Math 240: Power Series Solutions to D.E.s at Singular Points

Ryan Blair

University of Pennsylvania

Thursday April 21, 2011

Ryan Blair (U Penn)

Math 240: Power Series Solutions to D.E.s at

Thursday April 21, 2011

1/8

Ryan Blair (U Penn)

Math 240: Power Series Solutions to D.E.s at

Thursday April 21, 2011

<ロ> (日) (日) (日) (日) (日)

୬୯୯ 2/8

E

2 Lectures Left!

Ryan Blair (U Penn)

Math 240: Power Series Solutions to D.E.s at

Thursday April 21, 2011

イロト イポト イヨト イヨト

୬ < (ବ 3 / 8

э

Review

• Found power series solutions to D.E.s at ordinary points.

Ryan Blair (U Penn)

Math 240: Power Series Solutions to D.E.s at 7

Thursday April 21, 2011

-

3

4 / 8

Solving D.E.s Using Power Series

Given the differential equation y'' + P(x)y' + Q(x)y = 0, substitute

$$y=\sum_{n}^{\infty}c_{n}(x-a)^{n}$$

and solve for the c_n to find a power series solution centered at a.

イロト 不得下 イヨト イヨト 二日

Solving D.E.s Using Power Series

Given the differential equation y'' + P(x)y' + Q(x)y = 0, substitute

$$y=\sum_{n}^{\infty}c_{n}(x-a)^{n}$$

and solve for the c_n to find a power series solution centered at a. Solve the following D.E.

$$y''-2xy'+y=0$$

ヘロト 不得 ト イヨト イヨト 二日

• Find power series solutions to D.E.s at singular points.

3

→ Ξ →

Image: A math a math

Given a differential equation y'' + P(x)y' + Q(x)y = 0

Definition

A point x_0 is an **ordinary point** if both P(x) and Q(x) are analytic at x_0 . If a point in not ordinary it is a **singular point**.

Given a differential equation y'' + P(x)y' + Q(x)y = 0

Definition

A point x_0 is an **ordinary point** if both P(x) and Q(x) are analytic at x_0 . If a point in not ordinary it is a **singular point**.

Definition

A point x_0 is a **regular singular point** if the functions $(x - x_0)P(x)$ and $(x - x_0)^2Q(x)$ are both analytic at x_0 . Otherwise x_0 is irregular.

Theorem

(Frobenius' Theorem)

Ryan Blair (U Penn)

If x_0 is a regular singular point of y'' + P(x)y' + Q(x)y = 0, then there exists a solution of the form

$$y = \sum_{n=0}^{\infty} c_n (x - x_0)^{n+r}$$

where r is some constant to be determined and the power series converges on a non-empty open interval containing x_0

8 / 8

프 문 문 프 문

Theorem

(Frobenius' Theorem)

If x_0 is a regular singular point of y'' + P(x)y' + Q(x)y = 0, then there exists a solution of the form

$$y = \sum_{n=0}^{\infty} c_n (x - x_0)^{n+r}$$

where r is some constant to be determined and the power series converges on a non-empty open interval containing x_0

To solve y'' + P(x)y' + Q(x)y = 0 at a regular singular point x_0 , substitute

$$y = \sum_{n=0}^{\infty} c_n (x - x_0)^{n+r}$$

and solve for r and the c_n to find a series solution centered at x_{0} .

Ryan Blair (U Penn)

Sar