Math 240: Systems of Linear Differential Equations

Ryan Blair
University of Pennsylvania
Tuesday April 5, 2011

Outline

(1) Review

(2) Today's Goals
(3) Linear Systems
4) Solutions to Linear Systems

Review of Last Time

Divergence Theorem
(1) Outlined the proof of the divergence theorem.
(2) Learned when and how to apply the divergence theorem.

Divergence Theorem

Theorem
Let D be a nice region in 3 -space with nice boundary S oriented outward. Let F be a nice vector field. Then

$$
\iint_{S}(F \circ \mathbf{n}) d S=\iiint_{D} \operatorname{div}(F) d V
$$

where \mathbf{n} is the unit normal vector to S.

Today's Goals

Combine linear algebra and differential equations to study systems of differential equations.
(1) Define systems of differential equations
(2) Develop the notion of Linear Independence.
(0) Develop the notion of General Solution.

An Example of a System of D.E.s

The dynamics of predictor and prey populations are modeled by the Lotka-Volterra equations

$$
\begin{aligned}
\frac{d x}{d t} & =x(a-b y) \\
\frac{d y}{d t} & =-y(c-d x)
\end{aligned}
$$

An Example of a System of D.E.s

The dynamics of predictor and prey populations are modeled by the Lotka-Volterra equations

$$
\begin{aligned}
\frac{d x}{d t} & =x(a-b y) \\
\frac{d y}{d t} & =-y(c-d x)
\end{aligned}
$$

Where $x(t)$ is the population of prey at time t and $y(t)$ is the population of predators at time t.

An Example of a System of D.E.s

The dynamics of predictor and prey populations are modeled by the Lotka-Volterra equations

$$
\begin{aligned}
\frac{d x}{d t} & =x(a-b y) \\
\frac{d y}{d t} & =-y(c-d x)
\end{aligned}
$$

Where $x(t)$ is the population of prey at time t and $y(t)$ is the population of predators at time t.
This is a non-linear system

Linear systems

Definition

The following is a first order system

$$
\begin{gathered}
\frac{d x_{1}}{d t}=a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}+f_{1}(t) \\
\frac{d x_{2}}{d t}=a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}+f_{2}(t) \\
\vdots \\
\frac{d x_{n}}{d t}=a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n n} x_{n}+f_{n}(t)
\end{gathered}
$$

Where each x_{i} is a function of t.

Examples of First Order Systems

Every n-th order linear differential equation can be written as an $n \times n$ first order system.

Examples of First Order Systems

Every n-th order linear differential equation can be written as an $n \times n$ first order system.
Example Write $y^{\prime \prime}-3 y^{\prime}+2 y=0$ as a first order system.

Solutions

Definition

Given a system $X^{\prime}=A X+F$ a solution vector is an $n \times 1$ column matrix with differential functions as entries that satisfies the system.

Solutions

Definition

Given a system $X^{\prime}=A X+F$ a solution vector is an $n \times 1$ column matrix with differential functions as entries that satisfies the system.

Definition

The following is an initial value problem for a first order system $X^{\prime}=A X+F$ and $X\left(t_{0}\right)=X_{0}$

Solutions

Definition

Given a system $X^{\prime}=A X+F$ a solution vector is an $n \times 1$ column matrix with differential functions as entries that satisfies the system.

Definition

The following is an initial value problem for a first order system $X^{\prime}=A X+F$ and $X\left(t_{0}\right)=X_{0}$

Note: As long as everything in sight is continuous on an interval / containing t_{0}, then there exists a unique solution to the above IVP.

Supperposition Principle

Theorem

(Supperposition Principle) Linear combinations of solution vectors are again solution vectors.

Supperposition Principle

Theorem

(Supperposition Principle) Linear combinations of solution vectors are again solution vectors.

Definition

Solution vectors $X_{1}, X_{2}, \ldots, X_{k}$ are linearly independent if

$$
c_{1} X_{1}+c_{2} X_{2}+\ldots+c_{n} X_{k}=\mathbf{0}
$$

implies $c_{1}=c_{2}=\ldots=c_{n}=0$.

General Solutions to Homogeneous Systems

Theorem
Let X_{1}, \ldots, X_{n} be a linearly independent set of solutions to a $n \times n$ first order homogeneous linear system, then the general solution is

$$
X=c_{1} X_{1}+c_{2} X_{2}+\ldots+c_{n} X_{n}
$$

where the c_{i} are arbitrary constants.

General Solutions to Homogeneous Systems

Theorem
Let X_{1}, \ldots, X_{n} be a linearly independent set of solutions to a $n \times n$ first order homogeneous linear system, then the general solution is

$$
X=c_{1} X_{1}+c_{2} X_{2}+\ldots+c_{n} X_{n}
$$

where the c_{i} are arbitrary constants.
Note: Assuming everything in sight is differentiable, general solutions always exist.

General Solutions to Non-homogeneous Systems

Theorem

Let X_{p} be a particular solution to a non-homogeneous first order linear system and X_{h} be the general solution to the associated homogeneous equation, then the general solution is given by

$$
X=X_{p}+X_{h}
$$

The Wronskian

Theorem
 Let $X_{1}, X_{2}, \ldots, X_{n}$ be n solution vectors to a homogeneous system on an interval I. They are linearly independent if and only if their Wronskian is non-zero for every t in the interval.

