Math 240: More Power Series Solutions to D.E.s at Singular Points

Ryan Blair
University of Pennsylvania
Tuesday April 26, 2011

Outline

(1) Review

(2) The Exceptional cases of the Frobenius' Theorem

Last Lecture!

Review of Last Time

(1) Found power series solutions to D.E.s at regular singular points.

Given a differential equation $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$

Definition

A point x_{0} is an ordinary point if both $P(x)$ and $Q(x)$ are analytic at x_{0}. If a point in not ordinary it is a singular point.

Given a differential equation $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$

Definition

A point x_{0} is an ordinary point if both $P(x)$ and $Q(x)$ are analytic at x_{0}. If a point in not ordinary it is a singular point.

Definition

A point x_{0} is a regular singular point if the functions $\left(x-x_{0}\right) P(x)$ and $\left(x-x_{0}\right)^{2} Q(x)$ are both analytic at x_{0}. Otherwise x_{0} is irregular.

Theorem

(Frobenius' Theorem)
If x_{0} is a regular singular point of $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$, then there exists a solution of the form

$$
y=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n+r}
$$

where r is some constant to be determined and the power series converges on a non-empty open interval containing x_{0}

Theorem

(Frobenius' Theorem)
If x_{0} is a regular singular point of $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$, then there exists a solution of the form

$$
y=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n+r}
$$

where r is some constant to be determined and the power series converges on a non-empty open interval containing x_{0}

To solve $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$ at a regular singular point x_{0}, substitute

$$
y=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n+r}
$$

and solve for r and the c_{n} to find a series solution centered at x_{0}

Today's Goals

(1) Deal with exceptional cases of finding power series solutions to D.E.s at regular singular points.

Indicial Roots

To find the r in $y=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n+r}$ we substitute the series into $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$ and equate the total coefficient of the lowest power of x to zero. This will be a quadratic equation in r.

Indicial Roots

To find the r in $y=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n+r}$ we substitute the series into $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$ and equate the total coefficient of the lowest power of x to zero. This will be a quadratic equation in r.

The roots, r_{1} and r_{2}, we get are the indicial roots of $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$

Cases

Case 1: If r_{1} and r_{2} are distinct and do not differ by an integer, then we get two linearly independent solutions

$$
y_{1}=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n+r_{1}} \text { and } y_{2}=\sum_{n=0}^{\infty} b_{n}\left(x-x_{0}\right)^{n+r_{2}}
$$

Cases

Case 1: If r_{1} and r_{2} are distinct and do not differ by an integer, then we get two linearly independent solutions

$$
y_{1}=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n+r_{1}} \text { and } y_{2}=\sum_{n=0}^{\infty} b_{n}\left(x-x_{0}\right)^{n+r_{2}}
$$

Case 2: In all other cases we get two linearly independent solutions of the form

$$
y_{1}=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n+r_{1}} \text { and } y_{2}=C y_{1}(x) \ln (x)+\sum_{n=0}^{\infty} b_{n}\left(x-x_{0}\right)^{n+r_{2}}
$$

