Math 240: More Power Series Solutions to D.E.s at **Singular Points**

Ryan Blair

University of Pennsylvania

Tuesday April 26, 2011

nac

3

2 The Exceptional cases of the Frobenius' Theorem

Ryan Blair (U Penn)

Math 240: More Power Series Solutions to D.

Tuesday April 26, 2011 2 / 9

1

イロト イポト イヨト イヨト

Last Lecture!

Ryan Blair (U Penn)

Math 240: More Power Series Solutions to D.

Tuesday April 26, 2011

イロト イポト イヨト イヨト

୬ < ୯ 3 / ୨

Э

Review

• Found power series solutions to D.E.s at regular singular points.

3

-

Given a differential equation y'' + P(x)y' + Q(x)y = 0

Definition

A point x_0 is an **ordinary point** if both P(x) and Q(x) are analytic at x_0 . If a point in not ordinary it is a **singular point**.

Given a differential equation y'' + P(x)y' + Q(x)y = 0

Definition

A point x_0 is an **ordinary point** if both P(x) and Q(x) are analytic at x_0 . If a point in not ordinary it is a **singular point**.

Definition

A point x_0 is a **regular singular point** if the functions $(x - x_0)P(x)$ and $(x - x_0)^2Q(x)$ are both analytic at x_0 . Otherwise x_0 is irregular.

Review

Theorem

(Frobenius' Theorem)

If x_0 is a regular singular point of y'' + P(x)y' + Q(x)y = 0, then there exists a solution of the form

$$y = \sum_{n=0}^{\infty} c_n (x - x_0)^{n+r}$$

where r is some constant to be determined and the power series converges on a non-empty open interval containing x_0

→ Ξ ► → Ξ ►

Review

Theorem

(Frobenius' Theorem)

If x_0 is a regular singular point of y'' + P(x)y' + Q(x)y = 0, then there exists a solution of the form

$$y = \sum_{n=0}^{\infty} c_n (x - x_0)^{n+r}$$

where r is some constant to be determined and the power series converges on a non-empty open interval containing x_0

To solve y'' + P(x)y' + Q(x)y = 0 at a regular singular point x_0 , substitute

$$y = \sum_{n=0}^{\infty} c_n (x - x_0)^{n+r}$$

and solve for r and the c_n to find a series solution centered at x_{0} .

Ryan Blair (U Penn)

Sar

Today's Goals

 Deal with exceptional cases of finding power series solutions to D.E.s at regular singular points.

3 N 3

7/9

Indicial Roots

Ryan Blair (U Penn)

To find the r in $y = \sum_{n=0}^{\infty} c_n (x - x_0)^{n+r}$ we substitute the series into y'' + P(x)y' + Q(x)y = 0 and equate the total coefficient of the lowest power of x to zero. This will be a quadratic equation in r.

ヘロト 不得下 不良下 不良下 一日

Indicial Roots

To find the r in $y = \sum_{n=0}^{\infty} c_n (x - x_0)^{n+r}$ we substitute the series into y'' + P(x)y' + Q(x)y = 0 and equate the total coefficient of the lowest power of x to zero. This will be a quadratic equation in r.

The roots, r_1 and r_2 , we get are the **indicial roots** of $\mathbf{v}'' + P(\mathbf{x})\mathbf{v}' + Q(\mathbf{x})\mathbf{v} = \mathbf{0}$

8 / 9

Cases

Ryan Blair (U Penn)

Case 1: If r_1 and r_2 are distinct and do not differ by an integer, then we get two linearly independent solutions

$$y_1 = \sum_{n=0}^{\infty} c_n (x - x_0)^{n+r_1}$$
 and $y_2 = \sum_{n=0}^{\infty} b_n (x - x_0)^{n+r_2}$

イロト 不得下 イヨト イヨト

9/9

3

Cases

Case 1: If r_1 and r_2 are distinct and do not differ by an integer, then we get two linearly independent solutions

$$y_1 = \sum_{n=0}^{\infty} c_n (x - x_0)^{n+r_1}$$
 and $y_2 = \sum_{n=0}^{\infty} b_n (x - x_0)^{n+r_2}$

Case 2: In all other cases we get two linearly independent solutions of the form

$$y_1 = \sum_{n=0}^{\infty} c_n (x - x_0)^{n+r_1}$$
 and $y_2 = Cy_1(x) ln(x) + \sum_{n=0}^{\infty} b_n (x - x_0)^{n+r_2}$

イロト 不得下 イヨト イヨト