Math 240: Solving Systems of DEs by Diagonalization

Ryan Blair
University of Pennsylvania

Thursday April 14, 2011

Outline

(1) Review

(2) Today's Goals

(3) Diagonalization and Systems

4 Review of Power Series

Review of Last Time

(1) Used phase portraits to make qualitative and quantitative statements about systems.

Solutions to 2 by 2 systems

(1) Two linear solutions in the phase plane implies two distinct real eigenvalues.
(2) One linear solution in the phase plane implies one repeated real eigenvalue.
(3) No linear solutions implies complex eigenvalues.

Today's Goals

(1) Use diagonalization to solve systems of linear DEs.
(2) Review power series.

Coupled and Uncoupled Systems

Definition

A system $\mathbf{X}^{\prime}=\mathbf{A X}$ is coupled if each x_{i}^{\prime} is expressed as a linear combination of x_{1}, \ldots, x_{i}.
If \mathbf{A} is diagnolizable, then the system can be uncoupled, in that each x_{i}^{\prime} can be expressed solely in terms of x_{i}.

Recall the following theorem from Linear Algebra

Theorem
If an $n \times n$ matrix A has n linearly independent eigenvectors, then A is diagnolizable.

Recall the following theorem from Linear Algebra

Theorem
If an $n \times n$ matrix A has n linearly independent eigenvectors, then A is diagnolizable.

Given a system $\mathbf{X}^{\prime}=\mathbf{A X}$. Suppose \mathbf{A} is diagnolizable(i.e. $\left.P^{-1} A P=D\right)$.

Recall the following theorem from Linear Algebra

Theorem
If an $n \times n$ matrix A has n linearly independent eigenvectors, then A is diagnolizable.

Given a system $\mathbf{X}^{\prime}=\mathbf{A X}$. Suppose \mathbf{A} is diagnolizable(i.e. $P^{-1} A P=D$).
If $\mathbf{X}=\mathbf{P Y}$ then

$$
\mathbf{X}=\mathbf{P}\left[\begin{array}{c}
c_{1} e^{\lambda_{1} t} \\
\vdots \\
c_{n} e^{\lambda_{n} t}
\end{array}\right]
$$

Review of Power Series

Definition

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\ldots
$$ is a power series centered at a.

Review of Power Series

Definition

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\ldots
$$

is a power series centered at a.

Definition

The radius of convergence is the largest R such that $\sum_{n=o}^{\infty} c_{n}(x-a)^{n}$ converges for all x such that $|x-a|<R$.

Finding the Radius of Convergence

Ratio Test

Let

$$
\lim _{n \rightarrow \infty}\left|\frac{c_{n+1}(x-a)^{n+1}}{c_{n}(x-a)^{n}}\right|=|x-a| \lim _{n \rightarrow \infty}\left|\frac{c_{n+1}}{c_{n}}\right|=L
$$

If $L<1$ the series converges. If $L>1$ the series diverges. If $L=1$ we don't know.

