_{1}, y_{2}, \ldots, y_{n}$ be a fundamental set of solutions set of solutions to an nth-order linear homogeneous differential equation on an interval l. Then the general solution of the equation on the interval is

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\ldots+c_{n} y_{n}(x)
$$

where the c_{i} are arbitrary constants.

General Solutions to Nonhomogeneous Linear D.E.s

Theorem

Let y_{p} be any particular solution of the nonhomogeneous linear nth-order differential equation on an interval I. Let $y_{1}, y_{2}, \ldots, y_{n}$ be a fundamental set of solutions to the associated homogeneous differential equation. Then the general solution to the nonhomogeneous equation on the interval is

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\ldots+c_{n} y_{n}(x)+y_{p}
$$

where the c_{i} are arbitrary constants.

Superposition Principle for Nonhomogeneous Equations

Theorem

Suppose $y_{p_{i}}$ denotes a particular solution to the differential equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g_{i}(x)
$$

Where $i=1,2, \ldots, k$. Then $y_{p}=y_{p_{1}}+y_{p_{2}}+\ldots+y_{p_{k}}$ is a particular solution of

$$
\begin{gathered}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots a_{1}(x) \frac{d y}{d x}+a_{0}(x) y= \\
g_{1}(x)+g_{2}(x)+\ldots+g_{k}(x)
\end{gathered}
$$

A Motivating Example

Our goal is to solve constant coefficient linear homogeneous differential equations.

A Motivating Example

Our goal is to solve constant coefficient linear homogeneous differential equations.

What if we guess $y=e^{m x}$ as a solution to $y^{\prime \prime}+y^{\prime}-6 y=0$?

A Motivating Example

Our goal is to solve constant coefficient linear homogeneous differential equations.

What if we guess $y=e^{m x}$ as a solution to $y^{\prime \prime}+y^{\prime}-6 y=0$?

What if we guess $y=e^{m x}$ as a solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$?

A Motivating Example

Our goal is to solve constant coefficient linear homogeneous differential equations.

What if we guess $y=e^{m x}$ as a solution to $y^{\prime \prime}+y^{\prime}-6 y=0$?

What if we guess $y=e^{m x}$ as a solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$?

In this case, we get $e^{m x}\left(a m^{2}+b m+c\right)=0$. There are three possibilities for the roots of a quadratic equation.

Case 1: Distinct Roots

If $a m^{2}+b m+c$ has distinct roots m_{1} and m_{2}, then the general solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$ is

$$
y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x}
$$

Case 2: Repeated Roots

If $a m^{2}+b m+c$ has a repeated root m_{1}, then the general solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$ is

$$
y=c_{1} e^{m_{1} x}+c_{2} x e^{m_{1} x}
$$

Case 3: Complex Roots

If $a m^{2}+b m+c$ has complex roots $m_{1}=\alpha+i \beta$ and $m_{2}=\alpha-i \beta$, then the general solution to
$a y^{\prime \prime}+b y^{\prime}+c y=0$ is

$$
y=c_{1} e^{\alpha x} \cos (\beta x)+i c_{2} e^{\alpha x} \sin (\beta x)
$$

Auxiliary Equations

Given a linear homogeneous constant-coefficient differential equation
$a_{n} \frac{d^{n} y}{d x^{n}}+a_{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\ldots a_{1} \frac{d y}{d x}+a_{0} y=0$,
the Auxiliary Equation is
$a_{n} m^{n}+a_{n-1} m^{n-1}+\ldots a_{1} m+a_{0}=0$.

Auxiliary Equations

Given a linear homogeneous constant-coefficient differential equation
$a_{n} \frac{d^{n} y}{d x^{n}}+a_{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\ldots a_{1} \frac{d y}{d x}+a_{0} y=0$,
the Auxiliary Equation is
$a_{n} m^{n}+a_{n-1} m^{n-1}+\ldots a_{1} m+a_{0}=0$.
The Auxiliary Equation determines the general solution.

General Solution from the Auxiliary Equation

(1) If m is a root of the auxiliary equation of multiplicity k then
$e^{m x}, x e^{m x}, x^{2} e^{m x}, \ldots, x^{k-1} e^{m x}$ are linearly independent solutions.
(2) If $(\alpha+i \beta)$ and $(\alpha+i \beta)$ are a roots of the auxiliary equation of multiplicity k then $e^{\alpha x} \cos (\beta x), x e^{\alpha x} \cos (\beta x), \ldots, x^{k-1} e^{\alpha x} \cos (\beta x)$ and $e^{\alpha x} \sin (\beta x), x e^{\alpha x} \sin (\beta x), \ldots, x^{k-1} e^{\alpha x} \sin (\beta x)$ are linearly independent solutions.

