Math 240: Diagonalization

Ryan Blair

University of Pennsylvania

Tuesday February 3, 2011

Ryan Blair (U Penn)

Math 240: Diagonalization

 $\exists \rightarrow$ Tuesday February 3, 2011 1/8

DQC

3

Ryan Blair (U Penn)

Math 240: Diagonalization

Tuesday February 3, 2011 2 / 8

E

590

→ ∃ > → ∃ >

Image: A matrix

Review of last time

- Interpret matrices as linear maps from \mathbb{R}^n to \mathbb{R}^m .
- Found eigenvalues.
- Found eigenvectors.

3

How to find Eigenvalues

To find eigenvalues we want to solve $Ax = \lambda x$ for λ . $Ax = \lambda x$ $Ax - \lambda x = 0$ $(A - \lambda I_n)x = 0$

イロト イポト イヨト イヨト 二日

How to find Eigenvalues

To find eigenvalues we want to solve $Ax = \lambda x$ for λ . $Ax = \lambda x$ $Ax - \lambda x = 0$ $(A - \lambda I_n)x = 0$

For the above to have more than just a trivial solution, $(A - \lambda I_n)$ must be singular.

イロト イポト イヨト イヨト 二日

How to find Eigenvalues

To find eigenvalues we want to solve $Ax = \lambda x$ for λ . $Ax = \lambda x$ $Ax - \lambda x = 0$ $(A - \lambda I_n)x = 0$

For the above to have more than just a trivial solution, $(A - \lambda I_n)$ must be singular.

Hence, we solve the polynomial equation $det(A - \lambda I_n) = 0$ called the **characteristic equation**.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろのぐ

Finding Eigenvectors

For each eigenvalue λ , solve the linear system $(A - \lambda I_n)x = 0$ to find the eigenvectors.

イロト イポト イヨト イヨト 二日

Today's Goals

- Be able to diagonalize matrices.
- Be able to use diagonalization to compute high powers of matrices.

Image: Image:

Diagonalizability

Definition

An $n \times n$ matrix A is **diagonalizable** if there exists an $n \times n$ invertible matrix P and an $n \times n$ diagonal matrix D such that $P^{-1}AP = D$.

When A is diagnolizable, the columns of P are the eigenvectors of A and the diagonal entries of D are the corresponding eigenvalues.

A B M A B M

Diagonalizability

Definition

An $n \times n$ matrix A is **diagonalizable** if there exists an $n \times n$ invertible matrix P and an $n \times n$ diagonal matrix D such that $P^{-1}AP = D$.

When A is diagnolizable, the columns of P are the eigenvectors of A and the diagonal entries of D are the corresponding eigenvalues.

Example: Verify that the following matrix is diagonalizable.

$$\left(\begin{array}{rrr}
2 & 3 \\
1 & 4
\end{array}\right)$$

A B M A B M

Diagonalizability Theorems

Theorem

A $n \times n$ matrix is diagonalizable if and only if it has n linearly independent eigenvectors.

Theorem

If an $n \times n$ matrix has n distinct eigenvalues, then it is diagonalizable.

∃ ► < ∃ ►</p>

Diagonalizability Theorems

Theorem

A $n \times n$ matrix is diagonalizable if and only if it has n linearly independent eigenvectors.

Theorem

If an $n \times n$ matrix has n distinct eigenvalues, then it is diagonalizable.

Note:Not all diagonalizable matrices have *n* distinct eigenvalues.

(B)