# Math 240: Phase Portraits 

Ryan Blair

University of Pennsylvania
Tuesday April 12, 2011

## Outline

(1) Review

(2) Today's Goals

(3) Distinct Eigenvalues

## Review of Last Time

(1) Learned how to solve constant coefficient systems.

## Solutions to 2 by 2 systems

General Solution 2 by 2 System with Distinct Real Eigenvalues $\lambda_{1}$ and $\lambda_{2}$ :

$$
\mathbf{X}=c_{1} \mathbf{K}_{1} e^{\lambda_{1} t}+c_{2} \mathbf{K}_{2} e^{\lambda_{2} t}
$$

## Solutions to 2 by 2 systems

General Solution 2 by 2 System with Distinct Real Eigenvalues $\lambda_{1}$ and $\lambda_{2}$ :

$$
\mathbf{X}=c_{1} \mathbf{K}_{1} e^{\lambda_{1} t}+c_{2} \mathbf{K}_{2} e^{\lambda_{2} t}
$$

General Solution 2 by 2 System with Repeated Real Eigenvalue $\lambda$ :

$$
c_{1} \mathbf{K} e^{\lambda t}+\left[\mathbf{K} t e^{\lambda t}+\mathbf{P} e^{\lambda t}\right]
$$

## Solutions to 2 by 2 systems

General Solution 2 by 2 System with Distinct Real Eigenvalues $\lambda_{1}$ and $\lambda_{2}$ :

$$
\mathbf{X}=c_{1} \mathbf{K}_{1} e^{\lambda_{1} t}+c_{2} \mathbf{K}_{2} e^{\lambda_{2} t}
$$

General Solution 2 by 2 System with Repeated Real Eigenvalue $\lambda$ :

$$
c_{1} \mathbf{K} e^{\lambda t}+\left[\mathbf{K} t e^{\lambda t}+\mathbf{P} e^{\lambda t}\right]
$$

General Solution 2 by 2 System with Complex Eigenvalue $\alpha+i \beta$ :

$$
\begin{aligned}
& c_{1}[\operatorname{Re}(\mathbf{K}) \cos (\beta t)-\operatorname{Im}(\mathbf{K}) \sin (\beta t)] e^{\alpha t} \\
& +c_{2}[\operatorname{Im}(\mathbf{K}) \cos (\beta t)+\operatorname{Re}(\mathbf{K}) \sin (\beta t)] e^{\alpha t}
\end{aligned}
$$

## Today's Goals

(1) Use phase portrait to develop intuition for systems.

## Guessing a Solution

A solution to a 2 by 2 initial value system gives a curve $r(t)=<x(t), y(t)>$ in the $x y$-plane (the Phase Plane).

## Guessing a Solution

A solution to a 2 by 2 initial value system gives a curve $r(t)=<x(t), y(t)>$ in the xy-plane (the Phase Plane).

These solution curves have tangent vectors given by the vector field $F=\frac{d x}{d t} \mathbf{i}+\frac{d y}{d t} \mathbf{j}$ (the Prase Portrait)

## Guessing a Solution

A solution to a 2 by 2 initial value system gives a curve $r(t)=<x(t), y(t)>$ in the xy-plane (the Phase Plane).

These solution curves have tangent vectors given by the vector field $F=\frac{d x}{d t} \mathbf{i}+\frac{d y}{d t} \mathbf{j}$ (the Prase Portrait)

We can gain qualitative and quantitative information about a system by looking at its Phase Portrait.

