Math 240: Line Integrals

Ryan Blair
University of Pennsylvania

Thursday March 15, 2011

Outline

(1) Review

(2) Today's Goals
(3) Line Integrals
4) Path Independence

Review of Last Time

(1) Reviewed vector valued functions.
(2) Reviewed del, grad, curl and div.

An Example

Question Let $f(x, y, z)=z x-x y^{2}$. At the point ($1,1,1$), find the angle between the vector pointing in the direction of fastest increase of $f(x, y, z)$ and the x-axis.

Today's Goals

(1) Be able to parameterize curves in 2D and 3D.
(2) Be able to evaluate line integrals.
(3) Understand and apply the tests for path independence.
(3) Use path independence to evaluate difficult line integrals.

Intuition of line integrals in the plane

Suppose we want to build a fence along a curve C in the plane.

Intuition of line integrals in the plane

Suppose we want to build a fence along a curve C in the plane.
Additionally, suppose the height of the fence at any point (x, y) is dictated by the function $G(x, y)$.

Intuition of line integrals in the plane

Suppose we want to build a fence along a curve C in the plane.
Additionally, suppose the height of the fence at any point (x, y) is dictated by the function $G(x, y)$.

Then the total area of the fence is given by

$$
\int_{C} G(x, y) d s
$$

where we are integrating with respect to the arc length of C.

Line Integrals in 2D

If $\mathrm{G}(\mathrm{x}, \mathrm{y})$ is a scalar valued function and C is a smooth curve in the plane defined by the parametric equations $x=f(t)$ and $y=g(t)$ where $a \leq t \leq b$ then we can define the following line integrals

Line Integrals in 2D

If $\mathrm{G}(\mathrm{x}, \mathrm{y})$ is a scalar valued function and C is a smooth curve in the plane defined by the parametric equations $x=f(t)$ and $y=g(t)$ where $a \leq t \leq b$ then we can define the following line integrals
(1) $\int_{C} G(x, y) d s=\int_{a}^{b} G(f(t), g(t)) \sqrt{\left(f^{\prime}(t)\right)^{2}+\left(g^{\prime}(t)\right)^{2}} d t$

Line Integrals in 2D

If $\mathrm{G}(\mathrm{x}, \mathrm{y})$ is a scalar valued function and C is a smooth curve in the plane defined by the parametric equations $x=f(t)$ and $y=g(t)$ where $a \leq t \leq b$ then we can define the following line integrals
(1) $\int_{C} G(x, y) d s=\int_{a}^{b} G(f(t), g(t)) \sqrt{\left(f^{\prime}(t)\right)^{2}+\left(g^{\prime}(t)\right)^{2}} d t$
(2) $\int_{C} G(x, y) d x=\int_{a}^{b} G(f(t), g(t)) f^{\prime}(t) d t$

Line Integrals in 2D

If $\mathrm{G}(\mathrm{x}, \mathrm{y})$ is a scalar valued function and C is a smooth curve in the plane defined by the parametric equations $x=f(t)$ and $y=g(t)$ where $a \leq t \leq b$ then we can define the following line integrals
(1) $\int_{C} G(x, y) d s=\int_{a}^{b} G(f(t), g(t)) \sqrt{\left(f^{\prime}(t)\right)^{2}+\left(g^{\prime}(t)\right)^{2}} d t$
(2) $\int_{C} G(x, y) d x=\int_{a}^{b} G(f(t), g(t)) f^{\prime}(t) d t$
(3) $\int_{C} G(x, y) d y=\int_{a}^{b} G(f(t), g(t)) g^{\prime}(t) d t$

Line Integrals in 3D

If $G(x, y, z)$ is a scalar valued function and C is a smooth curve in 3-space defined by the parametric equations $x=f(t), y=g(t)$ and $z=h(t)$ where $a \leq t \leq b$ then we can define the following line integrals

Line Integrals in 3D

If $G(x, y, z)$ is a scalar valued function and C is a smooth curve in 3-space defined by the parametric equations $x=f(t), y=g(t)$ and $z=h(t)$ where $a \leq t \leq b$ then we can define the following line integrals
(1) $\int_{C} G(x, y, z) d s=$

$$
\int_{a}^{b} G(f(t), g(t), h(t)) \sqrt{\left(f^{\prime}(t)\right)^{2}+\left(g^{\prime}(t)\right)^{2}+\left(h^{\prime}(t)\right)^{2}} d t
$$

Line Integrals in 3D

If $G(x, y, z)$ is a scalar valued function and C is a smooth curve in 3-space defined by the parametric equations $x=f(t), y=g(t)$ and $z=h(t)$ where $a \leq t \leq b$ then we can define the following line integrals
(1) $\int_{C} G(x, y, z) d s=$

$$
\int_{a}^{b} G(f(t), g(t), h(t)) \sqrt{\left(f^{\prime}(t)\right)^{2}+\left(g^{\prime}(t)\right)^{2}+\left(h^{\prime}(t)\right)^{2}} d t
$$

(2) $\int_{C} G(x, y, z) d x=\int_{a}^{b} G(f(t), g(t), h(t)) f^{\prime}(t) d t$
(3) $\int_{C} G(x, y, z) d y=\int_{a}^{b} G(f(t), g(t), h(t)) g^{\prime}(t) d t$
(9) $\int_{C} G(x, y, z) d z=\int_{a}^{b} G(f(t), g(t), h(t)) h^{\prime}(t) d t$

Exact differentials and The Fundamental Theorem of Line Integrals

Definition

The differential of a function of two variables $\phi(x, y)$ is

$$
d \phi=\frac{\partial \phi}{\partial x} d x+\frac{\partial \phi}{\partial y} d y
$$

$P(x, y) d x+Q(x, y) d y$ is an exact differential if there exists a function $\phi(x, y)$ such that

$$
d \phi=P(x, y) d x+Q(x, y) d y
$$

The Fundamental Theorem of Line Integrals

Theorem

(Fundamental theorem of Line integrals) Suppose there exists a function $\phi(x, y)$ such that $d \phi=P(x, y) d x+Q(x, y) d y$. Then

$$
\int P d x+Q d y=\phi(B)-\phi(A)
$$

Test for path independence in 2D

Theorem

Let P and Q have continuous first partial derivatives in an open simply connected region. Then $\int_{C} P d x+Q d y$ is independent of path C if and only if

$$
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}
$$

for all (x, y) in the region.

Test for path independence in 3D

Theorem
Let P, Q and R have continuous first partial derivatives in an open simply connected region of space. Then $\int_{C} P d x+Q d y+R d z$ is independent of path C if and only if

$$
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}, \quad \frac{\partial P}{\partial z}=\frac{\partial R}{\partial x}, \quad \text { and } \frac{\partial Q}{\partial z}=\frac{\partial R}{\partial y}
$$

for all (x, y, z) in the region.

