Math 240: Diagonalization and Eigenvalues

Ryan Blair

University of Pennsylvania

Tuesday February 8, 2011

Ryan Blair (U Penn)

Math 240: More Diagonalization and Eigenva Tuesday February 8, 2011

1/9

<ロ> (日) (日) (日) (日) (日)

E

590

- Have a deeper understanding of eigenvalues.
- Be able to diagonalize matrices.
- Be able to use diagonalization to compute high powers of matrices.

How to find Eigenvalues

To find eigenvalues we want to solve $Ax = \lambda x$ for λ . $Ax = \lambda x$ $Ax - \lambda x = 0$ $(A - \lambda I_n)x = 0$

イロト イポト イヨト イヨト 二日

To find eigenvalues we want to solve $Ax = \lambda x$ for λ . $Ax = \lambda x$ $Ax - \lambda x = 0$ $(A - \lambda I_n)x = 0$

For the above to have more than just a trivial solution, $(A - \lambda I_n)$ must be singular.

To find eigenvalues we want to solve $Ax = \lambda x$ for λ . $Ax = \lambda x$ $Ax - \lambda x = 0$ $(A - \lambda I_n)x = 0$

For the above to have more than just a trivial solution, $(A - \lambda I_n)$ must be singular.

Hence, to find the eigenvalues, we solve the polynomial equation $det(A - \lambda I_n) = 0$ called the **characteristic** equation.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◆ ○ ◆

From last time, we saw the following matrix is rotation by angle θ about the origin in \mathbb{R}^2 .

 $\left(\begin{array}{c} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{array}
ight)$

From last time, we saw the following matrix is rotation by angle θ about the origin in \mathbb{R}^2 .

$$\begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

Example: Show algebraically that rotation by $\frac{\pi}{4}$ has no eigenvalues

- A matrix may have no eigenvaules (We don't count non-real eigenvalues)
- A matrix may have multiple eigenvectors for a single eigenvalue.
- A $n \times n$ matrix may not have n linearly independent eigenvectors.

Diagonalizability

Definition

An $n \times n$ matrix A is **diagonalizable** if there exists an $n \times n$ invertible matrix P and an $n \times n$ diagonal matrix D such that $P^{-1}AP = D$.

When A is diagnolizable, the columns of P are the eigenvectors of A and the diagonal entries of D are the corresponding eigenvalues.

3 × 4 3 ×

Diagonalizability

Definition

An $n \times n$ matrix A is **diagonalizable** if there exists an $n \times n$ invertible matrix P and an $n \times n$ diagonal matrix D such that $P^{-1}AP = D$.

When A is diagnolizable, the columns of P are the eigenvectors of A and the diagonal entries of D are the corresponding eigenvalues.

Example: Find an invertible matrix P and a diagonal matrix D so that $P^{-1}AP = D$.

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 3 \\ 0 & 0 & 2 \end{pmatrix}$$

7 / 9

Diagonalizability Theorems

Theorem

A $n \times n$ matrix is diagonalizable if and only if it has n linearly independent eigenvectors.

Theorem

If an $n \times n$ matrix has n distinct eigenvalues, then it is diagonalizable.

- 4 ⊒ →

Diagonalizability Theorems

Theorem

A $n \times n$ matrix is diagonalizable if and only if it has n linearly independent eigenvectors.

Theorem

If an $n \times n$ matrix has n distinct eigenvalues, then it is diagonalizable.

Note:Not all diagonalizable matrices have *n* distinct eigenvalues.

∃ ► < ∃ ►</p>

Using Diagonalization to Find Powers

If a matrix is diagonalizable, there is a very fast way to compute its powers.

Image: A matrix and a matrix

Using Diagonalization to Find Powers

If a matrix is diagonalizable, there is a very fast way to compute its powers.

If A is diagonalizable, then

$$A^n = (PDP^{-1})^n = PD^nP^{-1}$$

Using Diagonalization to Find Powers

If a matrix is diagonalizable, there is a very fast way to compute its powers.

If A is diagonalizable, then

$$A^n = (PDP^{-1})^n = PD^nP^{-1}$$

Example: Given

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 3 \\ 0 & 0 & 2 \end{pmatrix}$$
compute A^8 .