Math 240: Linear Differential Equations

Ryan Blair

University of Pennsylvania

Tuesday February 15, 2011

Outline

(1) Review

(2) Today's Goals
(3) Undetermined Coefficients

Review for Last Time

(1) Construct general solutions to homogeneous and nonhomogeneous linear D.E.s
(2) Use auxiliary equations to solve constant coefficient linear homogeneous D.E.s

Auxiliary Equations

Given a linear homogeneous constant-coefficient differential equation
$a_{n} \frac{d^{n} y}{d x^{n}}+a_{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\ldots a_{1} \frac{d y}{d x}+a_{0} y=0$,
the Auxiliary Equation is
$a_{n} m^{n}+a_{n-1} m^{n-1}+\ldots a_{1} m+a_{0}=0$.

Auxiliary Equations

Given a linear homogeneous constant-coefficient differential equation
$a_{n} \frac{d^{n} y}{d x^{n}}+a_{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\ldots a_{1} \frac{d y}{d x}+a_{0} y=0$,
the Auxiliary Equation is
$a_{n} m^{n}+a_{n-1} m^{n-1}+\ldots a_{1} m+a_{0}=0$.
The Auxiliary Equation determines the general solution.

General Solutions to Nonhomogeneous Linear D.E.s

Theorem

Let y_{p} be any particular solution of the nonhomogeneous linear nth-order differential equation on an interval I. Let $y_{1}, y_{2}, \ldots, y_{n}$ be a fundamental set of solutions to the associated homogeneous differential equation. Then the general solution to the nonhomogeneous equation on the interval is

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\ldots+c_{n} y_{n}(x)+y_{p}
$$

where the c_{i} are arbitrary constants.

General Solution from the Auxiliary Equation

(1) If m is a root of the auxiliary equation of multiplicity k then $e^{m x}, x e^{m x}, x^{2} e^{m x}, \ldots, x^{k-1} e^{m x}$ are linearly independent solutions.
(2) If $(\alpha+i \beta)$ and $(\alpha+i \beta)$ are a roots of the auxiliary equation of multiplicity k then
$e^{\alpha x} \cos (\beta x), x e^{\alpha x} \cos (\beta x), \ldots, x^{k-1} e^{\alpha x} \cos (\beta x)$ and $e^{\alpha x} \sin (\beta x), x e^{\alpha x} \sin (\beta x), \ldots, x^{k-1} e^{\alpha x} \sin (\beta x)$ are linearly independent solutions.

Today's Goals

(1) Learn how to solve nonhomogeneous linear differential equations using the method of Undetermined Coefficients.

The Method of Undetermined Coefficients

Given a nonhomogeneous differential equation

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\ldots a_{1} y^{\prime}+a_{0} y=g(x)
$$

where $a_{n}, a_{n-1}, \ldots, a_{0}$ are constants.

The Method of Undetermined Coefficients

Given a nonhomogeneous differential equation

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\ldots a_{1} y^{\prime}+a_{0} y=g(x)
$$

where $a_{n}, a_{n-1}, \ldots, a_{0}$ are constants.
(1) Step 1: Solve the associated homogeneous equation.

The Method of Undetermined Coefficients

Given a nonhomogeneous differential equation

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\ldots a_{1} y^{\prime}+a_{0} y=g(x)
$$

where $a_{n}, a_{n-1}, \ldots, a_{0}$ are constants.
(1) Step 1: Solve the associated homogeneous equation.
(2) Step 2: Find a particular solution by analyzing $g(x)$ and making an educated guess.

The Method of Undetermined Coefficients

Given a nonhomogeneous differential equation

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\ldots a_{1} y^{\prime}+a_{0} y=g(x)
$$

where $a_{n}, a_{n-1}, \ldots, a_{0}$ are constants.
(1) Step 1: Solve the associated homogeneous equation.
(2) Step 2: Find a particular solution by analyzing $g(x)$ and making an educated guess.
(3) Step 3: Add the homogeneous solution and the particular solution together to get the general solution.

Guessing Particular Solutions

g(x)
constant

Guess

Guessing Particular Solutions

$\mathrm{g}(\mathrm{x})$
constant

Guess
 A

Guessing Particular Solutions

Guess
A

Guessing Particular Solutions

$\mathrm{g}(\mathrm{x})$
constant
$3 x^{2}-2$

Guess
 A
 $A x^{2}+B x+C$

Guessing Particular Solutions

$\mathrm{g}(\mathrm{x})$
constant
$3 x^{2}-2$
Polynomial of degree n

Guess

A
$A x^{2}+B x+C$

Guessing Particular Solutions

$\mathrm{g}(\mathrm{x})$
constant
$3 x^{2}-2$
Polynomial of degree $n A_{n} x^{n}+A_{n-1} x^{n-1}+\ldots+A_{0}$

Guess

A
$A x^{2}+B x+C$
$A_{n} x^{n}+A_{n-1} x^{n-1}+\ldots+A_{0}$

Guessing Particular Solutions

$\mathrm{g}(\mathrm{x})$
constant
$3 x^{2}-2$

Polynomial of degree $n A_{n} x^{n}+A_{n-1} x^{n-1}+\ldots+A_{0}$ $\cos (4 x)$

Guess

A
$A x^{2}+B x+C$

Guessing Particular Solutions

$\mathrm{g}(\mathrm{x})$
constant
$3 x^{2}-2$
Polynomial of degree n $\cos (4 x)$

Guess

A
$A x^{2}+B x+C$
$A_{n} x^{n}+A_{n-1} x^{n-1}+\ldots+A_{0}$ $A \cos (4 x)+B \sin (4 x)$

Guessing Particular Solutions

$\mathrm{g}(\mathrm{x})$
constant
$3 x^{2}-2$
Polynomial of degree n $\cos (4 x)$
$A \cos (n x)+B \sin (n x)$

Guess

A
$A x^{2}+B x+C$
$A_{n} x^{n}+A_{n-1} x^{n-1}+\ldots+A_{0}$
$A \cos (4 x)+B \sin (4 x)$

Guessing Particular Solutions

$\mathrm{g}(\mathrm{x})$
constant
$3 x^{2}-2$
Polynomial of degree n $\cos (4 x)$
$A \cos (n x)+B \sin (n x)$

Guess

A
$A x^{2}+B x+C$
$A_{n} x^{n}+A_{n-1} x^{n-1}+\ldots+A_{0}$
$A \cos (4 x)+B \sin (4 x)$
$A \cos (n x)+B \sin (n x)$

Guessing Particular Solutions

$g(x)$
constant
$3 x^{2}-2$
Polynomial of degree n $\cos (4 x)$
$A \cos (n x)+B \sin (n x)$ $e^{4 x}$

Guess

A

$$
A x^{2}+B x+C
$$

$$
A_{n} x^{n}+A_{n-1} x^{n-1}+\ldots+A_{0}
$$

$$
A \cos (4 x)+B \sin (4 x)
$$

$$
A \cos (n x)+B \sin (n x)
$$

Guessing Particular Solutions

$\mathrm{g}(\mathrm{x})$
constant
$3 x^{2}-2$
Polynomial of degree n $\cos (4 x)$
$A \cos (n x)+B \sin (n x)$ $e^{4 x}$

Guess

A
$A x^{2}+B x+C$
$A_{n} x^{n}+A_{n-1} x^{n-1}+\ldots+A_{0}$
$A \cos (4 x)+B \sin (4 x)$
$A \cos (n x)+B \sin (n x)$
$A e^{4 x}$

Guessing Particular Solutions

$\mathrm{g}(\mathrm{x})$
constant
$3 x^{2}-2$
$\cos (4 x)$
$A \cos (n x)+B \sin (n x)$
$e^{4 x}$
$x^{2} e^{5 x}$
$e^{2 x} \cos (4 x)$
$3 x \sin (5 x)$
$x e^{2 x} \cos (3 x)$

Guess
A
$A x^{2}+B x+C$
Polynomial of degree $n A_{n} x^{n}+A_{n-1} x^{n-1}+\ldots+A_{0}$
$A \cos (4 x)+B \sin (4 x)$
$A \cos (n x)+B \sin (n x)$
$A e^{4 x}$
$\left(A x^{2}+B x+C\right) e^{5 x}$
$A e^{2 x} \sin (4 x)+B e^{2 x} \cos (4 x)$
$(A x+B) \sin (5 x)+(C x+D) \cos (5 x)$
$(A x+B) e^{2 x} \sin (3 x)+(C x+D) e^{2 x} \cos (3 x)$

The Guessing Rule

The form of y_{p} is a linear combination of all linearly independent functions that are generated by repeated differentiation of $g(x)$.

A Problem

Solve $y^{\prime \prime}-5 y^{\prime}+4 y=8 e^{x}$ using undetermined coefficients.

The solution

When the natural guess for a particular solution duplicates a homogeneous solution, multiply the guess by x^{n}, where n is the smallest positive integer that eliminates the duplication.

