Math 240: Power Series Solutions to D.E.s at Singular Points

Ryan Blair
University of Pennsylvania

Thursday April 21, 2011

Outline

(1) Review

(2) Today's Goals

2 Lectures Left!

Review of Last Time

(1) Found power series solutions to D.E.s at ordinary points.

Solving D.E.s Using Power Series

Given the differential equation $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$, substitute

$$
y=\sum_{n}^{\infty} c_{n}(x-a)^{n}
$$

and solve for the c_{n} to find a power series solution centered at a.

Solving D.E.s Using Power Series

Given the differential equation $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$, substitute

$$
y=\sum_{n}^{\infty} c_{n}(x-a)^{n}
$$

and solve for the c_{n} to find a power series solution centered at a. Solve the following D.E.

$$
y^{\prime \prime}-2 x y^{\prime}+y=0
$$

Today's Goals

(1) Find power series solutions to D.E.s at singular points.

Given a differential equation $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$

Definition

A point x_{0} is an ordinary point if both $P(x)$ and $Q(x)$ are analytic at x_{0}. If a point in not ordinary it is a singular point.

Given a differential equation $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$

Definition

A point x_{0} is an ordinary point if both $P(x)$ and $Q(x)$ are analytic at x_{0}. If a point in not ordinary it is a singular point.

Definition

A point x_{0} is a regular singular point if the functions $\left(x-x_{0}\right) P(x)$ and $\left(x-x_{0}\right)^{2} Q(x)$ are both analytic at x_{0}. Otherwise x_{0} is irregular.

Theorem

(Frobenius' Theorem)
If x_{0} is a regular singular point of $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$, then there exists a solution of the form

$$
y=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n+r}
$$

where r is some constant to be determined and the power series converges on a non-empty open interval containing x_{0}

Theorem

(Frobenius' Theorem)
If x_{0} is a regular singular point of $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$, then there exists a solution of the form

$$
y=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n+r}
$$

where r is some constant to be determined and the power series converges on a non-empty open interval containing x_{0}

To solve $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$ at a regular singular point x_{0}, substitute

$$
y=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n+r}
$$

and solve for r and the c_{n} to find a series solution centered at x_{0}.

