Math 240: Diagonalization

Ryan Blair
University of Pennsylvania
Tuesday February 3, 2011

Outline

(1) Review of Last Time

(2) Diagonalizability

Review of last time

(1) Interpret matrices as linear maps from \mathbb{R}^{n} to \mathbb{R}^{m}.
(2) Found eigenvalues.
(- Found eigenvectors.

How to find Eigenvalues

To find eigenvalues we want to solve $A x=\lambda x$ for λ.
$A x=\lambda x$
$A x-\lambda x=0$
$\left(A-\lambda I_{n}\right) x=0$

How to find Eigenvalues

To find eigenvalues we want to solve $A x=\lambda x$ for λ.
$A x=\lambda x$
$A x-\lambda x=0$
$\left(A-\lambda I_{n}\right) x=0$
For the above to have more than just a trivial solution, ($A-\lambda I_{n}$) must be singular.

How to find Eigenvalues

To find eigenvalues we want to solve $A x=\lambda x$ for λ.
$A x=\lambda x$
$A x-\lambda x=0$
$\left(A-\lambda I_{n}\right) x=0$
For the above to have more than just a trivial solution, ($A-\lambda I_{n}$) must be singular.

Hence, we solve the polynomial equation $\operatorname{det}\left(A-\lambda I_{n}\right)=0$ called the characteristic equation.

Finding Eigenvectors

For each eigenvalue λ, solve the linear system $\left(A-\lambda I_{n}\right) x=0$ to find the eigenvectors.

Today's Goals

(1) Be able to diagonalize matrices.
(2) Be able to use diagonalization to compute high powers of matrices.

Diagonalizability

Definition

An $n \times n$ matrix A is diagonalizable if there exists an $n \times n$ invertible matrix P and an $n \times n$ diagonal matrix D such that $P^{-1} A P=D$.

When A is diagnolizable, the columns of P are the eigenvectors of A and the diagonal entries of D are the corresponding eigenvalues.

Diagonalizability

Definition

An $n \times n$ matrix A is diagonalizable if there exists an $n \times n$ invertible matrix P and an $n \times n$ diagonal matrix D such that $P^{-1} A P=D$.

When A is diagnolizable, the columns of P are the eigenvectors of A and the diagonal entries of D are the corresponding eigenvalues.
Example: Verify that the following matrix is diagonalizable.
$\left(\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right)$

Diagonalizability Theorems

Theorem

A $n \times n$ matrix is diagonalizable if and only if it has n linearly independent eigenvectors.

Theorem
If an $n \times n$ matrix has n distinct eigenvalues, then it is diagonalizable.

Diagonalizability Theorems

Theorem

A $n \times n$ matrix is diagonalizable if and only if it has n linearly independent eigenvectors.

Theorem
If an $n \times n$ matrix has n distinct eigenvalues, then it is diagonalizable.

Note:Not all diagonalizable matrices have n distinct eigenvalues.

