Math 240: Vector Calc. Review

Ryan Blair

University of Pennsylvania
Thursday March 3, 2011

Outline

(1) Review

(2) Today's Goals
(3) Vector-Valued Functions
(4) Del, Div, Curl, Grad

Review for Last Time

(1) Learned how to model spring/mass systems with damped motion.
(2) Learned how to model spring/mass systems with driven motion.

Spring/Mass Example

Suppose 16 N of force stretches a spring 1 meter from equilibrium. If a mass of 4 kg is attached to the spring and subjected to a driving force given by $f(t)=\cos (t)$, then find the equation that models the position of the system in the absence of a damping force.

Today's Goals

(1) Review vector valued functions.
(2) Review del, grad, curl and div.
(0) Review line integrals.

Vector-Valued Functions

Definition

Vectors whose components are functions of a parameter t are called vector-valued functions.

$$
\begin{gathered}
r(t)=<f(t), g(t)>=f(t) \mathbf{i}+g(t) \mathbf{j} \\
r(t)=<f(t), g(t), h(t)>=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{i}
\end{gathered}
$$

Vector-Valued Functions

Definition

Vectors whose components are functions of a parameter t are called vector-valued functions.

$$
\begin{gathered}
r(t)=<f(t), g(t)>=f(t) \mathbf{i}+g(t) \mathbf{j} \\
r(t)=<f(t), g(t), h(t)>=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{i}
\end{gathered}
$$

Example: $r(t)=<\cos (t), \sin (t), t>$

Vector-Valued Functions

Definition

Vectors whose components are functions of a parameter t are called vector-valued functions.

$$
\begin{gathered}
r(t)=<f(t), g(t)>=f(t) \mathbf{i}+g(t) \mathbf{j} \\
r(t)=<f(t), g(t), h(t)>=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{i}
\end{gathered}
$$

Example: $r(t)=<\cos (t), \sin (t), t>$ Important: These are the parameterized curves we will integrate along

Derivative of a Vector-Valued Function

Definition

If $r(t)=<f(t), g(t), h(t)>$ where f, g, and h are differentiable, then

$$
r^{\prime}(t)=<f^{\prime}(t), g^{\prime}(t), h^{\prime}(t)>
$$

Derivative of a Vector-Valued Function

Definition

If $r(t)=<f(t), g(t), h(t)>$ where f, g, and h are differentiable, then

$$
r^{\prime}(t)=<f^{\prime}(t), g^{\prime}(t), h^{\prime}(t)>
$$

Theorem

(Chain Rule) If \mathbf{r} is a differentiable vector function and $s=u(t)$ is a differentiable scalar function, then

$$
\frac{d \mathbf{r}}{d t}=\frac{d \mathbf{s}}{d s} \frac{d s}{d t}=\mathbf{r}^{\prime}(s) u^{\prime}(t) .
$$

Integrating Vector-Valued Functions

Theorem

 If f, g and h are integrable and $r(t)=<f(t), g(t), h(t)>$, then$$
\begin{aligned}
\int \mathbf{r}(t) d t & =<\int f(t) d t, \int g(t) d t, \int h(t) d t> \\
\int_{a}^{b} \mathbf{r}(t) d t & =<\int_{a}^{b} f(t) d t, \int_{a}^{b} g(t) d t, \int_{a}^{b} h(t) d t>
\end{aligned}
$$

Del and Grad

The differential operator del is given by

$$
\nabla=\frac{\partial}{\partial x} \mathbf{i}+\frac{\partial}{\partial y} \mathbf{j}+\frac{\partial}{\partial z} \mathbf{k}
$$

Del and Grad

The differential operator del is given by

$$
\nabla=\frac{\partial}{\partial x} \mathbf{i}+\frac{\partial}{\partial y} \mathbf{j}+\frac{\partial}{\partial z} \mathbf{k}
$$

Given a scalar function $f(x, y, z)$ we can form the gradient of \mathbf{f} using del.

$$
\operatorname{grad}(f)=\nabla f=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}+\frac{\partial f}{\partial z} \mathbf{k}
$$

Del and Grad

The differential operator del is given by

$$
\nabla=\frac{\partial}{\partial x} \mathbf{i}+\frac{\partial}{\partial y} \mathbf{j}+\frac{\partial}{\partial z} \mathbf{k}
$$

Given a scalar function $f(x, y, z)$ we can form the gradient of \mathbf{f} using del.

$$
\operatorname{grad}(f)=\nabla f=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}+\frac{\partial f}{\partial z} \mathbf{k}
$$

∇f points in the direction of greatest change of f.

Del and Grad

The differential operator del is given by

$$
\nabla=\frac{\partial}{\partial x} \mathbf{i}+\frac{\partial}{\partial y} \mathbf{j}+\frac{\partial}{\partial z} \mathbf{k}
$$

Given a scalar function $f(x, y, z)$ we can form the gradient of \mathbf{f} using del.

$$
\operatorname{grad}(f)=\nabla f=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}+\frac{\partial f}{\partial z} \mathbf{k}
$$

∇f points in the direction of greatest change of f. Example: Guess the gradient of $f(x, y, z)=x y z$ at $(1,1,1)$ by interpreting the function as volume of a box.

Div and Curl

Definition

The curl of a vector field $F=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$ is the vector field

$$
\operatorname{curl}(F)=\nabla \times F=\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right) \mathbf{i}+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right) \mathbf{j}+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathbf{k}
$$

Div and Curl

Definition

The curl of a vector field $F=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$ is the vector field

$$
\operatorname{curl}(F)=\nabla \times F=\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right) \mathbf{i}+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right) \mathbf{j}+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathbf{k}
$$

Definition

The divergence of a vector field $F=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$ is given by the scalar function

$$
\operatorname{div}(F)=\nabla \dot{F}=\frac{\partial P}{\partial x} \mathbf{i}+\frac{\partial Q}{\partial y} \mathbf{j}+\frac{\partial R}{\partial z} \mathbf{k}
$$

Div and Curl

Definition

The curl of a vector field $F=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$ is the vector field

$$
\operatorname{curl}(F)=\nabla \times F=\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right) \mathbf{i}+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right) \mathbf{j}+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathbf{k}
$$

Definition

The divergence of a vector field $F=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$ is given by the scalar function

$$
\operatorname{div}(F)=\nabla \dot{F}=\frac{\partial P}{\partial x} \mathbf{i}+\frac{\partial Q}{\partial y} \mathbf{j}+\frac{\partial R}{\partial z} \mathbf{k}
$$

Curl measures the tendency of a vector field to rotate. Divergence measures the tendency of a vector field to expand or contract,

Compositions

It is important to note
(1) $\operatorname{grad}($ scalar function $)=$ vector field
(3) $\operatorname{div}($ vector field $)=$ scalar function
(0) curl(vector field) $=$ vector field

Line Integrals in 2D

If $\mathrm{G}(\mathrm{x}, \mathrm{y})$ is a scalar valued function and C is a smooth curve in the plane defined by the parametric equations $x=f(t)$ and $y=g(t)$ where $a \leq t \leq b$ then we can define the following line integrals
(1) $\int_{C} G(x, y) d x=\int_{a}^{b} G(f(t), g(t)) f^{\prime}(t) d t$
(2) $\int_{C} G(x, y) d y=\int_{a}^{b} G(f(t), g(t)) g^{\prime}(t) d t$
(3) $\int_{C} G(x, y) d s=\int_{a}^{b} G(f(t), g(t)) \sqrt{\left(f^{\prime}(t)\right)^{2}+\left(g^{\prime}(t)\right)^{2}} d t$

Line Integrals in 3D

If $G(x, y, z)$ is a scalar valued function and C is a smooth curve in 3-space defined by the parametric equations $x=f(t), y=g(t)$ and $z=h(t)$ where $a \leq t \leq b$ then we can define the following line integrals
(1) $\int_{C} G(x, y, z) d x=\int_{a}^{b} G(f(t), g(t), h(t)) f^{\prime}(t) d t$
(2) $\int_{C} G(x, y, z) d y=\int_{a}^{b} G(f(t), g(t), h(t)) g^{\prime}(t) d t$
(3) $\int_{C} G(x, y, z) d z=\int_{a}^{b} G(f(t), g(t), h(t)) h^{\prime}(t) d t$
(9) $\int_{C} G(x, y, z) d s=$

$$
\int_{a}^{b} G(f(t), g(t), h(t)) \sqrt{\left(f^{\prime}(t)\right)^{2}+\left(g^{\prime}(t)\right)^{2}+\left(h^{\prime}(t)\right)^{2}} d t
$$

