Math 240: Systems of Linear Differential Equations

Ryan Blair

University of Pennsylvania

Tuesday April 5, 2011

Ryan Blair (U Penn)

Math 240: Systems of Linear Differential Equ

Tuesday April 5, 2011

1 / 13

3

Outline

3 Linear Systems

Ryan Blair (U Penn)

Math 240: Systems of Linear Differential Equ

 $\exists \rightarrow$ Tuesday April 5, 2011 2 / 13

1

.

< 口 > < 同

Review of Last Time

Divergence Theorem

- Outlined the proof of the divergence theorem.
- Q Learned when and how to apply the divergence theorem.

∃ → ∃

Divergence Theorem

Theorem

Let D be a **nice** region in 3-space with **nice** boundary S oriented outward. Let F be a **nice** vector field. Then

$$\int \int_{S} (F \circ \mathbf{n}) dS = \int \int \int_{D} div(F) dV$$

where \mathbf{n} is the unit normal vector to S.

ヨト

Combine linear algebra and differential equations to study systems of differential equations.

- Define systems of differential equations
- **2** Develop the notion of Linear Independence.
- Overlaps between the second second

An Example of a System of D.E.s

The dynamics of predictor and prey populations are modeled by the Lotka-Volterra equations

$$\frac{dx}{dt} = x(a - by)$$
$$\frac{dy}{dt} = -y(c - dx)$$

Image: A mathematical states and a mathem

An Example of a System of D.E.s

The dynamics of predictor and prey populations are modeled by the Lotka-Volterra equations

$$\frac{dx}{dt} = x(a - by)$$
$$\frac{dy}{dt} = -y(c - dx)$$

Where x(t) is the population of prey at time t and y(t) is the population of predators at time t.

An Example of a System of D.E.s

The dynamics of predictor and prey populations are modeled by the Lotka-Volterra equations

$$\frac{dx}{dt} = x(a - by)$$
$$\frac{dy}{dt} = -y(c - dx)$$

Where x(t) is the population of prey at time t and y(t) is the population of predators at time t. This is a **non-linear** system

Linear systems

Definition

The following is a first order system

$$\frac{dx_1}{dt} = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n + f_1(t)$$

$$\frac{dx_2}{dt} = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n + f_2(t)$$

$$\vdots$$

$$\frac{dx_n}{dt} = a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n + f_n(t)$$
we is a function of t

Where each x_i is a function of t.

Ryan Blair (U Penn)

< 🗇

シへで 7 / 13 Linear Systems

Examples of First Order Systems

Ryan Blair (U Penn)

Every n-th order linear differential equation can be written as an $n \times n$ first order system.

E

Examples of First Order Systems

Every n-th order linear differential equation can be written as an $n \times n$ first order system. **Example** Write y'' - 3y' + 2y = 0 as a first order system.

イロト 不得下 イヨト イヨト 二日

Solutions

Definition

Given a system X' = AX + F a **solution vector** is an $n \times 1$ column matrix with differential functions as entries that satisfies the system.

Solutions

Definition

Given a system X' = AX + F a **solution vector** is an $n \times 1$ column matrix with differential functions as entries that satisfies the system.

Definition

The following is an **initial value problem** for a first order system X' = AX + F and $X(t_0) = X_0$

9 / 13

Solutions

Definition

Given a system X' = AX + F a **solution vector** is an $n \times 1$ column matrix with differential functions as entries that satisfies the system.

Definition

The following is an **initial value problem** for a first order system X' = AX + F and $X(t_0) = X_0$

Note: As long as everything in sight is continuous on an interval I containing t_0 , then there exists a unique solution to the above IVP.

- 4 同 1 - 4 回 1 - 4 回 1

Supperposition Principle

Theorem

(Supperposition Principle) Linear combinations of solution vectors are again solution vectors.

∃ → ∃

Supperposition Principle

Theorem

(Supperposition Principle) Linear combinations of solution vectors are again solution vectors.

Definition

Solution vectors $X_1, X_2, ..., X_k$ are **linearly independent** if

$$c_1X_1 + c_2X_2 + \ldots + c_nX_k = \mathbf{0}$$

implies $c_1 = c_2 = ... = c_n = 0$.

Ryan Blair (U Penn)

Tuesday April 5, 2011

・ロト ・ 戸 ・ ・ ヨ ト ・ ヨ ・ クタマ

10 / 13

General Solutions to Homogeneous Systems

Theorem

Let $X_1, ..., X_n$ be a linearly independent set of solutions to a $n \times n$ first order **homogeneous** linear system, then the general solution is

$$X = c_1 X_1 + c_2 X_2 + ... + c_n X_n$$

where the c_i are arbitrary constants.

General Solutions to Homogeneous Systems

Theorem

Let $X_1, ..., X_n$ be a linearly independent set of solutions to a $n \times n$ first order **homogeneous** linear system, then the general solution is

$$X = c_1 X_1 + c_2 X_2 + ... + c_n X_n$$

where the c_i are arbitrary constants.

Note: Assuming everything in sight is differentiable, general solutions always exist.

Solutions to Linear Systems

General Solutions to Non-homogeneous Systems

Theorem

Let X_p be a particular solution to a non-homogeneous first order linear system and X_h be the general solution to the associated homogeneous equation, then the **general solution** is given by

$$X = X_p + X_h$$

Ryan Blair (U Penn)

The Wronskian

Theorem

Let $X_1, X_2, ..., X_n$ be n solution vectors to a homogeneous system on an interval I. They are linearly independent if and only if their **Wronskian** is non-zero for every t in the interval.